Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (16): 3256-3266.doi: 10.3864/j.issn.0578-1752.2025.16.009

• SPECIAL FOCUS: NUTRIENT MANAGEMENT FOR ANNUAL RICE-RAPESEED ROTATION • Previous Articles     Next Articles

Magnesium Fertilization Effects and Application Recommendations in the Rice-Rapeseed Rotation System

YE XiaoLei1(), TIAN GuiSheng2, LIU JunQuan2, GENG GuoTao1, FANG YaTing1, REN Tao1, LI XiaoKun1, CONG RiHuan1, LU ZhiFeng1,*(), LU JianWei1   

  1. 1 College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Microelement Research Center, Huazhong Agricultural University, Wuhan 430070
    2 Bureau of Agriculture and Rural Affairs, Wuxue City, Huanggang 435401, Hubei
  • Received:2025-04-14 Accepted:2025-05-27 Online:2025-08-11 Published:2025-08-11
  • Contact: LU ZhiFeng

Abstract:

【Objective】To address the critical constraint of soil available magnesium (Mg) deficiency on annual productivity in the rice-rapeseed rotation systems of China’s Yangtze River Basin, this study systematically investigated the effects of Mg fertilizer application rates on annual crop yield formation, nutrient uptake, and Mg balance in the soil-crop system, for providing a theoretical basis for efficient Mg management in rotation systems.【Method】Based on a field experiment initiated in 2017 at Wuxue, Hubei Province, this study selected six rotation cycles (2017-2023) with five Mg fertilizer treatments (0, 15, 30, 45, and 60 kg MgO·hm-2 per season). The crop yield components, nutrient concentrations in different plant parts, and biomass in the rice-rapeseed rotation system were measured. Based on these measurements, crop nutrient accumulation, fertilizer use efficiency, and soil nutrient balance were calculated to clarify the magnesium requirement characteristics of crops in the rotation system and establish fertilization strategies for the rotation system.【Result】(1) Mg application significantly increased annual system productivity, with yield increments of 9.5%-23.8% for rapeseed and 2.2%-4.0% for rice. A linear-plateau model indicated the maximum yields of 2 388 kg·hm-2 (rapeseed) and 8306 kg·hm-2 (rice) at an annual MgO rate of 60.4 kg·hm-2 (38.1 kg·hm-2 for rapeseed season; 22.3 kg·hm-2 for rice season). Yield improvements in rapeseed were attributed to increased siliques per plant and seeds per pod, while rice yield gains resulted from higher effective panicles and filled grains per panicle. (2) Mg application significantly elevated Mg concentrations in all plant parts at maturity, with smaller effects on grains. The maximum increases were 45.1% (rapeseed stem), 66.2% (pod wall), and 8.5% (seed) for rapeseed, and 14.9% (stem and leaf) and 6.5% (seed) for rice. Annual biomass and Mg accumulation increased by up to 1 820 kg·hm-2 (8.5%) and 6.3 kg·hm-2 (29.5%), respectively. While rice showed higher absolute biomass and Mg accumulation, rapeseed 's proportional contribution to annual Mg uptake increased with Mg application. (3) Mg fertilizer apparent utilization rate and agronomic efficiency declined with increasing application rates, with rapeseed consistently exhibiting higher utilization than rice under equivalent Mg inputs. Mg removal by crops exceeded fertilizer input below 90 kg·hm-2 annual application, while 120 kg·hm-2 resulted in Mg surplus. If the straw was returned to the field, Mg surplus would occur when the annual Mg fertilizer application rate was 60 kg·hm-2.【Conclusion】The application of Mg fertilizer significantly enhanced annual crop productivity in the rice-rapeseed rotation system, with rapeseed exhibiting more pronounced demand and utilization advantages for Mg. It was recommended that the annual Mg fertilizer application rate in the rotation system be approximately 60 kg·hm-2, with a seasonal application ratio of about 2:1 between the rapeseed and rice seasons, to achieve efficient Mg fertilizer management and to improve annual productivity.

Key words: rice-rapeseed rotation, magnesium fertilizer, yield, magnesium accumulation, soil magnesium balance

Fig. 1

Effects of magnesium fertilizer application rate on yield of rapeseed and rice Different lowercase letters indicate that there are significant differences among different magnesium fertilizer levels (P<0.05). The same as below. “□” represents the mean, and “—” represents the median"

Table 1

Effects of magnesium fertilizer application rate on yield components of rapeseed and rice (2021-2022 rapeseed-rice rotation)"

