Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (19): 3932-3945.doi: 10.3864/j.issn.0578-1752.2025.19.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Soybean Planting on Phosphorus Absorption of Wheat and Phosphorus Transformation in Soil

LI ShuaiBing(), LI ChenXin, REN Li, YU XiaoNa, GENG SaiNan, SHENG Kai, ZHANG YinJie(), WANG YiLun()   

  1. College of Resource and Environment, Henan Agricultural University, Zhengzhou 450046
  • Received:2025-05-22 Accepted:2025-07-03 Online:2025-10-01 Published:2025-10-10
  • Contact: ZHANG YinJie, WANG YiLun

Abstract:

【Objective】This study aimed to explore wheat yield, phosphorus uptake, and utilization, as well as soil phosphorus supply potential under maize-wheat and soybean-wheat rotations, so as to provide a theoretical basis for wheat planting in the North China Plain.【Method】Soybean-wheat (SW) and maize-wheat (CW) rotation field experiments were carried out in Yuanyang, Henan Province from 2023 to 2024, and three phosphorus levels application were set: no phosphorus application (P0), recommended phosphorus application (P1), and farmers' customary phosphorus application (P2), a total of 6 treatments. At the harvest period of the subsequent wheat season, plant and soil samples were collected to measure yield and yield components, nutrient accumulation, soil physicochemical properties, chemical phosphorus fractionation, phosphorus adsorption and desorption characteristics, as well as the community structure of phoD gene-harboring bacteria.【Result】Compared with maize planting, soybean planting significantly increased the grain weight and yield of wheat by 8.2%-9.4% and 10.6%-19.7%, respectively. Under different phosphorus application rates, compared with maize planting, soybean planting significantly increased wheat phosphorus accumulation and phosphorus fertilizer utilization, with an increase of 4.3%-8.3% and 31.2%-41.6%, respectively. Under different phosphorus application conditions, compared with maize planting, soybean planting increased the proportion of soil labile phosphorus (H2O-P, NaHCO3-Pi) and moderately labile phosphorus (NaOH-Pi), and decreased the proportion of stable phosphorus (HCl-P, residual-P). Under phosphorus application conditions, compared with maize planting, soybean planting reduced the maximum phosphorus adsorption capacity (Qmax) of the soil, increased the degree of phosphorus saturation (DPS), and promoted phosphorus desorption. Redundancy analysis showed that soil NO3--N, Qmax, and adsorption affinity constant (K) significantly affected the distribution of soil phosphorus forms, explaining 36.9%, 20.6%, and 10.6% of the total variance, respectively. Under the condition of phosphorus application, compared with maize planting, soybean planting significantly increased the absolute abundance of phoD gene in soil, with an increase of 17.1%-68.2%, and increased the relative abundance of Streptomyces and Actinoplanes. The complexity and connectivity of bacterial community network containing phoD gene in soil after soybean planting were higher. Further correlation analysis showed that wheat yield and phosphorus accumulation were significantly positively correlated with H2O-P, NaHCO3-Pi, NaOH-Pi, NaOH-Po, spike number, 1000-grain weight, and phoD abundance.【Conclusion】Soybean planting significantly enhanced the transformation of soil phosphorus (from stable to labile), reduced phosphorus adsorption and fixation, and improved microbial functional potential and interactions, thereby promoting wheat phosphorus uptake and utilization, increasing phosphorus use efficiency, and ultimately boosting wheat yield.

Key words: soybean, maize, wheat, rotation, phosphorus fertilizer utilization rate, soil phosphorus form, phosphorus adsorption and desorption, phoD gene

Table 1

Fertilization amount during maize-wheat and soybean-wheat rotation cycle"

处理
Treatment
玉米/大豆 Maize /Soybean (kg·hm-2) 小麦 Wheat (kg·hm-2)
N P2O5 K2O N P2O5 K2O
CWP0 180 0 90 180 90 60
CWP1 180 75 90 180 90 60
CWP2 180 150 90 180 90 60
SWP0 80 0 60 180 90 60
SWP1 80 50 60 180 90 60
SWP2 80 100 60 180 90 60

