Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 1958-1968.doi: 10.3864/j.issn.0578-1752.2025.10.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Residue Return Methods on Nitrogen Mineralization and N-Cycling Functional Genes in Black Soil of Northeast China

ZHANG Yang1,2(), GAO Yan1,2, ZHANG Yan1,2, HUANG DanDan1, CHEN XueWen1,2, ZHANG ShiXiu1,2, LIANG AiZhen1,2()   

  1. 1 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences/Key Laboratory of Mollisols Agroecology, Changchun 130102
    2 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2024-08-07 Accepted:2024-09-19 Online:2025-05-21 Published:2025-05-21
  • Contact: LIANG AiZhen

Abstract:

【Objective】 This study aimed to explore the effects of different residue return methods on nitrogen fractions, nitrogen mineralization and nitrogen-cycling genes in black soil of Northeast China, and to clear the soil nitrogen supply capacity and the change of soil nitrogen cycling gene community structure under long-term residue return. 【Method】 Based on the long-term experiment of black soil in Northeast China, the residue incorporated into soil (RI) and the residue covered on soil surface (RC) under monoculture maize were selected, with residue removed as control (CK). Nitrogen content in soil fractions were measured, soil nitrogen mineralization incubation was conducted by using leaching incubation at intervals, and fluorescence quantitative PCR (qPCR) was used to determine the copy number of nitrogen-cycling genes in soil. 【Result】 After 8-year experiment, compared with CK, RC significantly increased the content of particulate organic nitrogen (PON)(0.21 g·kg-1) and mineral-associated organic nitrogen (MAON) (0.27 g·kg-1) in surface (0-5 cm) soil, whereas RI only increased the content of MAON (0.13 g·kg-1) in soil (P<0.05). Residue return (RI and RC) markedly increased the microbial biomass nitrogen (MBN) in soil by 1.4-2.8 times (P<0.05), the RI had higher content of ammonium nitrogen (NH4+) and dissolved organic nitrogen (DON), while the RC had the lowest content of nitrate nitrogen (NO3-). In comparison with CK, residue return significantly enhanced soil nitrogen mineralization amount by 25.3%-83.2% (P<0.05), taking the descending order of RC>RI>CK. Residue return remarkably increased the potential of soil nitrogen mineralization (N0) and mineralization rate constant (k) (P<0.05) by using a first-order reaction kinetics model, both showing the highest values under RC, with N0 and k reached 199.8 mg·kg-1 and 0.31 mg·kg-1·d-1, respectively. Random forest analysis indicated that PON, MBN, and NO3- had greater impacts on N0. In addition, the abundance of nifH, AOB and nirS genes under residue return were enhanced and the abundance of AOA and nirK genes under residue return were declined in comparison with residue removed (P<0.05), which indicated that residue return could change the structure of soil nitrogen-cycling genes communities. Redundancy analysis (RDA) result showed that the changes of soil microbial community structure were affected by different nitrogen fractions under different residue return methods. 【Conclusion】 Long-term residue covered on soil surface had the highest organic nitrogen content and nitrogen mineralization potential in soil. It was beneficial to improve soil nitrogen pools and to ensure the supply of nitrogen required for plant growth, which provided greater possibility for reducing the application of chemical nitrogen fertilizer in cropland in black soil of Northeast China.

Key words: residue return, black soil of Northeast China, nitrogen fractions, nitrogen mineralization, N-cycling functional genes

Table 1

Primer sequence of soil main N-cycling functional genes in qPCR"

