Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3789-3804.doi: 10.3864/j.issn.0578-1752.2021.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transforming and Upgrading Off-Season Breeding in Hainan Through Molecular Plant Breeding

ZHANG Xingping1(),QIAN Qian2,ZHANG JiaNan3,DENG XingWang1,WAN JianMin2,XU Yunbi2,4()   

  1. 1Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, Shandong, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035, Hebei, China
    4International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56130, Mexico
  • Received:2021-04-06 Accepted:2021-05-20 Online:2021-09-16 Published:2021-09-26
  • Contact: Yunbi XU E-mail:xingping.zhang@pku-iaas.edu.cn;xuyunbi@caas.cn

Abstract:

Generation advancement at non-target environments is a cost-effective and efficient approach to accelerating plant breeding. Hainan, as a southernmost province of China where crops can grow all year round, has been used as a core off-season breeding station, largely for seed increasing and an annually added crop generation advancement, while its favorable climate and environments are not fully exploited. Molecular biotechnologies such as marker-assisted selection, when integrated with other modern breeding technologies, will facilitate the transformation and upgrading of the Hainan off-season breeding. The transition will be made from a simple generation advancement to a full pipeline breeding including germplasm introduction and evaluation, selection, purity testing, germplasm exchange and variety right protection, and from one added winter breeding season to breeding all year round. Geographical and ecological advantages of Hainan as an off-season breeding station should be transitioned into a breeding pipeline by integration of generation advancement with functional breeding system to accelerate breeding procedures, improve breeding efficiency and promote advanced breeding industry. Considering the geographical and ecological advantages of Hainan and current status of off-season breeding, following issues are discussed in this article on transformation and upgrading of Hainan off-season breeding enterprise: necessity, possibility, challenges and opportunities. Such transition depends on the change of mind-set on non-target environment selection, favorable government policy regulation, breeding platform development, biosafety containment, well-established variety right protection, and resource-sharing and exchanging regulation. Breeding theories required for the transition include quantitative and population genetics, genotype by environment interaction, and molecular design and big- data management. Molecular design should be implemented at both macro-scale involving individuals, populations and species and micro-scale involving genes, metabolisms and networks. The breeding platform needs to be established for high-throughput precision phenotyping, envirotyping, information management and networking, and decision support system. As a key support technology for molecular breeding, genotyping by target sequencing and liquid chip (GBTS-LC) has been developed, by which GenoPlexs can be used to multiplex up to 5 000 target primers while GenoBaits can capture in solution up to 40K target loci each with multiple SNPs. Compared to other genotyping platforms, GBTS-LC has several advantages to make it a replacement of solid SNP chips, including wide platform suitability, high marker flexibility, high genotyping efficiency, easy information accumulation, less-demanding support system, wide application fields. For breeding in Hainan but testing across China, an integrative breeding system can be established with high-efficient breeding facilities supported by speeding breeding, gene transfer, genome editing, DH technology, and genomic selection. Other proposals are also suggested, including establishment of open-source breeding programs for resource-sharing, development of methodologies, technologies and platforms, implementation of germplasm introduction, monitoring and evaluation, construction of germplasm fingerprinting, and intensification of variety right protection, seed quality ensurance and see purity control. It is expected that this article will stimulate public awareness and relevant government policy development for the transformation and upgrading of breeding in Hainan, and thus enhance the scientific and technological progress and advancement of breeding and seed industry as a whole.