Fig. 1

Yield components and phosphorus absorption and utilization of wheat under different rotation patterns and previous phosphorus application R represents rotation mode; P represents the previous application of phosphorus; CW represents maize-wheat rotation; SW represents soybean-wheat rotation. * indicates that the difference is significant up to 5% level, ** indicates that the difference is significant up to 1% level, *** indicates that the difference is significant up to 0.1% level, and NS indicates that the difference is not significant. Different letters on the histogram indicate that the difference between the treatments is significant at the 0.05 level. The same as below"

Table 2

Basic physical and chemical properties of soil under different rotation modes and previous phosphorus application"

处理
Treatment
有机质
Organic matter
(g·kg-1)
铵态氮
Ammonium nitrogen
(mg·kg-1)
硝态氮
Nitrate nitrogen
(mg·kg-1)
速效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
CWP0 15.5±1.2b 7.95±0.1b 23.3±0.6b 10.6±0.8b 141±8.4b
SWP0 18.2±0.3a 8.62±0.3a 25.5±0.5a 16.5±0.8a 164±6.2a
CWP1 21.3±1.5a 7.36±0.1a 30.1±0.2b 13.6±0.5b 127±2.3b
SWP1 22.2±1.0a 7.47±0.5a 32.5±0.6a 18.6±0.7a 149±6.2a
CWP2 20.0±1.0a 7.78±0.3a 29.4±0.5b 14.3±0.6b 146±14.6a
SWP2 20.7±0.8a 7.56±0.3a 31.1±0.7a 25.2±0.7a 161±6.2a
Two-Way ANOVA
R * NS *** *** ***
P *** *** *** *** *
R×P NS NS NS *** NS

Table 3

Soil phosphorus forms under different rotation patterns and previous phosphorus application (mg·kg-1)"

处理Treatment H2O-P NaHCO3-Po NaHCO3-Pi NaOH-Po NaOH-Pi HCl-P Residual-P
CWP0 3.47±0.30b 12.60±1.3a 27.52±0.7a 22.28±1.6b 13.36±0.7a 253±4.3a 34.77±2.5a
SWP0 4.07±0.22a 15.17±1.5a 28.91±0.8a 26.70±1.5a 15.49±1.4a 238±8.1b 31.25±1.2a
CWP1 5.61±0.18b 12.05±1.1a 37.58±1.2b 25.20±1.2a 14.65±0.3b 258±4.9a 28.22±1.4a
SWP1 6.30±0.23a 13.94±3.6a 42.03±1.6a 27.91±1.6a 17.49±1.2a 203±35.9a 21.42±1.2b
CWP2 4.89±0.07a 15.01±2.4a 29.38±1.4a 23.56±1.6a 14.64±0.6b 259±2.6a 45.04±3.2a
SWP2 5.31±0.33a 15.67±3.0a 32.20±1.8a 25.33±1.2a 18.29±0.9a 245±3.1b 34.85±2.7b
Two-Way AVOVA
R *** NS *** *** *** ** ***
P *** NS *** ** ** NS ***
R×P NS NS NS NS NS NS NS

Fig. 2

Proportion of different phosphorus pools in soil (a) and redundancy analysis of phosphorus forms and soil physical and chemical properties (b)"

Fig. 3

Phosphorus absorption isotherms under different treatments"

Table 4

Soil absorption characteristic parameters under different rotation patterns and previous phosphorus application"

处理
Treatment
Langmuir 曲线方程
Langmuir curve equation
决定系数
Correlation coefficient
(R2)
最大吸附量
Maximum adsorption
(Qmax, mg·kg-1)
吸附亲和力常数
Adsorption affinity constant
(K)
最大缓冲容量
Soil largest phosphorus uptake (MBC, mg·kg-1)
吸附饱和度Absorption saturation
(DPS, %)
CWP0 C/Q=0.0064Q+0.0500 0.92863 157 0.1276 20.0 6.8
SWP0 C/Q=0.0059Q+0.0336 0.93658 171 0.1745 29.8 9.7
CWP1 C/Q=0.0054Q+0.0417 0.94557 184 0.1304 24.0 7.4
SWP1 C/Q=0.0055Q+0.0315 0.93418 182 0.1742 31.7 10.2
CWP2 C/Q=0.0046Q+0.0352 0.94668 219 0.1296 28.4 6.5
SWP2 C/Q=0.0052Q+0.0285 0.94257 191 0.1838 35.1 13.2