基因名称
Gene appellation
氮循环中作用
Function in N-cycling
引物名
Primer name
引物序列
Primer sequence (5'-3')
nifH 固氮作用
N fixation
nifH-F AAAGGYGGWATCGGYAARTCCACCAC
nifH-R TTGTTSGCSGCRTACATSGCCATCAT
Arch-amoA 硝化作用
Nitrification
Arch-amoAF STAATGGTCTGGCTTAGACG
Arch-amoAR GCGGCCATCCATCTGTATGT
AmoA 硝化作用
Nitrification
amoA-1F GGGGTTTCTACTGGT GGT
amoA-2R CCCCTCKGSAAAGCCTTCTTC
nirS 反硝化作用
Denitrification
Cd3aF GTSAACGTSAAGGARACSGG
R3cdR GASTTCGGRTGSGTCTTGA
nirK 反硝化作用
Denitrification
F1aCu ATCATGGTSCTGCCGCG
R3Cu GCCTCGATCAGRTTGTGGTT

Table 2

Nitrogen content in soil physical and chemical fractions under different residue return methods"

处理
Treatment
颗粒有机氮
PON (g·kg-1)
矿物结合态有机氮
MAON (g·kg-1)
铵态氮
NH4+ (mg·kg-1)
硝态氮
NO3- (mg·kg-1)
可溶性有机氮
DON (mg·kg-1)
微生物量氮
MBN (mg·kg-1)
CK 0.12±0.01b 1.61±0.02c 3.07±0.09b 1.55±0.15b 3.15±0.12b 16.39±0.91c
RI 0.12±0.01b 1.75±0.03b 5.17±0.49a 2.55±0.24a 5.43±0.53a 23.09±0.46b
RC 0.33±0.04a 1.88±0.04a 2.63±0.04b 0.75±0.07c 2.32±0.25b 45.69±1.77a

Fig. 1

Total mineralization nitrogen (A) and amount of ammonium nitrogen and nitrate nitrogen (B) under different residue return methods"

Table 3

Fitting parameters of first-order kinetic models for soil nitrogen mineralization under different residue return methods"

处理 Treatment 氮矿化势 N0 (mg·kg-1) 矿化速率常数 k (mg·kg-1·d-1) 决定系数 R2
CK 120.8±3.43 c 0.019±0.001 b 0.96
RI 138.9±2.26 b 0.026±0.001 a 0.93
RC 199.8±2.06 a 0.031±0.001 a 0.94

Table 4

Abundance of N-cycling genes under different residue return methods"

处理 Treatment nifH基因拷贝数
nifH copy number
(×107 copies·g-1 soil)
AOA基因拷贝数
AOA copy number
(×107 copies·g-1 soil)
AOB基因拷贝数
AOB copy number
(×107 copies·g-1 soil)
nirS基因拷贝数
nirS copy number
(×107 copies·g-1 soil)
nirK基因拷贝数
nirK copy number
(×107 copies·g-1 soil)
CK 2.24±0.19c 10.91±0.46a 1.83±0.16b 1.73±0.24c 6.83±0.43a
RI 3.83±0.42b 5.32±0.31b 2.05±0.33b 3.45±0.35b 1.28±0.01b
RC 5.07±0.37a 3.70±0.30c 3.09±0.31a 5.73±0.73a 1.76±0.05b

Table 5

The correlations between soil nitrogen components and potentially mineralizable nitrogen and nitrogen cycling genes"

土壤氮组分
Soil N fraction
氮矿化势 N0 nifH AOA AOB nirS nirK
R P R P R P R P R P R P
颗粒有机氮 PON 0.90 0.00 0.77 0.01 -0.56 0.09 0.64 0.05 0.88 0.00 -0.36 0.31
矿物结合态有机氮 MAON 0.81 0.01 0.78 0.01 -0.80 0.01 0.59 0.08 0.86 0.00 -0.71 0.02
铵态氮 NH4+ -0.41 0.25 0.01 0.99 -0.16 0.68 -0.47 0.18 -0.15 0.69 -0.39 0.27
硝态氮 NO3- -0.66 0.04 -0.27 0.48 0.15 0.69 -0.48 0.18 -0.39 0.27 -0.10 0.79
可溶性有机氮 DON -0.47 0.18 -0.14 0.70 -0.02 0.96 -0.24 0.53 -0.29 0.44 -0.30 0.42
微生物量氮 MBN 0.97 0.00 0.79 0.01 -0.80 0.01 0.70 0.02 0.84 0.00 -0.61 0.07