作物类型
Type of crop
镁肥用量
Magnesium application rate (kg·hm-2)
产量构成因子 Yield component
单株角果数
Pod number (No./plant)
每角粒数
Seed per pod (No./pod)
千粒重
1000-seed weight (g)
油菜
Rapeseed
0 148±12c 19.5±1.7c 5.20±0.05b
15 167±10b 21.0±0.5bc 5.36±0.18ab
30 178±5ab 21.7±0.4ab 5.48±0.14a
45 191±9a 22.7±0.3a 5.44±0.16a
60 182±8ab 21.8±0.5ab 5.38±0.05ab
水稻
Rice
有效穗数
Panicle number (No./plant)
穗实粒数
Grains per panicle (No./panicle)
千粒重
1000-seed weight (g)
0 8.58±0.44b 108±6b 22.5±0.5a
15 9.13±0.22ab 119±4a 22.6±0.4a
30 9.36±0.3ab 119±1a 22.4±0.1a
45 9.29±0.52ab 123±5a 22.5±0.5a
60 9.83±0.92a 120±1a 22.5±0.7a

Fig. 2

Effects of magnesium fertilizer application rate on magnesium content in different parts of rapeseed and rice"

Fig. 3

Effects of magnesium fertilizer application rate on aboveground biomass and magnesium accumulation of rapeseed and rice"

Fig. 4

Magnesium fertilizer utilization rates under different magnesium fertilizer application rates Different lowercase letters indicate significant differences between different magnesium fertilizer levels, while “*” represents significant differences between two crops (P<0.05)"

Table 2

Magnesium input and output balance under different magnesium fertilizer application rates"

油菜季Rapeseed 水稻季Rice 周年盈余
Annual balance
(kg·hm-2)
秸秆还田情况下周年盈余
Annual balance under straw returning (kg·hm-2)
投入
Input
(kg·hm-2)
支出
Output
(kg·hm-2)
盈余
Balance
(kg·hm-2)
投入
Input
(kg·hm-2)
支出
Output
(kg·hm-2)
盈余
Balance
(kg·hm-2)
0 34.9±15.1c -34.9±15.1e 0 51.0±7.5b -51.0±7.5e -85.9±17.5e -31.9±5.3e
15 42.2±18.1b -27.2±18.1d 15 53.5±9.5b -38.5±9.5d -65.6±21.9d -5.1±6.9d
30 49.4±17.6a -19.4±17.6c 30 57.0±11.3a -27.0±11.3c -46.4±22.7c 23.4±6.8c
45 52.2±20.4a -7.2±20.4b 45 58.3±12.2a -13.3±12.2b -20.5±25.6b 52.2±6.5b
60 53.1±16.6a 6.9±16.6a 60 57.6±12.5a 2.4±12.5a 9.3±22.6a 83.0±5.6a
[1]
HUANG J D, CAO X Y, KUAI J, CHENG H, ZUO Q S, DU H, PENG S B, HUANG J L, DENG N Y. Evaluation of production capacity for rice-rapeseed cropping system in China. Field Crops Research, 2023, 293: 108842.
[2]
耿国涛. 冬油菜土壤镁丰缺指标、镁肥增产提质效果与管理策略研究[D]. 武汉: 华中农业大学, 2023.
GENG G T. Research on soil Mg criteria and Mg fertilization effect on yield and quality improvement and management strategies for winter oilseed rape[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese)
[3]
CHEN X H, WANG Z, MUNEER M A, MA C C, HE D D, WHITE P J, LI C J, ZHANG F S. Short planks in the crop nutrient barrel theory of China are changing: Evidence from 15 crops in 13 provinces. Food and Energy Security, 2023, 12(1): e389.
[4]
陆志峰, 任涛, 鲁剑巍. 我国冬油菜种植区土壤有效镁状况与油菜施镁效果. 华中农业大学学报, 2021, 40(2): 17-23.
LU Z F, REN T, LU J W. Soil available magnesium status and effects of magnesium application on rapeseed yield in main producing area of China. Journal of Huazhong Agricultural University, 2021, 40(2): 17-23. (in Chinese)
[5]
白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004(2): 3-5.
BAI Y L, JIN J Y, YANG L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils and Fertilizers, 2004(2): 3-5. (in Chinese)
[6]
任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53(8): 1606-1616. doi: 10.3864/j.issn.0578-1752.2020.08.010.
REN T, GUO L X, ZHANG L M, YANG X K, LIAO S P, ZHANG Y Y, LI X K, CONG R H, LU J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616. doi: 10.3864/j.issn.0578-1752.2020.08.010. (in Chinese)
[7]
CHEN Z C, PENG W T, LI J, LIAO H. Functional dissection and transport mechanism of magnesium in plants. Seminars in Cell & Developmental Biology, 2018, 74: 142-152.
[8]
YE X L, GAO Z Y, XU K, LI B L, REN T, LI X K, CONG R H, LU Z F, CAKMAK I, LU J W. Photosynthetic plasticity aggravates the susceptibility of magnesium-deficient leaf to high light in rapeseed plants: The importance of Rubisco and mesophyll conductance. Plant Journal, 2024, 117(2): 483-497.
[9]
WANG Z, HASSAN M U, NADEEM F, WU L Q, ZHANG F S, LI X X. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Frontiers in Plant Science, 2020, 10: 1727.
[10]
HAUER-JÁKLI M, TRÄNKNER M. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis from 70 years of research. Frontiers in Plant Science, 2019, 10: 766.
[11]
GENG G T, CAKMAK I, REN T, LU Z F, LU J W. Effect of magnesium fertilization on seed yield, seed quality, carbon assimilation and nutrient uptake of rapeseed plants. Field Crops Research, 2021, 264: 108082.
[12]
叶晓磊, 耿国涛, 肖国滨, 吕伟生, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜籽产量及品质的影响. 作物学报, 2023, 49(11): 3063-3073.

