Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4333-4345.doi: 10.3864/j.issn.0578-1752.2025.21.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Variety, Over-Winter Regulation, and Pest and Disease Control on Rapeseed Yield

YANG Long1(), ZHANG XueKun1,2(), CHEN AiWu3(), LI Mei2, CHENG Tai3, MA WuHui1, XU BenBo1, XU JinSong1   

  1. 1 College of Agronomy, Yangtze University/Key Laboratory of Green and Efficient Crop Production in the Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Jingzhou 434025, Hubei
    2 Yuelushan Laboratory/Hunan Crop Research Institute, Changsha 410128
    3 Rapeseed Office of Hubei Province, Wuhan 430070
  • Received:2025-06-26 Accepted:2025-09-30 Online:2025-11-01 Published:2025-11-06
  • Contact: ZHANG XueKun

Abstract:

【Objective】Rapeseed (Brassica napus L.) is the first major oil-bearing crop in China. Enhancing rapeseed yield per unit area is the key to increase its effective supply and economic benefits. Under the condition of mechanical direct seeding, further clarifying the impacts of major technical factors, such as variety selection, overwintering regulation, and disease and pest control, on the yield per unit area could provide a theoretical basis for the improvement of rapeseed yield per unit area in China. 【Method】Nine high-yield and high-quality rapeseed varieties were selected, and mechanical direct-seeding experiments were conducted at 22 experimental sites (major rapeseed-producing counties) over 2 years from 2021 to 2023. A systematic study was carried out to investigate the impacts of factors such as rapeseed variety, seed treatment, overwintering regulation, and Sclerotinia sclerotiorum control on the yield per unit area under the condition of reduced topdressing application of nitrogen fertilizer. 【Result】The application of three combined treatment techniques, namely seed treatment (Maishuping coating for pest prevention, D1), overwintering regulation (D2), and novel Sclerotinia sclerotiorum control (fluxapyroxad, D3), all significantly increased the yield per unit area of rapeseed under reduced nitrogen topdressing (urea 45 kg·hm-2). Compared with the traditional loss-reduction technology mode (uncoated seeds+no overwintering regulation and prochloraz for Sclerotinia sclerotiorum control+urea topdressing, CK), with a yield of 112.5 kg·hm-2, the yields under D1, D2 and D3 treatments increased significantly by 6.2%, 6.4%, and 10.9%, respectively, while the corresponding yields reached 2 594.2, 2 600.4 and 2 708.9 kg·hm-2, respectively. However, only the incidence of Sclerotinia sclerotiorum was extremely significantly reduced by 49.1% under the D3 treatment. Different technical combinations exhibited significant interaction effects on yield per unit area improvement. When seed treatment and overwintering regulation were combined with the novel Sclerotinia sclerotiorum control technology respectively, the yields were significantly 15.7% and 16.1% higher than those under the traditional technology, respectively, reaching 2 820.0 and 2 834.2 kg·hm-2, respectively, while the incidence of Sclerotinia sclerotiorum decreased by 55.6% and 55.3%, respectively. Additionally, there was a significant interaction effect between rapeseed variety genotypes and technology. The application of new technologies could exceed the national regional trial yields of the corresponding varieties. For instance, the regional trial yields of Yangguang 131, Dadi 199 and Zhongyouza 39 were 2 341.2, 3 085.5, and 2 982.0 kg·hm-2, respectively. Under optimized combinations of regulatory technology, the yields were 11.7%, 5.0% and 3.5% higher than their respective regional trial yields, respectively. A multiple stepwise regression analysis was conducted between the experimental yield and factors including the regional trial yield, disease resistance of rapeseed varieties, as well as different technological combinations, and the results revealed that the critical factors determining yield levels were the 1000-seed weight in regional trials, regional trial yield of varieties, novel Sclerotinia sclerotiorum control, and reduced winter urea topdressing rate. Canonical correlation analysis further confirmed that the regional trial yield, regional trial 1000-seed weight, and regional trial silique number of varieties determined the yield levels. Meanwhile, fluxapyroxad and Maishuping played a very important role in enhancing yield increase rates. Additionally, the novel Sclerotinia sclerotiorum control technology and overwintering stress resistance regulation were related to reducing the incidence of Sclerotinia sclerotiorum. 【Conclusion】In the mechanical production of rapeseed, the regional trial yield of varieties was a key factor affecting the rapeseed yield levels. The use of fluxapyroxad to control Sclerotinia sclerotiorum was an effective factor for reducing the yield loss caused by Sclerotinia sclerotiorum at present. The combination of seed treatment, overwintering regulation and the novel Sclerotinia sclerotiorum control technology could further exert the yield potential of rapeseed varieties. It was suggested that in practical production, high-yield and high-quality varieties should be selected, and loss-reduction technologies, such as supporting seed treatment, overwintering regulation and fluxapyroxad, should be matched to achieve a significant improvement in rapeseed yield per unit area.