Key words: seed enterprises, winter nurseries, off-season selection, transformation and upgrading, molecular breeding

Fig. 1

Temperature and precipitation in Sanya, Hainan, a core off-season breeding base for accelerating breeding in China A: Temperature; B: Precipitation. Based on the data of 1956-2020, http://www.weather.com.cn; https://www.ncdc.noaa.gov"

Table 1

Requirements for transformation and upgrading of Hainan off-season breeding"

领域 Fields 所需改变 Required changes
观念转变
Mind-set changes
异地也可以进行评价、选择和育种
Evaluation, selection and breeding can be largely performed at or replaced by, non-target environments
政策支持
Policy support
降低租地和劳动力成本;开辟资源引进和交流绿色通道;确定南繁育种保护区
Reducing land and lab costs; providing a special channel for germplasm introduction/exchange; defining the core winter nursery reserved for breeding use
平台建设
Platform development
育种平台:分子检测、表型鉴定、快速育种、转基因和基因编辑;育种实验站建设:交通、灌溉、机械化;后勤服务体系
Breeding platforms for molecular diagnosis, phenotyping, speeding breeding, transgene and gene editing; breeding stations with well-established transportation, irrigation and mechanization systems; logistic service
生物安全
Biosafety containment
生物安全防控法治化建设;检疫性生物分子检测
Regulations and legal construction for biosafety protection; molecular diagnosis and detection of quarantine organisms
品种权保护
Variety right protection
实施与国际接轨的植物品种保护制度
Implementing plant variety protection system that matches with international regulations
合作交流
Collaboration and exchange
种质资源和信息资源的共享和交流;为东南亚育种
Sharing and exchanging germplasm and information; breeding for Southeast Asian countries

Table 2

Breeding by molecular design at micro- and macro-scales (revised from [30])"

水平 Scale 设计 Design 工作内容 Design contents
微观水平Micro-scale 基因设计
Gene design
基因定点敲除、诱变与编辑、RNA干扰、转基因、分子标记辅助选择
单基因:最佳等位基因
多基因:最佳结合体(单倍型)和互作类型
Site-directed gene knockout, mutation, and gene editing; RNA interference, transgenes, marker-assisted selection
Single genes: Best alleles
Multiple genes: Best combinations (haplotypes) and interactions
代谢设计
Metabolism design
代谢途径的替换、修饰和改良。实例:C4水稻,高光效小麦
Substitution, modification and improvement of metabolic pathways. For example, rice with C4 pathway and wheat with high-photosynthetic efficiency
网络设计
Network design
网络调控因子、网络结构、网络节点和边界等的设计。实例:直播稻与旱稻
Design of network regulators, network structure, network nodes and borders, etc.. For example, direct-seeding and drought-resistant rice
宏观水平Macro-scale 个体设计
Individual design
形态、产物分配、耐逆性、个体间相互作用、性状间互作和协调
Morphology, assimilate distribution, stress tolerance, individual interaction, trait interaction and complementation
群体设计
Population design
结构优化、生态稳定、光合效率、源库协调和补偿
Structure optimization, ecological stabilization, photosynthetic efficiency, source-sink coordination and compensation
物种设计
Species design
结合不同物种的优良性状,适合不同环境和生态的新型农作物: 环境友好型、资源节约型、产物多样型、用途可塑型
Integration of favorable traits from different species and adaptation to different ecological environments: environment-friendly, resource-saving, product-diversified, and usage-flexible

Fig. 2

Molecular plant breeding platforms required for transformation and upgrading of Hainan off-season breeding industry (Revised from [38])"

Fig. 3

Applications of genotyping by target sequencing and liquid chip in transformation and upgrading of Hainan off-season breeding industry"

Fig. 4

Integrative breeding strategies required for transformation and upgrading of Hainan off-season breeding industry and their efficiencies Several integrative breeding strategies are compared for their breeding cycle times and required resource inputs (time, land and lab, etc.). TB: Traditional breeding; GS: Genomic selection; SB: Speeding breeding; DH: Double haploid breeding; GT: Gene transfer; GE: Genome editing"