doi: 10.3724/SP.J.1006.2023.34051
YE X L, GENG G T, XIAO G B, W S, REN T, LU Z F, LU J W. Effects of magnesium application rate on yield and quality in oilseed rape (Brassica napus L.). Acta Agronomica Sinica, 2023, 49(11): 3063-3073. (in Chinese)
[13]
GENG G T, YE X L, REN T, ZHANG Y Y, LI X K, CONG R H, CAKMAK I, LU Z F, LU J W. Optimal magnesium management for better seed yield and quality of rapeseed based on native soil magnesium supply. European Journal of Agronomy, 2024, 161: 127364.
[14]
杨瑞翔, 黄文卿, 邱昌颖, 张世昌, 廖丽莉, 颜晓军, 苏达, 张江周, 吴良泉. 福建省水稻镁肥效应及推荐用量. 植物营养与肥料学报, 2024, 30(8): 1515-1528.
YANG R X, HUANG W Q, QIU C Y, ZHANG S C, LIAO L L, YAN X J, SU D, ZHANG J Z, WU L Q. Effect of magnesium fertilizer on rice yield and the optimal application rate in Fujian Province. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1515-1528. (in Chinese)
[15]
张海鹏, 陈志青, 王锐, 卢豪, 崔培媛, 杨艳菊, 张洪程. 氮肥配施纳米镁对水稻产量、品质和氮肥利用率的影响. 作物杂志, 2022(4): 255-261.
ZHANG H P, CHEN Z Q, WANG R, LU H, CUI P Y, YANG Y J, ZHANG H C. Effects of nitrogen fertilizer combined with nano- magnesium on rice yield, grain quality and nitrogen use efficiency. Crops, 2022(4): 255-261. (in Chinese)
[16]
范明生, 江荣风, 张福锁, 吕世华, 刘学军. 水旱轮作系统作物养分管理策略. 应用生态学报, 2008, 19(2): 424-432.
FAN M S, JIANG R F, ZHANG F S, S H, LIU X J. Nutrient management strategy of paddy rice-upland crop rotation system. Chinese Journal of Applied Ecology, 2008, 19(2): 424-432. (in Chinese)
[17]
崔宏卓, 廖世鹏, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 干湿交替下氮肥施用对土壤有机氮库转化的影响. 中国土壤与肥料, 2022(6): 39-47.
CUI H Z, LIAO S P, ZHANG Y Y, LI X K, CONG R H, REN T, LU J W. Effects of nitrogen fertilizer application on the transformation of soil organic nitrogen pool under alternating wet and dry conditions. Soil and Fertilizer Sciences in China, 2022(6): 39-47. (in Chinese)
[18]
李帅帅, 郭俊杰, 刘文波, 韩春龙, 贾海飞, 凌宁, 郭世伟. 不同施肥模式下轮作制度引起的土壤磷素有效性变化及其影响因素. 中国农业科学, 2022, 55(1): 96-110. doi: 10.3864/j.issn.0578-1752.2022.01.009.
LI S S, GUO J J, LIU W B, HAN C L, JIA H F, LIN N, GUO S W. Influence of typical rotation systems on soil phosphorus availability under different fertilization strategies. Scientia Agricultura Sinica, 2022, 55(1): 96-110. doi: 10.3864/j.issn.0578-1752.2022.01.009. (in Chinese)
[19]
崔宸阳, 严玉鹏, 王小明, 刘凡, 冯雄汉. 华中地区水旱轮作酸性土磷、铁形态转化及机理. 农业环境科学学报, 2022, 41(09): 1993-2003.
CUI C Y, YAN Y P, WANG X M, LIU F, FENG X H. Speciation transformation and mechanism of phosphorus and iron in acid soils in paddy-upland rotation in central China. Journal of Agro-Environment Science, 2022, 41(9): 1993-2003. (in Chinese)
[20]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[21]
PEVERILL K, SPARROW L, REUTER D. Soil Analysis:An Interpretation Manual. Collingwood: CSIRO Publishing, 1999.
[22]
HU Y F, YE X S, SHI L, DUAN H Y, XU F S. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. Journal of Plant Nutrition, 2010, 33(6): 889-901.
[23]
褚光, 杨凯鹏, 王静超, 张耗. 水稻根系形态与生理研究进展. 安徽农业科学, 2012, 40(9): 5097-5101, 5104.
CHU G, YANG K P, WANG J C, ZHANG H. Research progress on root morphology and physiology of rice. Journal of Anhui Agricultural Sciences, 2012, 40(9): 5097-5101, 5104. (in Chinese)
[24]
郑有飞, 石春红, 吴芳芳, 刘宏举, 赵泽, 胡程达. 土壤微生物活性影响因子的研究进展. 土壤通报, 2009, 40(5): 1209-1214.