Key words: rapeseed, yield, variety, Sclerotium disease, pydiflumetofen, seed treatment, over-winter regulation

Fig. 1

Monthly average precipitation and temperature trends during the rapeseed growth period (2021-2023)"

Table 1

Design table of combination factors of different treatment"

减损技术因子Field loss control factors
处理
Treatment
氮肥追施量
Nitrogen topdressing
level (kg·hm-2)
种子处理
Seed treated with thiamethoxam
(mL·hm-2)
有机水溶肥冬季调控
Over-winter regulation with Organic water-soluble fertilizer (mL·hm-2)
咪鲜胺传统防病技术
Traditional technology with Prochloraz
(mL·hm-2)
氟唑菌酰羟胺菌核病防治
Sclerotinia control with pydiflumetofen
(mL·hm-2)
CK 112.5 0 0 1500 0
D1 45 30 0 1500 0
D2 45 0 1500 1500 0
D3 45 0 0 0 750
D4 45 30 0 0 750
D5 45 0 1500 0 750

Fig. 2

Changes in the number of pods per rapeseed plant, seeds per pod, thousand-seed weight, and density for different technology combinations at various experimental sites from 2021 to 2023"

Fig. 3

The incidence and index of rapeseed sclerotinia disease with different technologies (2021-2023)"

Fig. 4

Rapeseed yield and yield improvement under different technology combinations at each experimental site (2021—2023)"

Table 2

Stepwise regression analysis of agronomic traits such as production factors, variety resistance and yield"

因变量(Y)
Dependent variable
非标准化系数
Unstandardized coefficient
标准化系数
Standardized coefficient
自变量单独
检验统计量
t
回归系数
显著性
P
方差膨胀
因子
VIF
回归系数与截距
B
标准误
Standard error
常数为0时的回归系数值
Beta
产量
Yield
常数 Constant 86.469 18.441 - 4.689 0** -
追施氮量 Urea -2.354 0.960 -0.187 -2.454 0.015* 1.196
氟唑菌酰羟胺 Pydiflumetofen 0.221 0.065 0.260 3.401 0.001** 1.197
区试产量 Regional trials yield 0.312 0.072 0.304 4.332 0** 1.013
区试千粒重
Regional trials 1000 seeds weight
10.920 3.456 0.223 3.160 0.002** 1.020
R2 0.323
调整R2 Adjust R2 0.304
F F (4,139)=16.598, P=0.000

Fig. 5

Varietal differences in response to novel disease control technologies in rapeseed"

Fig. 6

Canonical correlation structure of production factors, agronomic traits, and yield"

[1]
刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41(4): 485-489.
LIU C, FENG Z C, XIAO T H, MA X M, ZHOU G S, HUANG F H, LI J N, WANG H Z. Development, potential and adaptation of Chinese rapeseed industry. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485-489. (in Chinese)
[2]
冯海棠, 王汉中. 新形势下的我国食用植物油供给安全对策. 中国油料作物学报, 2024, 46(2): 221-227.

doi: 10.19802/j.issn.1007-9084.2024021
FENG H T, WANG H Z. Security strategy for the nation’s edible vegetable oil supplies under the new circumstances. Chinese Journal of Oil Crop Sciences, 2024, 46(2): 221-227. (in Chinese)
[3]
NY/T 2208—2012. 油菜全程机械化生产技术规范, 中华人民共和国农业行业标准. 江苏沃得农业机械有限公司, 农业部南京农业机械化研究所, 2013.
NY/T 2208—2012. Technical specifications for rape full mechanized production, Agricultural industry standard of the People's Republic of China. Jiangsu Wude Agricultural Machinery Co, LTD, Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture, 2013. (in Chinese)
[4]
吴崇友, 王积军, 廖庆喜, 谢守勇, 舒伟军, 陈传明, 米洪友, 许振林. 我国油菜生产机械化存在的问题趋势与对策. 农机质量与监督, 2024(3): 9-11.
WU C Y, WANG J J, LIAO Q X, XIE S Y, SHU W J, CHEN C M, MI H Y, XU Z L. Problems, trends and countermeasures of rape production mechanization in China. Agricultural Machinery Quality & Supervision, 2024(3): 9-11. (in Chinese)
[5]
李勤, 刘小焱, 盛紫微, 曲昭杰, 罗涛, 王晶, 蒯婕, 汪波, 李俊, 徐正华, 周广生. 我国油菜适合机械化收获关键农艺性状研究进展. 中国油料作物学报, 2023, 45 (5): 1053-1061.