Fig. 2

Mean predictor importance of soil nitrogen components on N0, Redundancy analysis (RDA) showing the influences of soil nitrogen components on nitrogen cycling genes PON represents particulate organic nitrogen, MBN represents microbial biomass nitrogen, NO3- represents nitrate,NH4+ represents ammonium,DON represents dissolved organic nitrogen,MAON represents mineral-associated organic nitrogen, N0 represents nitrogen mineralization potential"

[1]
YANG X M, ZHANG X P, FANG H J, ZHU P, REN J, WANG L C. Long-term effects of fertilization on soil organic carbon changes in continuous corn of Northeast China: RothC model simulations. Environmental Management, 2003, 32(4): 459-465.

doi: 10.1007/s00267-003-0082-6 pmid: 14986895
[2]
YU G R, FANG H J, GAO L P, ZHANG W J. Soil organic carbon budget and fertility variation of black soils in Northeast China. Ecological Research, 2006, 21(6): 855-867.
[3]
ZHANG Y, LI X J, GREGORICH E G, MCLAUGHLIN N B, ZHANG X P, GUO Y F, LIANG A Z, FAN R Q, SUN B J. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma, 2018, 330: 204-211.
[4]
张旸, 高燕, 张延, 黄丹丹, 陈学文, 张士秀, 梁爱珍. 秸秆还田对东北黑土碳氮磷钾化学计量特征及玉米产量的影响. 植物营养与肥料学报, 2023, 29(1): 31-44.
ZHANG Y, GAO Y, ZHANG Y, HUANG D D, CHEN X W, ZHANG S X, LIANG A Z. Effects of residue return on stoichiometric characteristics of soil carbon, nitrogen, phosphorus, potassium, and the maize yield in black soil of Northeast China. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 31-44. (in Chinese)
[5]
VARVEL G E, WILHELM W W. No-tillage increases soil profile carbon and nitrogen under long-term rainfed cropping systems. Soil and Tillage Research, 2011, 114(1): 28-36.
[6]
VIDAL E A, ALVAREZ J M, ARAUS V, RIVERAS E, BROOKS M D, KROUK G, RUFFEL S, LEJAY L, CRAWFORD N M, CORUZZI G M, GUTIÉRREZ R A. Nitrate in 2020: Thirty years from transport to signaling networks. The Plant Cell, 2020, 32(7): 2094-2119.

doi: 10.1105/tpc.19.00748 pmid: 32169959
[7]
徐翎清, 李佳佳, 常晓, 张云龙, 刘大丽. 土壤氮矿化相关机理的研究进展. 中国农学通报, 2022, 38(34): 97-101.

doi: 10.11924/j.issn.1000-6850.casb2022-0587
XU L Q, LI J J, CHANG X, ZHANG Y L, LIU D L. The mechanism of soil nitrogen mineralization: Research progress. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0587
[8]
LI D J, LIU J, CHEN H, ZHENG L, WANG K L. Soil gross nitrogen transformations in responses to land use conversion in a subtropical Karst region. Journal of Environmental Management, 2018, 212: 1-7.