Fig. 4

Characteristics of bacterial community containing phoD gene and its correlation with phosphorus forms and crop yield"

[1]
陈雅渊. 秸秆和氮添加对长期秸秆还田土壤磷转化特征的影响[D]. 武汉: 华中农业大学, 2023.
CHEN Y Y. Effects of straw and nitrogen addition on characteristics of phosphorus transformation in long-term straw-returned soils[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese)
[2]
COOPER J, LOMBARDI R, BOARDMAN D, CARLIELL- MARQUET C. The future distribution and production of global phosphate rock reserves. Resources, Conservation and Recycling, 2011, 57: 78-86.
[3]
郜春花, 张强, 卢朝东, 董云中, 王岗, 张乃明. 选用解磷菌剂改善缺磷土壤磷素的有效性. 农业工程学报, 2005, 21(5): 56-59.
GAO C H, ZHANG Q, LU C D, DONG Y Z, WANG G, ZHANG N M. Improving the availability of soil phosphate by phosphate liberation bacteria. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(5): 56-59. (in Chinese)
[4]
寇心悦, 桑丽智, 沈玉芳. 麦季不同施磷量对麦玉和麦豆轮作体系作物产量及磷效率的影响. 水土保持学报, 2024, 38(5): 252-261, 271.
KOU X Y, SANG L Z, SHEN Y F. Effects of different phosphorus application rates in wheat season on crop yield and phosphorus efficiency in wheat-maize and wheat-soybean rotation systems. Journal of Soil and Water Conservation, 2024, 38(5): 252-261, 271. (in Chinese)
[5]
沈雯茜. 紫花苜蓿/玉米轮作和施氮条件下根际土壤微生物PLFA特征及对产量的影响[D]. 长春: 东北师范大学, 2023.
SHEN W Q. Effects of alfalfa/maize rotation and nitrogen application on phospholipid fatty acid of soil microbial in the rhizosphere and yield[D]. Changchun: Northeast Normal University, 2023. (in Chinese)
[6]
吴媛群. 豆科植物间作与施氮对油茶林地土壤磷素有效性的影响[D]. 长沙: 中南林业科技大学, 2023.
WU Y Q. Effects of leguminous intercropping and nitrogen fertilization on soil phosphorus availability in Camellia oleifera agroforestry[D]. Changsha: Central South University of Forestry & Technology, 2023. (in Chinese)
[7]
王蒙, 付强, 侯仁杰, 李天霄, 薛平. 松嫩平原不同耕作模式与秸秆还田量对土壤磷组分及大豆产量的影响. 农业工程学报, 2024, 40(3): 114-126.
WANG M, FU Q, HOU R J, LI T X, XUE P. Effects of cultivation modes and straw returning on soil phosphorus composition and soybean yield in the Songnen Plain of China. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(3): 114-126. (in Chinese)
[8]
戚瑞生, 党廷辉, 杨绍琼, 马瑞萍, 周丽萍. 长期轮作与施肥对农田土壤磷素形态和吸持特性的影响. 土壤学报, 2012, 49(6): 1136-1146.
QI R S, DANG T H, YANG S Q, MA R P, ZHOU L P. Forms of soil phosphorus and p adsorption in soils under long-term crop rotation and fertilization systems. Acta Pedologica Sinica, 2012, 49(6): 1136-1146. (in Chinese)
[9]
TIAN J H, KUANG X Z, TANG M T, CHEN X D, HUANG F, CAI Y X, CAI K Z. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Science of the Total Environment, 2021, 779: 146556.
[10]
YU H, WANG F H, SHAO M M, HUANG L, XIE Y Y, XU Y X, KONG L R. Effects of rotations with legume on soil functional microbial communities involved in phosphorus transformation. Frontiers in Microbiology, 2021, 12: 661100.
[11]
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976.
[12]
SUI Y B, THOMPSON M L, SHANG C. Fractionation of phosphorus in a mollisol amended with biosolids. Soil Science Society of America Journal, 1999, 63(5): 1174-1180.
[13]
王斌, 刘骅, 李耀辉, 马兴旺, 王西和, 马义兵. 长期施肥条件下灰漠土磷的吸附与解吸特征. 土壤学报, 2013, 50(4): 726-733.
WANG B, LIU H, LI Y H, MA X W, WANG X H, MA Y B. Phosphorus adsorption and desorption characteristics of gray desert soil under long-term fertilization. Acta Pedologica Sinica, 2013, 50(4): 726-733. (in Chinese)
[14]
王琼, 展晓莹, 张淑香, 彭畅, 高洪军, 张秀芝, 朱平, GILLES Colinet. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应. 中国农业科学, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, COLINET G. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015. (in Chinese)
[15]
夏海勇, 王凯荣. 有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响. 植物营养与肥料学报, 2009, 15(6): 1303-1310.