doi: 10.19802/j.issn.1007-9084.2022194
LI Q, LIU X Y, SHENG Z W, QU Z J, LUO T, WANG J, WANG B, LI J, XU Z H, ZHOU G S. Research progress on target agronomic traits for mechanized harvesting of rapeseed in China. Chinese Journal of Oil Crop Sciences, 2023, 45 (5): 1053-1061. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2022194
[6]
李谷成, 牛秋纯, 冷博峰, 丁逸飞, 童婷, 范丽霞. 新时代十年: 我国油菜产业发展与路径选择. 中国油料作物学报, 2024, 46(2): 228-235.

doi: 10.19802/j.issn.1007-9084.2023248
LI G C, NIU Q C, LENG B F, DING Y F, TONG T, FAN L X. The decade of rapeseed industry in the new era: Development and its path choice. Chinese Journal of Oil Crop Sciences, 2024, 46(2): 228-235. (in Chinese)
[7]
ZHANG Z, LU J W, CONG R H, REN T, LI X K. Evaluating agroclimatic constraints and yield gaps for winter oilseed rape (Brassica napus L.)- A case study. Scientific Reports, 2017, 7(1): 7852.
[8]
殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策. 中国农业科技导报, 2021, 23(8): 1-7.
YIN Y, YIN L, ZHANG X K, GUO J L, WANG J J. Status and countermeasure of the high-quality development of rapeseed industry in China. Journal of Agricultural Science and Technology, 2021, 23(8): 1-7. (in Chinese)

doi: 10.13304/j.nykjdb.2020.1050
[9]
胡志勇, 鲜孟筑, 李俊. 我国油菜品种改良现状及发展趋势. 中国农业大学学报, 2024, 29(3): 50-62.
HU Z Y, XIAN M Z, LI J. Current situation and development trends of rapeseed variety improvement in China. Journal of China Agricultural University, 2024, 29(3): 50-62. (in Chinese)
[10]
鲁剑巍, 任涛, 李小坤, 丛日环, 陆志峰, 张洋洋, 刘诗诗, 廖世鹏, 朱俊. 我国冬油菜养分精准调控策略与高效施肥技术体系. 华中农业大学学报, 2023, 42(6): 18-25.
LU J W, REN T, LI X K, CONG R H, LU Z F, ZHANG Y Y, LIU S S, LIAO S P, ZHU J. Strategy of precisely controlling nutrient and system of efficient fertilization technology for winter rapeseed in China. Journal of Huazhong Agricultural University, 2023, 42(6): 18-25. (in Chinese)
[11]
吴亚军, 李莓, 汤松, 陈于婷, 张莹莹, 徐劲松, 许本波, 张哲, 张学昆. 影响我国油菜主栽品种推广面积的因素分析. 中国油料作物学报, 1-8. https://doi.org/10.19802/j.issn.1007-9084.2025008.
WU Y J, LI M, TANG S, CHEN Y T, ZHANG Y Y, XU J S, XU B B, ZHANG Z, ZHANG X K. Analysis of factors affecting the planting area of leading rapeseed cultivars in China. Chinese Journal of Oil Crop Sciences, 1-8. https://doi.org/10.19802/j.issn.1007-9084.2025008. (in Chinese)
[12]
邹娟, 鲁剑巍, 陈防, 李银水, 李小坤. 冬油菜施氮的增产和养分吸收效应及氮肥利用率研究. 中国农业科学, 2011, 44(4): 745-752. doi: 10.3864/j.issn.0578-1752.2011.04.012.
ZOU J, LU J W, CHEN F, LI Y S, LI X K. Study on yield increasing and nutrient uptake effect by nitrogen application and nitrogen use efficiency for winter rapeseed. Scientia Agricultura Sinica, 2011, 44(4): 745-752. doi: 10.3864/j.issn.0578-1752.2011.04.012. (in Chinese)
[13]
蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51(24): 4625-4632. doi: 10.3864/j.issn.0578-1752.2018.24.004.
KUAI J, WANG J J, ZUO Q S, CHEN H L, GAO J Q, WANG B, ZHOU G S, FU T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Scientia Agricultura Sinica, 2018, 51(24): 4625-4632. doi: 10.3864/j.issn.0578-1752.2018.24.004. (in Chinese)
[14]
何永强, 张金盔, 徐劲松, 丁晓雨, 程勇, 许本波, 张学昆. 14-羟基芸苔素甾醇生长调节剂对油菜生长和产量的影响. 中国农业科学, 2024, 57(8): 1444-1454. doi:10.3864/j.issn.0578-1752.2024.08.003.
HE Y Q, ZHANG J K, XU J S, DING X Y, CHENG Y, XU B B, ZHANG X K. Effect of 14-hydroxylated brassinosteroids growth regulator on growth and yield of rapeseed. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454. doi:10.3864/j.issn.0578-1752.2024.08.003. (in Chinese)
[15]
NY/T 3068-2016. 油菜品种菌核病抗性鉴定技术规程, 中华人民共和国农业行业标准. 中国农业科学院油料作物研究所, 全国农业技术推广服务中心, 2016.
NY/T 3068-2016. Code of practice for identification of resistance to Sclerotinia sclerotiorum in oilseed rape Agricultural industry standard of the People's Republic of China. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences National Agricultural Technology Extension Service Center, 2016. (in Chinese)
[16]
赫迪, 胡鹏程, 王靖, 王良, 房世波. 长江流域冬油菜产量潜力及产量差分布特征. 山东农业科学, 2023, 55(10): 174-180.
HE D, HU P C, WANG J, WANG L, FANG S B. Distribution characteristics of winter canola yield potential and yield gap in the Yangtze River Basin. Shandong Agricultural Sciences, 2023, 55(10): 174-180. (in Chinese)
[17]
张智, 丛日环, 鲁剑巍. 中国冬油菜产业氮肥减施增效潜力分析. 植物营养与肥料学报, 2017, 23(6): 1494-1504.
ZHANG Z, CONG R H, LU J W. Potential analysis on winter oilseed rape production under reducing nitrogen input and increasing its efficiency in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1494-1504. (in Chinese)
[18]
胡文诗, 李凯旭, 尹羽丰, 常海滨, 余小红, 黄威, 顾炽明, 李银水, 廖星, 秦璐. 油菜品种中油杂501高产油的氮素需求规律. 中国油料作物学报, 2025, 47(2): 435-442.