doi: S0301-4797(18)30100-2 pmid: 29425914
[9]
李平, 郎漫, 魏玮. 不同施氮量对林地和农田黑土净氮转化速率的影响. 土壤通报, 2020, 51(3): 694-701.
LI P, LANG M, WEI W. Effects of nitrogen application amounts on net nitrogen transformation rates in forest and agricultural black soils. Chinese Journal of Soil Science, 2020, 51(3): 694-701. (in Chinese)
[10]
FAN H Z, ZHANG H, FENG W Q, ZHANG J, WANG C T. Effect of transplanting density on rice yield, nitrogen uptake and 15N-fertilizer fate. Agricultural Science & Technology, 2012, 13(5): 1037-1039, 1054.
[11]
CHEN B Q, LIU E K, TIAN Q Z, YAN C R, ZHANG Y Q. Soil nitrogen dynamics and crop residues. A review. Agronomy for Sustainable Development, 2014, 34(2): 429-442.
[12]
ZHANG Y, ZHANG Y, GAO Y, HUANG D D, CHEN X W, ZHANG S X, ZHANG X P, MCLAUGHLIN N, LIANG A Z. Distribution of nitrogen storage in density and size fractions varied with tillage practices and cropping systems with residue return in black soil of Northeast China. Soil Science Society of America Journal, 2022, 86(6): 1483-1494.
[13]
SHARIFI M, ZEBARTH B J, BURTON D L, GRANT C A, BITTMAN S, DRURY C F, MCCONKEY B G, ZIADI N. Response of potentially mineralizable soil nitrogen and indices of nitrogen availability to tillage system. Soil Science Society of America Journal, 2008, 72(4): 1124-1131.
[14]
张玉玲, 陈温福, 虞娜, 付时丰, 张玉龙, 邹洪涛. 不同利用方式下土壤有机氮素矿化特征的研究. 土壤通报, 2013, 44(1): 52-56.
ZHANG Y L, CHEN W F, YU N, FU S F, ZHANG Y L, ZOU H T. Long-term effects of different land use patterns on mineralizing characteristic of soil organic nitrogen. Chinese Journal of Soil Science, 2013, 44(1): 52-56. (in Chinese)
[15]
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16: 263-276.

doi: 10.1038/nrmicro.2018.9 pmid: 29398704
[16]
WANG Q, JIA S X, LIANG A Z, CHEN X W, ZHANG S X, ZHANG Y, MCLAUGHLIN N B, GAO Y, HUANG D D. Residue return effects outweigh tillage effects on soil microbial communities and functional genes in black soil of Northeast China. Chinese Geographical Science, 2023, 33(4): 679-692.
[17]
郭俊杰, 朱晨, 刘文波, 王建中, 凌宁, 郭世伟. 不同施肥模式对土壤氮循环功能微生物的影响. 植物营养与肥料学报, 2021, 27(5): 751-759.
GUO J J, ZHU C, LIU W B, WANG J Z, LING N, GUO S W. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle. Journal of Plant Nutrition and Fertilizers, 2021, 27 (5): 751-759. (in Chinese)
[18]
KUZYAKOV Y, XU X L. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. The New Phytologist, 2013, 198(3): 656-669.
[19]
LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26(1): 261-273.

