Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3789-3804.doi: 10.3864/j.issn.0578-1752.2021.18.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Xingping1(),QIAN Qian2,ZHANG JiaNan3,DENG XingWang1,WAN JianMin2,XU Yunbi2,4()
[1] |
HICKEY L T, HAFEEZ A N, ROBINSON H, JACKSON S A, LEAL-BERTIOLI S C M, TESTER M, GAO X, GODWIN I D, HAYES B J, WULFF B B H. Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37:744-754.
doi: 10.1038/s41587-019-0152-9 |
[2] | 房裕东, 韩天富. 作物快速育种技术研究进展. 作物杂志, 2019(2): 1-7. |
FANG Y D, HAN T F. Research progress in speed breeding of crops. Crops, 2019(2): 1-7. (in Chinese) | |
[3] | RAJARAM S, VAN GINKEL M. Mexico, 50 years of international wheat breeding//BONJEAN A P, ANGUS W J, (Eds). The World Wheat Book: A History of Wheat Breeding. Paris: Laroisier Press, 2001: 579-608. |
[4] |
BORLAUG N E. Sixty-two years of fighting hunger: Personal recollections. Euphytica, 2007, 157:287-297.
doi: 10.1007/s10681-007-9480-9 |
[5] | 吴绍骙. 异地培育玉米自交系在生产上利用可能性的研究. 河南农学院学报, 1961(1): 16-40. |
WU S K. Study on the commercialization potential of the maize inbred lines developed at a non-target environment. Journal of Henan Agricultural College, 1961(1): 16-40. (in Chinese) | |
[6] | KOTHARI N, HAGUE S S, FRELICHOWSKI J, NICHOLS R L, JONES D C. Breeding and genetics: Utilization of cotton germplasm in the winter nursery at Tecoman, Mexico for plant breeding training and research. Journal of Cotton Science, 2011, 15:271-273. |
[7] | 徐云碧. 分子植物育种助推南繁种业转型升级. 三亚: 南繁与现代育种国际论坛, 2019. |
XU Y. Transformation and upgrading of Hainan off-season breeding industry through molecular plant breeding. Sanya: International Forum on Hainan Off-season & Modern Breeding, 2019. (in Chinese) | |
[8] | 海南省南繁管理局. 南繁简介及历程. 海南: 海南省农业农村厅,http://agri.hainan.gov.cn/zgnf/. 2020-12-31[2021-05-19]. |
Hainan Winter Nursery Breeding Administration. Introduction and history of winter nursery breeding. Hainan: Hainan Department of Agriculture and Rural Affairs.http://agri.hainan.gov.cn/zgnf/. 2020-12-31 [2021-05-19]. (in Chinese) | |
[9] | 海南省南繁管理局. 水稻南繁科技成果. 海南: 海南省农业农村厅,http://agri.hainan.gov.cn/zgnf. 2020-12-31[2021-05-19]. |
Hainan Winter Nursery Breeding Administration. Scientific achievements in rice winter nursery breeding. Hainan: Hainan Department of Agriculture and Rural Affairs.http://agri.hainan.gov.cn/zgnf/. 2020-12-31[2021-05-19]. (in Chinese) | |
[10] | 罗江. 海南: 做好南繁文章打造中国“种业硅谷”, 北京: 新华网,http://www.xinhuanet.com/politics/2018-04/27/c_129860791.htm. 2018-04-07[2021-05-19]. |
LUO J. Hainan: Winter nursery breeding for development of seed industry Silico Valley. Beijing: XINHUANET,http://www.xinhuanet.com/politics/2018-04/27/c_129860791.htm. 2018-04-07[2021-05-19]. (in Chinese) | |
[11] | 徐云碧, 朱立煌. 分子数量遗传学. 北京: 中国农业出版社, 1994: 291. |
XU Y, ZHU L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994: 291. (in Chinese) | |
[12] | BERNARDO R. Breeding for Quantitative Traits in Plants. Woodbury, Minnesota: Stemma Press, 2002: 369. |
[13] | DUDLEY J W. Integrating molecular techniques into quantitative genetics and plant breeding//KANG M S. (ed). Quantitative Genetics, Genomics, and Plant Breeding. Wallingford, UK: CAB International Press, 2002: 69-83. |
[14] | XU Y. Molecular Plant Breeding, Wallingford, UK: CABI Press (UK), 2010: 734. |
[15] |
CROSSA J. From genotype × environment interaction to gene × environment interaction. Current Genomics, 2012, 13:225-244.
doi: 10.2174/138920212800543066 |
[16] |
COOPER M, MESSINA C D, PODLICH D, TOTIR L R, BAUMGARTEN A, HAUSMANN N J, WRIGHT D, GRAHAM G. Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop and Pasture Science, 2014, 65:311-336.
doi: 10.1071/CP14007 |
[17] |
XU Y. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 2016, 129:653-673.