doi: 10.19802/j.issn.1007-9084.2024045
HU W S, LI K X, YIN Y F, CHANG H B, YU X H, HUANG W, GU C M, LI Y S, LIAO X, QIN L. Nitrogen demand characteristics in Brassica napus cultivar Zhongyouza 501 with high oil production. Chinese Journal of Oil Crop Sciences, 2025, 47(2): 435-442. (in Chinese)
[19]
王汉中. 中国油菜品种改良的中长期发展战略. 中国油料作物学报, 2004, 26(2): 98-101.
WANG H Z. Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chinese Journal of Oil Crop Sciences, 2004, 26(2): 98-101. (in Chinese)
[20]
MACKAY I, HORWELL A, GARNER J, WHITE J, MCKEE J, PHILPOTT H. Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theoretical and Applied Genetics, 2011, 122(1): 225-238.

doi: 10.1007/s00122-010-1438-y pmid: 20835813
[21]
BERRY P M, SPINK J H. A physiological analysis of oilseed rape yields: Past and future. The Journal of Agricultural Science, 2006, 144(5): 381-392.
[22]
TIAN Z, JI Y H, SUN L X, XU X L, FAN D L, ZHONG H L, LIANG Z R, GUNTHER F. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change: A multi- model ensemble approach. Journal of Geographical Sciences, 2018, 28(11): 1700-1714.
[23]
李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44(2): 278-287.
LI X Y, ZHOU M, WANG T, ZHANG L, ZHOU G S, KUAI J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agronomica Sinica, 2018, 44(2): 278-287. (in Chinese)
[24]
蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响. 中国农业科学, 2021, 54(11): 2319-2332. doi:10.3864/j.issn.0578-1752.2021.11.006.
KUAI J, LI Z, WANG B, LIU F, YE J, ZHOU G S. Effects of density and row spacing on seedling traits of rapeseed and seed yield. Scientia Agricultura Sinica, 2021, 54(11): 2319-2332.doi:10.3864/j.issn.0578-1752.2021.11.006. (in Chinese)
[25]
李亦扬, 王龙, 钱晨, 李静, 林国冰, 瞿雯婷, 王炎, 林耀威, 黄怡航, 郑经东, 尤晶晶, 左青松. 密度对油菜角果性状的影响及高产油菜增产路径分析. 中国农业科学, 2024, 57(22): 4459-4472. doi:10.3864/j.issn.0578-1752.2024.22.006.
LI Y Y, WANG L, QIAN C, LI J, LIN G B, QU W T, WANG Y, LIN Y W, HUANG Y H, ZHENG J D, YOU J J, ZUO Q S. Effects of planting density on the pod characteristics and exploring strategy analysis to increase yield in high-yield rapeseed. Scientia Agricultura Sinica, 2024, 57(22): 4459-4472. doi:10.3864/j.issn.0578-1752.2024.22.006. (in Chinese)
[26]
盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应. 作物学报, 2025, 51 (5): 1286-1298.