[1] HICKEY L T, HAFEEZ A N, ROBINSON H, JACKSON S A, LEAL-BERTIOLI S C M, TESTER M, GAO X, GODWIN I D, HAYES B J, WULFF B B H. Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37:744-754.
doi: 10.1038/s41587-019-0152-9
[2] 房裕东, 韩天富. 作物快速育种技术研究进展. 作物杂志, 2019(2): 1-7.
FANG Y D, HAN T F. Research progress in speed breeding of crops. Crops, 2019(2): 1-7. (in Chinese)
[3] RAJARAM S, VAN GINKEL M. Mexico, 50 years of international wheat breeding//BONJEAN A P, ANGUS W J, (Eds). The World Wheat Book: A History of Wheat Breeding. Paris: Laroisier Press, 2001: 579-608.
[4] BORLAUG N E. Sixty-two years of fighting hunger: Personal recollections. Euphytica, 2007, 157:287-297.
doi: 10.1007/s10681-007-9480-9
[5] 吴绍骙. 异地培育玉米自交系在生产上利用可能性的研究. 河南农学院学报, 1961(1): 16-40.
WU S K. Study on the commercialization potential of the maize inbred lines developed at a non-target environment. Journal of Henan Agricultural College, 1961(1): 16-40. (in Chinese)
[6] KOTHARI N, HAGUE S S, FRELICHOWSKI J, NICHOLS R L, JONES D C. Breeding and genetics: Utilization of cotton germplasm in the winter nursery at Tecoman, Mexico for plant breeding training and research. Journal of Cotton Science, 2011, 15:271-273.
[7] 徐云碧. 分子植物育种助推南繁种业转型升级. 三亚: 南繁与现代育种国际论坛, 2019.
XU Y. Transformation and upgrading of Hainan off-season breeding industry through molecular plant breeding. Sanya: International Forum on Hainan Off-season & Modern Breeding, 2019. (in Chinese)
[8] 海南省南繁管理局. 南繁简介及历程. 海南: 海南省农业农村厅,http://agri.hainan.gov.cn/zgnf/. 2020-12-31[2021-05-19].
Hainan Winter Nursery Breeding Administration. Introduction and history of winter nursery breeding. Hainan: Hainan Department of Agriculture and Rural Affairs.http://agri.hainan.gov.cn/zgnf/. 2020-12-31 [2021-05-19]. (in Chinese)
[9] 海南省南繁管理局. 水稻南繁科技成果. 海南: 海南省农业农村厅,http://agri.hainan.gov.cn/zgnf. 2020-12-31[2021-05-19].
Hainan Winter Nursery Breeding Administration. Scientific achievements in rice winter nursery breeding. Hainan: Hainan Department of Agriculture and Rural Affairs.http://agri.hainan.gov.cn/zgnf/. 2020-12-31[2021-05-19]. (in Chinese)
[10] 罗江. 海南: 做好南繁文章打造中国“种业硅谷”, 北京: 新华网,http://www.xinhuanet.com/politics/2018-04/27/c_129860791.htm. 2018-04-07[2021-05-19].
LUO J. Hainan: Winter nursery breeding for development of seed industry Silico Valley. Beijing: XINHUANET,http://www.xinhuanet.com/politics/2018-04/27/c_129860791.htm. 2018-04-07[2021-05-19]. (in Chinese)
[11] 徐云碧, 朱立煌. 分子数量遗传学. 北京: 中国农业出版社, 1994: 291.
XU Y, ZHU L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994: 291. (in Chinese)
[12] BERNARDO R. Breeding for Quantitative Traits in Plants. Woodbury, Minnesota: Stemma Press, 2002: 369.
[13] DUDLEY J W. Integrating molecular techniques into quantitative genetics and plant breeding//KANG M S. (ed). Quantitative Genetics, Genomics, and Plant Breeding. Wallingford, UK: CAB International Press, 2002: 69-83.
[14] XU Y. Molecular Plant Breeding, Wallingford, UK: CABI Press (UK), 2010: 734.
[15] CROSSA J. From genotype × environment interaction to gene × environment interaction. Current Genomics, 2012, 13:225-244.