doi: 10.1111/gcb.14859 pmid: 31587451
[20]
FERNÁNDEZ-UGALDE O, VIRTO I, BESCANSA P, IMAZ M J, ENRIQUE A, KARLEN D L. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil and Tillage Research, 2009, 106(1): 29-35.
[21]
闫德智, 王德建, 张刚, 查书平. 15N标记秸秆在太湖地区水稻土上的氮素矿化特征研究. 土壤学报, 2012, 49(1): 77-85.
YAN D Z, WANG D J, ZHANG G, ZHA S P. Nitrogen mineralization of applied 15N labeled straw in paddy soils in the Taihu Lake region. Acta Pedologica Sinica, 2012, 49(1): 77-85. (in Chinese)
[22]
张丹, 付斌, 胡万里, 翟丽梅, 刘宏斌, 陈安强, 盖霞普, 张亦涛, 刘剑, 王洪媛. 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量. 农业工程学报, 2017, 33(9): 133-140.
ZHANG D, FU B, HU W L, ZHAI L M, LIU H B, CHEN A Q, GAI X P, ZHANG Y T, LIU J, WANG H Y. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 133-140. (in Chinese)
[23]
WANG J, ZHU B, ZHANG J B, MÜLLER C, CAI Z C. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biology and Biochemistry, 2015, 91: 222-231.
[24]
白云, 邓威, 李玉成, 张学胜, 吴娟, 窦月芹. 水稻秸秆预处理还田对土壤养分淋溶及COD的影响. 水土保持学报, 2020, 34(3): 238-244.
BAI Y, DENG W, LI Y C, ZHANG X S, WU J, DOU Y Q. Effects of rice straw pretreatment and returning on soil nutrient leaching and COD. Journal of Soil and Water Conservation, 2020, 34(3): 238-244. (in Chinese)
[25]
庞成庆, 秦江涛, 李辉信, 刘金花. 秸秆还田和休耕对赣东北稻田土壤养分的影响. 土壤, 2013, 45(4): 604-609.
PANG C Q, QIN J T, LI H X, LIU J H. Effects of rice straw incorporation and permanent fallow on soil nutrient of paddy field in northeastern Jiangxi Province. Soils, 2013, 45(4): 604-609. (in Chinese)
[26]
王磊, 陶少强, 夏强, 朱林. 秸秆还田对土壤氮素养分及微生物量氮动态变化的影响. 土壤通报, 2012, 43(4): 810-814.
WANG L, TAO S Q, XIA Q, ZHU L. Effect of straw returning on the dynamic of nitrogen nutrient and soil microbial biomass nitrogen. Chinese Journal of Soil Science, 2012, 43(4): 810-814. (in Chinese)
[27]
张成娥, 王栓全. 作物秸秆腐解过程中土壤微生物量的研究. 水土保持学报, 2000, 14(3): 96-99.
ZHANG C E, WANG S Q. Study on soil microbial biomass during decomposition of crop straws. Journal of Soil and Water Conservation, 2000, 14(3): 96-99. (in Chinese)
[28]
徐英德, 孙良杰, 汪景宽, 李双异, 高晓丹. 还田秸秆氮素转化及其对土壤氮素转化的影响. 江西农业大学学报, 2017, 39(5): 859-870.
XU Y D, SUN L J, WANG J K, LI S Y, GAO X D. Nitrogen transformation of returned straw in soil and its effect on soil nitrogen transformation. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(5): 859-870. (in Chinese)
[29]
王永栋, 武均, 郭万里, 贺永岩, 蔡立群, 张仁陟. 秸秆和生物质炭添加对陇中黄土高原旱作农田土壤氮素矿化的影响. 水土保持学报, 2021, 35(4): 186-192, 199.
WANG Y D, WU J, GUO W L, HE Y Y, CAI L Q, ZHANG R Z. Effects of straw and biochar addition on soil nitrogen mineralization in dryland farmland of the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(4): 186-192, 199. (in Chinese)
[30]
马力, 杨林章, 肖和艾, 殷士学, 夏立忠, 李运东, 刘国华. 长期施肥和秸秆还田对红壤水稻土氮素分布和矿化特性的影响. 植物营养与肥料学报, 2011, 17(4): 898-905.
MA L, YANG L Z, XIAO H A, YIN S X, XIA L Z, LI Y D, LIU G H. Effects of long-term fertilization and straw returning on distribution and mineralization of nitrogen in paddy soils in subtropical China. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 898-905. (in Chinese)
[31]
庞晔, 袁建钰, 闫丽娟, 杜梦寅, 李广. 保护性耕作对黄土高原旱作麦田土壤氮矿化的影响. 干旱区研究, 2023, 40(9): 1446-1456.