ZHENG Y F, SHI C H, WU F F, LIU H J, ZHAO Z, HU C D. Research advances on the factors influencing the activity of soil microorganism. Chinese Journal of Soil Science, 2009, 40(5): 1209-1214. (in Chinese)
[25]
张慧萍. 植物根系养分吸收模型的解析解[D]. 福州: 福建师范大学, 2019.
ZHANG H P. Analytical solutions of nutrient uptake model by plant roots[D]. Fuzhou: Fujian Normal University, 2019. (in Chinese)
[26]
刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料作物学报, 2012, 34(6): 638-644.
LIU X W, LU J W, LI X K, BU R Y, LIU B. Absorption characteristics of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chinese Journal of Oil Crop Sciences, 2012, 34(6): 638-644. (in Chinese)
[27]
张俊伶. 植物营养学. 北京: 中国农业大学出版社, 2021.
ZHANG J L. Plant Nutrition. Beijing: China Agricultural University Press, 2021. (in Chinese)
[28]
MENG X S, BAI S, WANG S Y, PAN Y H, CHEN K H, XIE K L, WANG M, GUO S W. The sensitivity of photosynthesis to magnesium deficiency differs between rice (Oryza sativa L.) and cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2023, 14: 1164866.
[29]
XIE K L, PAN Y H, MENG X S, WANG M, GUO S W. Critical leaf magnesium thresholds for growth, chlorophyll, leaf area, and photosynthesis in rice (Oryza sativa L.) and cucumber (Cucumis sativus L.). Agronomy, 2024, 14(7): 1508.
[30]
李艾芬, 章明奎. 浙北平原不同种植年限蔬菜地土壤氮磷的积累及环境风险评价. 农业环境科学学报, 2010, 29(1): 122-127.
LI A F, ZHANG M K. Accumulation and environmental risk of nitrogen and phosphorus in vegetable soils with different plantation history in northern Zhejiang. Journal of Agro-Environment Science, 2010, 29(1): 122-127. (in Chinese)
[31]
章明清, 李娟, 孔庆波, 严芳. 作物肥料效应函数模型研究进展与展望. 土壤学报, 2016, 53(6): 1343-1356.
ZHANG M Q, LI J, KONG Q B, YAN F. Progress and prospect of the study on crop-response-to-fertilization function model. Acta Pedologica Sinica, 2016, 53(6): 1343-1356. (in Chinese)
[32]
刘晓永. 中国农业生产中的养分平衡与需求研究[D]. 北京: 中国农业科学院, 2018.
LIU X Y. Study on nutrients balance and requirement in agricultural production in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[33]
宋大利, 侯胜鹏, 王秀斌, 梁国庆, 周卫. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24(1): 1-21.
SONG D L, HOU S P, WANG X B, LIANG G Q, ZHOU W. Nutrient resource quantity of crop straw and its potential of substituting. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. (in Chinese)
[34]
戴志刚, 鲁剑巍, 李小坤, 鲁明星, 杨文兵, 高祥照. 不同作物还田秸秆的养分释放特征试验. 农业工程学报, 2010, 26(6): 272-276.
DAI Z G, LU J W, LI X K, LU M X, YANG W B, GAO X Z. Nutrient release characteristic of different crop straws manure. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 272-276. (in Chinese)
[35]
赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015, 26(6): 1785-1792.
ZHAO Y L, GUO H B, XUE Z W, MU X Y, LI C H. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield. Chinese Journal of Applied Ecology, 2015, 26(6): 1785-1792. (in Chinese)
[36]
贾瑞峰, 丛日环, 徐志宇, 孙元丰, 李晓阳, 戴志刚, 李小坤, 任涛, 鲁剑巍. 秸秆还田技术改善土壤理化性质提高作物产量的Meta分析. 农业工程学报, 2025, 41(4): 80-89.
JIA R F, CONG R H, XU Z Y, SUN Y F, LI X Y, DAI Z G, LI X K, REN T, LU J W. Meta analysis of straw returning technology to improve soil physicochemical properties and increase the yield of main cereal and oil crop. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(4): 80-89. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!