doi: 10.2174/138920212800543066
[16] COOPER M, MESSINA C D, PODLICH D, TOTIR L R, BAUMGARTEN A, HAUSMANN N J, WRIGHT D, GRAHAM G. Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop and Pasture Science, 2014, 65:311-336.
doi: 10.1071/CP14007
[17] XU Y. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 2016, 129:653-673.
doi: 10.1007/s00122-016-2691-5
[18] WATSON A, GHOSH S, WILLIAMS M J, CUDDY W S, SIMMONDS J, REY M D, HATTA M A M, HINCHLIFFE A, STEED A, REYNOLDS D, ADAMSKI N M, BREAKSPEARA, KOROLEV A, RAYNER T, DIXON L E, RIAZ A, MARTIN W, RYAN M, EDWARDS D, BATLEY J, RAMAN H, CARTER J, ROGERS C, DOMONEY C, MOORE G, HARWOOD W, NICHOLSON P, DIETERS M J, DELACY I H, ZHOU J, UAUY C, BODEN S A, PARK R F, WULFF B B H, HICKEY L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4:23-29.
doi: 10.1038/s41477-017-0083-8
[19] MCELROY D, BRETTELL R I S. Foreign gene expression in transgenic cereals. Trends in Biotechnology, 1994, 12:62-68.
doi: 10.1016/0167-7799(94)90102-3
[20] MACKELPRANG R, LEMAUX P G. Genetic engineering and editing of plants: An analysis of new and persisting questions. Annual Review of Plant Biology, 2020, 71:659-687.
doi: 10.1146/annurev-arplant-081519-035916
[21] CONG L, RAN F A, COX D, LIN S, BARRETTO R, HABIB N, HSU P D, WU X, JIANG W, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339:819-823.
doi: 10.1126/science.1231143
[22] ZHU H, LI C, GAO C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21:661-677.
doi: 10.1038/s41580-020-00288-9
[23] 王向峰, 才卓. 中国种业科技创新的智能时代“玉米育种4.0”. 玉米科学, 2019, 27(1): 1-9.
WANG X F, CAI Z. Era of maize breeding 4.0. Journal of Maize Sciences, 2019, 27(1): 1-9. (in Chinese)
[24] 林章凛, 林敏. 微生物和植物抗逆元器件的合成生物学研究. 生物产业技术, 2013(4): 7-11.
LIN Z L, LIN M. Study on synthetic biology of stress tolerance elements in microorganisms and plants. Biotechnology Industry, 2013(4): 7-11. (in Chinese)
[25] BROPHY J A, VOIGT C A. Principles of genetic circuit design. Nature Methods, 2014, 11:508-520.
doi: 10.1038/nmeth.2926
[26] PELEMAN J D, VAN DER VOORT J R. Breeding by design. Trends in Plant Science, 2003, 8:330-334.
doi: 10.1016/S1360-1385(03)00134-1
[27] 钱前. 水稻基因设计育种. 北京: 科学出版社, 2007.
QIAN Q. Rice Breeding by Gene Design. Beijing: Science Press, 2007. (in Chinese)
[28] 王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民. 中国作物分子设计育种. 作物学报, 2011, 37(2): 191-201.
doi: 10.3724/SP.J.1006.2011.00191
WANG J K, LI H H, ZHANG X C, YIN C B, LI Y, MA Y Z, LI X H, QIU L J, WAN J M. Molecular design breeding in crops in China. Acta Agronomica Sinica, 2011, 37(2): 191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00191
[29] 余泓, 王冰, 陈明江, 刘贵富, 李家洋. 水稻分子设计育种发展与展望. 生命科学, 2018, 30(10): 1032-1037.
YU H, WANG B, CHEN M J, LIU G F, LI J Y. Research advance and perspective of rice breeding by molecular design. Chinese Bulletin of Life Sciences, 2018, 30(10): 1032-1037. (in Chinese)
[30] XU Y. Molecular breeding driven by big data and artificial intelligence. Shenzhen: Presented at Session 21 Plant Omics, The 13th International Conference on Genomics, 2018.