doi: 10.13866/j.azr.2023.09.08
PANG Y, YUAN J Y, YAN L J, DU M Y, LI G. Effects of conservation tillage on soil nitrogen mineralization in dry wheat fields on the Loess Plateau. Arid Zone Research, 2023, 40(9): 1446-1456. (in Chinese)

doi: 10.13866/j.azr.2023.09.08
[32]
MÜLLER C, RÜTTING T, KATTGE J, LAUGHLIN R J, STEVENS R J. Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology and Biochemistry, 2007, 39(3): 715-726.
[33]
LIU S Y, ZHANG X P, ZHAO J, ZHANG J B, MÜLLER C, CAI Z C. Effects of long-term no tillage treatment on gross soil N transformations in black soil in Northeast China. Geoderma, 2017, 301: 42-46.
[34]
李孝刚, 彭曙光, 靳志丽, 周羽, 刘勇军, 周志高, 王兴祥. 有机物料对植烟土壤氮素矿化及微生物性质的影响. 土壤学报, 2021, 58(1): 225-234.
LI X G, PENG S G, JIN Z L, ZHOU Y, LIU Y J, ZHOU Z G, WANG X X. Effects of application of organic materials on nitrogen mineralization and microbial properties in tobacco planting soil. Acta Pedoligica Sinica, 2021, 58(1): 225-234. (in Chinese)
[35]
朱兴娟, 李桂花, 涂书新, 杨俊诚, 郭康莉, 冀拯宇, 刘晓, 张建峰, 姜慧敏. 秸秆和秸秆炭对黑土肥力及氮素矿化过程的影响. 农业环境科学学报, 2018, 37(12): 2785-2792.
ZHU X J, LI G H, TU S X, YANG J C, GUO K L, JI Z Y, LIU X, ZHANG J F, JIANG H M. Effects of maize straw and straw biochar on soil fertility and the nitrogen mineralization process. Journal of Agro-Environment Science, 2018, 37(12): 2785-2792. (in Chinese)
[36]
ELRYS A S, ALI A, ZHANG H M, CHENG Y, ZHANG J B, CAI Z C, MÜLLER C, CHANG S X. Patterns and drivers of global gross nitrogen mineralization in soils. Global Change Biology, 2021, 27(22): 5950-5962.

doi: 10.1111/gcb.15851 pmid: 34407262
[37]
HUANG L, RIGGINS C W, RODRÍGUEZ-ZAS S, ZABALOY M C, VILLAMIL M B. Long-term N fertilization imbalances potential N acquisition and transformations by soil microbes. The Science of the Total Environment, 2019, 691: 562-571.

doi: S0048-9697(19)33267-X pmid: 31325856
[38]
杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响. 土壤学报, 2014, 51(1): 150-157.
YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities. Acta Pedologica Sinica, 2014, 51(1): 150-157. (in Chinese)
[39]
GUPTA V V S R, ROPER M M, ROGET D K. Potential for non-symbiotic N2-fixation in different agroecological zones of southern Australia. Soil Research, 2006, 44(4): 343.
[40]
李旭, 董炜灵, 宋阿琳, 李艳玲, 卢玉秋, 王恩召, 刘雄舵, 王萌, 范分良. 秸秆添加量对土壤生物固氮速率和固氮菌群落特征的影响. 中国农业科学, 2021, 54(5): 980-991. doi: 10.3864/j.issn.0578-1752.2021.05.010.
LI X, DONG W L, SONG A L, LI Y L, LU Y Q, WANG E Z, LIU X D, WANG M, FAN F L. Effects of straw addition on soil biological N2-fixation rate and diazotroph community properties. Scientia Agricultura Sinica, 2021, 54(5): 980-991. doi: 10.3864/j.issn.0578-1752.2021.05.010. (in Chinese)
[41]
贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108.
HE J Z, ZHANG L M. Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 2013, 40(1): 98-108. (in Chinese)
[42]
CHEN Y L, KOU D, LI F, DING J Z, YANG G B, FANG K, YANG Y H. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost- affected regions. Plant and Soil, 2019, 434(1): 453-466.
[43]
马龙, 高伟, 栾好安, 唐继伟, 李明悦, 黄绍文. 有机肥/秸秆替代化肥模式对设施菜田土壤氮循环功能基因丰度的影响. 植物营养与肥料学报, 2021, 27(10): 1767-1778.
MA L, GAO W, LUAN H A, TANG J W, LI M Y, HUANG S W. Effects of partial substitution of chemical fertilizer with manure and/or straw on the abundance of functional genes related to soil N-cycling. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1767-1778. (in Chinese)
[44]
THOMPSON K A, DEEN B, DUNFIELD K E. Impacts of surface-applied residues on N-cycling soil microbial communities in miscanthus and switchgrass cropping systems. Applied Soil Ecology, 2018, 130: 79-83.
[45]
隋鹏祥, 廉宏利, 王峥宇, 姜英, 齐华, 罗洋, 郑金玉. 旋耕和秸秆还田方式对棕壤微生物群落特征的影响. 生态学杂志, 2023, 42(9): 2049-2060.
SUI P X, LIAN H L, WANG Z Y, JIANG Y, QI H, LUO Y, ZHENG J Y. Effects of rotary tillage and straw incorporation on microbial community of brown soil. Chinese Journal of Ecology, 2023, 42(9): 2049-2060. (in Chinese)