XIA H Y, WANG K R. Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1303-1310. (in Chinese)
[16]
王艳丽, 张富仓, 李菊, 许新宇, 王海东, 郭金金, 陆军胜, 范军亮, 向友珍. 灌溉和施磷对河西地区春玉米生长、产量和磷素利用的影响. 西北农业学报, 2021, 30(9): 1309-1320.
WANG Y L, ZHANG F C, LI J, XU X Y, WANG H D, GUO J J, LU J S, FAN J L, XIANG Y Z. Effects of irrigation and phosphorus application on spring maize growth, yield and phosphorus utilization in Hexi Region. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(9): 1309-1320. (in Chinese)
[17]
杨宁, 赵护兵, 王朝辉, 张达斌, 高亚军. 豆科作物-小麦轮作方式下旱地小麦花后干物质及养分累积、转移与产量的关系. 生态学报, 2012, 32(15): 4827-4835.
YANG N, ZHAO H B, WANG Z H, ZHANG D B, GAO Y J. Accumulation and translocation of dry matter and nutrients of wheat rotated with legumes and its relation to grain yield in a dryland area. Acta Ecologica Sinica, 2012, 32(15): 4827-4835. (in Chinese)
[18]
李洋, 石柯, 朱长伟, 姜桂英, 罗澜, 孟威威, 申凤敏, 刘芳, 魏芳芳, 刘世亮. 不同轮作模式对黄淮平原潮土区土壤养分及作物产量的影响. 水土保持学报, 2022, 36(2): 312-321.
LI Y, SHI K, ZHU C W, JIANG G Y, LUO L, MENG W W, SHEN F M, LIU F, WEI F F, LIU S L. Effect of different crop rotations on soil nutrients and crop yield in fluvo-aquic soil in Huang Huai Plain. Journal of Soil and Water Conservation, 2022, 36(2): 312-321. (in Chinese)
[19]
LI S, YUAN T, IBRAHIM M, WU F Z. Rotational strip bean and celery intercropping alters the microbial community to improve crop yield and soil nutrients. Horticulturae, 2024, 10(5): 432.
[20]
李军贤. 豆科作物轮作对半干旱地区农作系统氮平衡和生产力的影响[D]. 兰州: 甘肃农业大学, 2019.
LI J X. Nitrogen balance and productivity of different legume- included rotations in a semiarid agroecosystem[D]. Lanzhou: Gansu Agricultural University, 2019. (in Chinese)
[21]
LI A, WU Y Z, TAI X S, CAO S Z, GAO T P. Effects of alfalfa crop rotation on soil nutrients and loss of soil and nutrients in semi-arid regions. Sustainability, 2023, 15(20): 15164.
[22]
NURUZZAMAN M, LAMBERS H, DA BOLLAND M, VENEKLAAS E J. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant and Soil, 2005, 271(1): 175-187.
[23]
ZHONG Z M, HUANG X S, FENG D Q, XING S H, WENG B Q. Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure. Agriculture, Ecosystems & Environment, 2018, 268: 24-33.
[24]
马小艳, 杨瑜, 黄冬琳, 王朝辉, 高亚军, 李永刚, 吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析. 中国农业科学, 2022, 55(8): 1589-1603. doi: 10.3864/j.issn.0578-1752.2022.08.010.
MA X Y, YANG Y, HUANG D L, WANG Z H, GAO Y J, LI Y G, H. Annual nutrients balance and economic return analysis of wheat with fertilizers reduction and different rotations. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. doi: 10.3864/j.issn.0578-1752.2022.08.010. (in Chinese)
[25]
GAO X Y, HE Y, CHEN Y, WANG M. Leguminous green manure amendments improve maize yield by increasing N and P fertilizer use efficiency in yellow soil of the Yunnan-Guizhou Plateau. Frontiers in Sustainable Food Systems, 2024, 8: 1369571.
[26]
王瑞雪. 玉米大豆根系互作驱动微生物群落变化调控红壤磷有效性的机制[D]. 昆明: 云南农业大学, 2022.
WANG R X. Mechanism of roots interaction of maize and soybean intercropping driving microbial community variation to regulate phosphorus availability in red soil[D]. Kunming: Yunnan Agricultural University, 2022. (in Chinese)
[27]
PENG C, WANG S H, ZHU Y J, LI A D, YU G C, MAO Q G, ZHENG M H, HUANG J, TAN X P, MO J M, ZHANG W. Adsorption/desorption processes dominate the soil P fractions dynamic under long-term N/P addition in a subtropical forest. Geoderma, 2025, 457: 117284.
[28]
ZHANG Y J, GAO W, LUAN H A, TANG J W, LI R N, LI M Y, ZHANG H Z, HUANG S W. Long-term organic substitution management affects soil phosphorus speciation and reduces leaching in greenhouse vegetable production. Journal of Cleaner Production, 2021, 327: 129464.