[31] SOUTH P F, CAVANAGH A P, LIU H W, ORT D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363: eaat9077.
[32] SHEN B R, WANG L M, LIN X L, YAO Z, XU H W, ZHU C H, TENG H Y, CUI L L, LIU E E, ZHANG J J, HE Z H, PENG X X. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Molecular Plant, 2019, 12:199-214.
doi: 10.1016/j.molp.2018.11.013
[33] WANG L M, SHEN B R, LI B D, ZHANG C L, LIN M, TONG P P, CUI L L, ZHANG Z S, PENG X X. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Molecular Plant, 2020, 13:1802-1815.
doi: 10.1016/j.molp.2020.10.007
[34] BOZSOKI Z, GYSEL K, SIMON B. HANSEN S B, LIRONI D, KRÖNAUER C, FENG F, DE JONG N, VINTHER M, KAMBLE M, THYGESEN M B, ENGHOLM E, KOFOED C, FORT S, SULLIVAN J T, RONSON C W, JENSEN K J, BLAISE M, OLDROYD G, STOUGAARD J, ANDERSEN K R, RADUTOIU S. Ligand- recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369:663-670.
doi: 10.1126/science.abb3377
[35] 薛勇彪, 种康, 韩斌, 桂建芳, 王台, 傅向东, 何祖华, 储成才, 田志喜, 程祝宽, 林少扬. 开启中国设计育种新篇章——“分子模块设计育种创新体系”战略性先导科技专项进展. 中国科学院院刊, 2015, 30:393-402.
XUE Y B, ZHONG K, HAN B, GUI J F, WANG T, FU X D, HE Z H, CHU C C, TIAN Z X, CHEN Z K, LIN S Y. New chapter of designer breeding in China: Update on strategic program of molecular module-based designer breeding systems. Bulletin of Chinese Academy of Sciences, 2015, 30:393-402. (in Chinese)
[36] WEI X, QIU J, YONG K, FAN J, ZHANG Q, HUA H, LIU J, WANG Q, OLSEN K M, HAN B, HUANG X. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 2021, 53:243-253.
doi: 10.1038/s41588-020-00769-9
[37] WANG R, JIANG G, FENG X, NAN J, ZHANG X, YUAN Q, LIN S. Updating the genome of the elite rice variety Kongyu131 to expand its ecological adaptation region. Frontiers in Plant Science, 2019, 10:288.
doi: 10.3389/fpls.2019.00288
[38] XU Y, LU Y, XIE C, GAO S, WAN J, PRASANNA B M. Whole- genome strategies for marker-assisted plant breeding. Molecular Breeding, 2012, 29:833-854.
doi: 10.1007/s11032-012-9699-6
[39] XU Y. Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breeding Reviews, 2003, 23:73-174.
[40] 徐云碧. 2017分子植物育种理论、技术平台和应用. 北京: 分子植物育种大会组织委员会, 2017.
XU Y. Molecular plant breeding: Theories, technical platforms and applications. Beijing: Organization Committee for China National Conference of Molecular Plant Breeding, 2017. (in Chinese)
[41] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53(15): 2983-3004.
XU Y, YANG Q N, ZHENG H J, XU Y F, SANG Z Q, GUO Z F, PENG H, ZHANG C, LAN H F, WANG Y B, WU K S, TAO J J, ZHANG J N. Genotyping by target sequencing (GBTS) and its applications. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. (in Chinese)
[42] XU C, REN Y, JIAN Y, GUO Z, ZHANG Y, XIE C, FU J, WANG H, WANG G, XU Y, LI P, ZOU C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 2017, 37:20.
doi: 10.1007/s11032-017-0622-z
[43] SUN C, DONG Z, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18:1354-1360.
doi: 10.1111/pbi.v18.6
[44] SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2013, 33:1-14.
doi: 10.1007/s11032-013-9917-x