doi: 10.3724/SP.J.1006.2025.44153
SHENG Q N, FANG Y T, ZHAO J, DU S G, HU X Z, YU Q H, ZHU J, REN T, LU J W. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations. Acta Agronomica Sinica, 2025, 51 (5): 1286-1298. (in Chinese)
[27]
陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响. 作物学报, 2025, 51(2): 516-525.

doi: 10.3724/SP.J.1006.2025.44074
CHEN Y T, DING X Y, XU B B, ZHANG X K, XU J S, YIN Y. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2025, 51(2): 516-525. (in Chinese)
[28]
刘波, 魏全全, 鲁剑巍, 李小坤, 丛日环, 吴礼树, 徐维明, 杨运清, 任涛. 苗期渍水和氮肥用量对直播冬油菜产量及氮肥利用率的影响. 植物营养与肥料学报, 2017, 23(1): 144-153.
LIU B, WEI Q Q, LU J W, LI X K, CONG R H, WU L S, XU W M, YANG Y Q, REN T. Effects of waterlogging at the seedling stage and nitrogen application on seed yields and nitrogen use efficiency of direct-sown winter rapeseed (Brassica napus L.). Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 144-153. (in Chinese)
[29]
方华明, 童玥, 曾令益, 姜成红, 周元委, 张晓玲, 向欣, 施昌华, 方小平. 江汉平原油菜根肿病流行规律及栽培应对措施. 中国油料作物学报, 2019, 41(1): 101-108.

doi: 10.7505/j.issn.1007-9084.2019.01.013
FANG H M, TONG Y, ZENG L Y, JIANG C H, ZHOU Y W, ZHANG X L, XIANG X, SHI C H, FANG X P. Epidemic history and cultivation response of rapeseed clubroot disease in Jianghan Plain. Chinese Journal of Oil Crop Sciences, 2019, 41(1): 101-108. (in Chinese)
[30]
杨清坡, 刘万才, 黄冲. 近10年油菜主要病虫害发生危害情况的统计和分析. 植物保护, 2018, 44(3): 24-30.
YANG Q P, LIU W C, HUANG C. Statistics and analysis of oilseed rape losses caused by main diseases and insect pests in recent 10 years. Plant Protection, 2018, 44(3): 24-30. (in Chinese)
[31]
程晓晖, 刘越英, 黄军艳, 刘立江, 任莉, 刘胜毅. 2015—2020年我国冬油菜新品种菌核病抗性动态分析. 中国植物病理学会, 植物病理科技创新与绿色防控——中国植物病理学会2021年学术年会论文集. 贵阳, 2021: 435.
CHENG X H, LIU Y Y, HUANG J Y, LIU L J, REN L, LIU S Y. 2015-2020 Analysis of the resistance dynamics of new winter rapeseed varieties to fungal knot disease in China. Chinese Society of Plant Pathology, Plant Pathology Science and Technology Innovation and Green Control—Proceedings of the 2021 Annual Conference of the Chinese Society of Plant Pathology. Guiyang, 2021: 435. (in Chinese)
[32]
杨佳群, 任涛, 宋毅, 周元委, 王祥华, 赵剑, 喻嘉玲, 廖世鹏, 鲁剑巍. 油菜冻害后不同救灾措施的效果比较. 中国油料作物学报, 2025, 47 (3): 707-713.

doi: 10.19802/j.issn.1007-9084.2024255
YANG J Q, REN T, SONG Y, ZHOU Y W, WANG X H, ZHAO J, YU J L, LIAO S P, LU J W. Effects comparison of different disaster relief measures after freezing damage on rapeseed. Chinese Journal of Oil Crop Sciences, 2025, 47 (3): 707-713. (in Chinese)
[33]
余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制. 作物学报, 2023, 49(6): 1601-1615.

doi: 10.3724/SP.J.1006.2023.24115
YU X Y, WANG C Y, LI D S, WANG Z K, KUAI J, WANG B, WANG J, XU Z H, ZHOU G S. Formation mechanism of yield stability in high-yielding rapeseed varieties. Acta Agronomica Sinica, 2023, 49(6): 1601-1615. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!