[29]
FEIZIENE D, FEIZA V, POVILAITIS V, PUTRAMENTAITE A, JANUSAUSKAITE D, SEIBUTIS V, SLEPETYS J. Soil sustainability changes in organic crop rotations with diverse crop species and the share of legumes. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 2016, 66(1): 36-51.
[30]
DELGADO J A, D’ADAMO R E, STEWART C E, FLOYD B A, DEL GROSSO S J, MANTER D K, HALVORSON A D, BRANDT A D. Long-term effects of nitrogen sources on yields, nitrogen use efficiencies, and soil of tilled and irrigated corn. Agronomy, 2024, 14(11): 2618.
[31]
张迪, 魏自民, 李淑芹, 王世平, 许景钢. 生物有机肥对土壤中磷的吸附和解吸特性的影响. 东北农业大学学报, 2005, 36(5): 571-575.
ZHANG D, WEI Z M, LI S Q, WANG S P, XU J G. Effect of bio-organic fertilizers onphosphorus adsorption-desorption. Journal of Northeast Agricultural University, 2005, 36(5): 571-575. (in Chinese)
[32]
徐敏, 宋春, 戴炜, 肖霞, 毛璐, 王小春, 杨文钰. 紫色丘陵区玉米/大豆套作系统土壤磷吸附-解吸动力学. 应用生态学报, 2015, 26(7): 1985-1991.
XU M, SONG C, DAI W, XIAO X, MAO L, WANG X C, YANG W Y. Dynamics of soil phosphorus adsorption-desorption in maize/soybean relay intercropping system in purple hilly area. Chinese Journal of Applied Ecology, 2015, 26(7): 1985-1991. (in Chinese)
[33]
马艳梅. 长期轮作连作对不同作物土壤磷组分的影响. 中国农学通报, 2006, 22(7): 355-358.
MA Y M. Effects of long-term crop rotation and continuous cropping on phosphorus forms in different crop soil. Chinese Agricultural Science Bulletin, 2006, 22(7): 355-358. (in Chinese)
[34]
曾昭海. 豆科作物与禾本科作物轮作研究进展及前景. 中国生态农业学报, 2018, 26(1): 57-61.
ZENG Z H. Progress and perspective of legume-gramineae rotations. Chinese Journal of Eco-Agriculture, 2018, 26(1): 57-61. (in Chinese)
[35]
连文慧, 董雷, 李文均. 土壤环境下的根际微生物和植物互作关系研究进展. 微生物学杂志, 2021, 41(4): 74-83.
LIAN W H, DONG L, LI W J. Advances in rhizosphere microorganism and plant interaction in soil environment. Journal of Microbiology, 2021, 41(4): 74-83. (in Chinese)
[36]
LI J T, LU J L, WANG H Y, FANG Z, WANG X J, FENG S W, WANG Z, YUAN T, ZHANG S C, OU S N, et al. A comprehensive synthesis unveils the mysteries of phosphate- solubilizing microbes. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(6): 2771-2793.
[37]
黄源鸿, 张春龙, 黄容, 唐晓燕, 王昌全, 李冰. 猪粪投入量对土壤有机磷组分及微生物系统稳定性的影响. 植物营养与肥料学报, 2025, 31(1): 100-111.
HUANG Y H, ZHANG C L, HUANG R, TANG X Y, WANG C Q, LI B. Impact of long-term application of swine manure on soil organic phosphorus fractions and the stability of microbial communities. Journal of Plant Nutrition and Fertilizers, 2025, 31(1): 100-111. (in Chinese)
[38]
叶天承. 水稻-大豆轮作对水稻生长及稻田养分变化的影响[D]. 北京: 中国农业科学院, 2024.
YE T C. Effects of rice-soybean rotation on rice growth and soil nutrient changes in paddy yields[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese)
[39]
CHANG D N, SONG Y R, LIANG H, LIU R, CAI C, LV S L, LIAO Y L, NIE J, DUAN T Y, CAO W D. Planting Chinese milk vetch with phosphate-solubilizing bacteria inoculation enhances phosphorus turnover by altering the structure of the phoD- harboring bacteria community. European Journal of Soil Biology, 2024, 123: 103678.
[40]
申文艳, 张乃于, 李天娇, 宋天昊, 张秀芝, 彭畅, 刘红芳, 张淑香, 段碧华. 长期施肥黑土phoD微生物群落特征及其对有机磷组分的影响. 中国农业科学, 2024, 57(20): 4082-4093. doi: 10.3864/j.issn.0578-1752.2024.20.013.
SHEN W Y, ZHANG N Y, LI T J, SONG T H, ZHANG X Z, PENG C, LIU H F, ZHANG S X, DUAN B H. Characteristics of phoD- harboring microbial communities under long-term fertilization and its effects on organic phosphorus fractions in black soil. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093. doi: 10.3864/j.issn.0578-1752.2024.20.013. (in Chinese)
[41]
FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631.
[42]
张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响. 生态环境学报, 2024, 33(7): 1048-1062.