[45] ERTIRO B T, OGUGO V, WORKU M, DAS B, OLSEN M, LABUSCHAGNE M, SEMAGN K. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics, 2015, 16:908.
doi: 10.1186/s12864-015-2180-2
[46] GUO Z, YANG Q, HUANG F, ZHENG H, SANG Z, XU Y, ZHANG C, WU K, AO J, PRASANNA B M, OLSEN M S, WANG Y, ZHANG J, XU Y. Development of high-resolution multiple-SNP arrays for genetics and molecular breeding through improved genotyping by target sequencing and liquid chip. Plant Communications, 2021, 2:100230.
[47] GUO Z, WANG H, TAO J, REN Y, XU C, WU K, ZOU C, ZHANG J, XU Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019, 39:37.
doi: 10.1007/s11032-019-0940-4
[48] XU Y, LI P, ZOU C, LU Y, XIE C, ZHANG X, PRASANNA B M, OLSEN M S. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 2017, 68:2641-2666.
doi: 10.1093/jxb/erx135
[49] GAO S, MARTINEZ C, SKINNER D J, KRIVANEK A F, CROUCH J H, XU Y. Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Molecular Breeding, 2008, 22:477-494.
doi: 10.1007/s11032-008-9192-4
[50] 周发松. 利用水稻基因组技术培育水稻多系品种. 长春: 分子植物育种大会组织委员会, 2019.
ZHOU F S. Development of rice multiple lines using genomic techniques. Changchun: Organization Committee for China National Conference of Molecular Plant Breeding, 2019. (in Chinese)
[51] XU Y, LIU X, FU J, WANG H, WANG J, HUANG C, PRASANNA B M, OLSEN M S, WANG G, ZHANG A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Communications, 2020, 1:100005.
[52] SANTANTONIO N, ATANDA S A, BEYENE Y, VARSHNEY R V, OLSEN M, JONES E, ROORKIWAL M, GOWDA M, BHARADWAJ C, GAUR P M, ZHANG X, DREHER K, AYALA-HERNÁNDEZ C, CROSSA J, PÉREZ-RODRÍGUEZ P, RATHORE A, GAO S Y, MCCOUCH S, ROBBINS K R. Strategies for effective use of genomic information in crop breeding programs serving Africa and South Asia. Frontiers in Plant Science, 2020, 11:353.
doi: 10.3389/fpls.2020.00353
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] DAI Si-lan, HONG Yan. Molecular Breeding for Flower Colors Modification on Ornamental Plants Based on the Mechanism of Anthocyanins Biosynthesis and Coloration [J]. Scientia Agricultura Sinica, 2016, 49(3): 529-542.
[3] YU Shu-xun, FAN Shu-li, WANG Han-tao, WEI Heng-ling, PANG Chao-you. Progresses in Research on Cotton High Yield Breeding in China [J]. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476.
[4] XU Shi-wei, WANG Dong-jie, LI Zhe-min. Application Research on Big Data Promote Agricultural Modernization [J]. Scientia Agricultura Sinica, 2015, 48(17): 3429-3438.
[5] YU Xiu-dao,XU Zhao-shi,CHEN Ming,LI Lian-cheng,MA You-zhi
. The Progress and Application of Wheat Transformation Technology [J]. Scientia Agricultura Sinica, 2010, 43(8): 1539-1553 .
[6] LI Lin,LI Qing,WANG Li-bo,ZHANG Zu-xin,LI Jian-sheng,YAN Jian-bing
. Genetic Analysis of QTL Affecting Recombination Frequency in Whole Genome of Maize and Rice#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2262-2270 .
[7] ,,,,,. Advance of Molecular Breeding on Flax in China [J]. Scientia Agricultura Sinica, 2006, 39(12): 2428-2434 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!