doi: 10.13292/j.1000-4890.202309.034
[46]
DYNARSKI K A, HOULTON B Z. Nutrient limitation of terrestrial free-living nitrogen fixation. New Phytologist, 2018, 217(3): 1050-1061.

doi: 10.1111/nph.14905 pmid: 29165820
[47]
OUYANG Y, NORTON J M, STARK J M, REEVE J R, HABTESELASSIE M Y. Ammonia-oxidizing bacteria are more responsive than Archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 2016, 96: 4-15.
[1] ZHAO TongTong, GU XiaoBo, TAN ChuanDong, YAN TingLin, LI XiaoYan, CHANG Tian, DU YaDan. Effects of Water-Nitrogen Coupling on the Mineralization of Organic Carbon and Nitrogen for Mulched Farmland Soils in the Arid Regions of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(5): 929-942.
[2] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] HUANG QiuHong,LIU ZhiLei,LI PengFei,CHE JunJie,YU CaiLian,PENG XianLong. Difference in Nitrogen Responses and Nitrogen Efficiency of Different Paddy Soils in Southern and Northern China Under the Same Climatic Condition [J]. Scientia Agricultura Sinica, 2021, 54(19): 4143-4154.
[5] WANG Hui, LIU Jin-shan, HUI Xiao-li, DAI Jian, WANG Zhao-hui. Responses of Soil Organic Carbon, Organic Nitrogen and Nitrogen Supply Capacity to Long-Term Nitrogen Fertilization Practices in Dryland Soil [J]. Scientia Agricultura Sinica, 2016, 49(15): 2988-2998.
[6] XIE Jia-yang,WANG Zhao-hui,LI Sheng-xiu,TIAN Xiao-hong
. Effects of Different Surface Mulching on Soil Organic Nitrogen Accumulation and Mineralization in Dryland of Northwestern China
[J]. Scientia Agricultura Sinica, 2010, 43(3): 507-513 .
[7] LIU Qing-li,REN Tian-zhi,LI Zhi-hong,SHI Jun-xiong,ZHANG Heng,ZHANG Yun-gui
. The Characteristics of Nitrogen Supply in Yellow Soil Planted with Tobacco
[J]. Scientia Agricultura Sinica, 2010, 43(1): 87-95 .
[8] . Effect of Soluble Organic Nitrogen on Evaluating Soil N-supplying Capacity with Water-logged Incubation Method [J]. Scientia Agricultura Sinica, 2008, 41(4): 1073-1082 .
[9] . The influence of fertilization on acid hydrolysable organic nitrogen fractions and microbial biomass nitrogen in paddy soil [J]. Scientia Agricultura Sinica, 2007, 40(4): 757-764 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!