doi: 10.16258/j.cnki.1674-5906.2024.07.006
ZHANG J L, WANG G L, WU B, JIA C L, ZHANG J H, ZHOU Y, MA B. The effects of alfalfa-triticale rotation on soil bacterial and fungal community diversity and co-occurrence network in coastal saline-alkaline soil. Ecologyand Environmental Sciences, 2024, 33(7): 1048-1062. (in Chinese)
[43]
TIAN L, SHI S H, MA L N, TRAN L P, TIAN C J. Community structures of the rhizomicrobiomes of cultivated and wild soybeans in their continuous cropping. Microbiological Research, 2020, 232: 126390.
[44]
AZEEM K, INAMULLAH, NAZ F, NADEEM F, MUHAMMAD JHANZAB H, SHER A, BIBI Y, SYED A, BAHKALI A H, ELGORBAN A M, HUSSAIN M, QAYYUM A. Deciphering of Microbes×Nitrogen source fertilizers interaction for improving nitrogen use efficiency in spring maize. Journal of King Saud University - Science, 2023, 35(4): 102633.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[3] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[4] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[5] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[6] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[10] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[11] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[12] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[13] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[14] LIU LuPing, HU XueJie, QI Jin, CHEN Qiang, LIU Zhi, ZHAO TianTian, SHI XiaoLei, LIU BingQiang, MENG QingMin, ZHANG MengChen, HAN TianFu, YANG ChunYan. Cloning of the Promoters and Analysis of Expression Patterns of Maturity Genes E1 and E2 in Soybean [J]. Scientia Agricultura Sinica, 2025, 58(5): 840-850.
[15] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!