doi: 10.1007/s00122-016-2691-5 |
[18] |
WATSON A, GHOSH S, WILLIAMS M J, CUDDY W S, SIMMONDS J, REY M D, HATTA M A M, HINCHLIFFE A, STEED A, REYNOLDS D, ADAMSKI N M, BREAKSPEARA, KOROLEV A, RAYNER T, DIXON L E, RIAZ A, MARTIN W, RYAN M, EDWARDS D, BATLEY J, RAMAN H, CARTER J, ROGERS C, DOMONEY C, MOORE G, HARWOOD W, NICHOLSON P, DIETERS M J, DELACY I H, ZHOU J, UAUY C, BODEN S A, PARK R F, WULFF B B H, HICKEY L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4:23-29.
doi: 10.1038/s41477-017-0083-8 |
[19] |
MCELROY D, BRETTELL R I S. Foreign gene expression in transgenic cereals. Trends in Biotechnology, 1994, 12:62-68.
doi: 10.1016/0167-7799(94)90102-3 |
[20] |
MACKELPRANG R, LEMAUX P G. Genetic engineering and editing of plants: An analysis of new and persisting questions. Annual Review of Plant Biology, 2020, 71:659-687.
doi: 10.1146/annurev-arplant-081519-035916 |
[21] |
CONG L, RAN F A, COX D, LIN S, BARRETTO R, HABIB N, HSU P D, WU X, JIANG W, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339:819-823.
doi: 10.1126/science.1231143 |
[22] |
ZHU H, LI C, GAO C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21:661-677.
doi: 10.1038/s41580-020-00288-9 |
[23] | 王向峰, 才卓. 中国种业科技创新的智能时代“玉米育种4.0”. 玉米科学, 2019, 27(1): 1-9. |
WANG X F, CAI Z. Era of maize breeding 4.0. Journal of Maize Sciences, 2019, 27(1): 1-9. (in Chinese) | |
[24] | 林章凛, 林敏. 微生物和植物抗逆元器件的合成生物学研究. 生物产业技术, 2013(4): 7-11. |
LIN Z L, LIN M. Study on synthetic biology of stress tolerance elements in microorganisms and plants. Biotechnology Industry, 2013(4): 7-11. (in Chinese) | |
[25] |
BROPHY J A, VOIGT C A. Principles of genetic circuit design. Nature Methods, 2014, 11:508-520.
doi: 10.1038/nmeth.2926 |
[26] |
PELEMAN J D, VAN DER VOORT J R. Breeding by design. Trends in Plant Science, 2003, 8:330-334.
doi: 10.1016/S1360-1385(03)00134-1 |
[27] | 钱前. 水稻基因设计育种. 北京: 科学出版社, 2007. |
QIAN Q. Rice Breeding by Gene Design. Beijing: Science Press, 2007. (in Chinese) | |
[28] |
王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民. 中国作物分子设计育种. 作物学报, 2011, 37(2): 191-201.
doi: 10.3724/SP.J.1006.2011.00191 |
WANG J K, LI H H, ZHANG X C, YIN C B, LI Y, MA Y Z, LI X H, QIU L J, WAN J M. Molecular design breeding in crops in China. Acta Agronomica Sinica, 2011, 37(2): 191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00191 |
|
[29] | 余泓, 王冰, 陈明江, 刘贵富, 李家洋. 水稻分子设计育种发展与展望. 生命科学, 2018, 30(10): 1032-1037. |
YU H, WANG B, CHEN M J, LIU G F, LI J Y. Research advance and perspective of rice breeding by molecular design. Chinese Bulletin of Life Sciences, 2018, 30(10): 1032-1037. (in Chinese) | |
[30] | XU Y. Molecular breeding driven by big data and artificial intelligence. Shenzhen: Presented at Session 21 Plant Omics, The 13th International Conference on Genomics, 2018. |
[31] | SOUTH P F, CAVANAGH A P, LIU H W, ORT D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363: eaat9077. |
[32] |
SHEN B R, WANG L M, LIN X L, YAO Z, XU H W, ZHU C H, TENG H Y, CUI L L, LIU E E, ZHANG J J, HE Z H, PENG X X. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Molecular Plant, 2019, 12:199-214.
doi: 10.1016/j.molp.2018.11.013 |
[33] |
WANG L M, SHEN B R, LI B D, ZHANG C L, LIN M, TONG P P, CUI L L, ZHANG Z S, PENG X X. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Molecular Plant, 2020, 13:1802-1815.
doi: 10.1016/j.molp.2020.10.007 |
[34] |
BOZSOKI Z, GYSEL K, SIMON B. HANSEN S B, LIRONI D, KRÖNAUER C, FENG F, DE JONG N, VINTHER M, KAMBLE M, THYGESEN M B, ENGHOLM E, KOFOED C, FORT S, SULLIVAN J T, RONSON C W, JENSEN K J, BLAISE M, OLDROYD G, STOUGAARD J, ANDERSEN K R, RADUTOIU S. Ligand- recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369:663-670.
doi: 10.1126/science.abb3377 |
[35] | 薛勇彪, 种康, 韩斌, 桂建芳, 王台, 傅向东, 何祖华, 储成才, 田志喜, 程祝宽, 林少扬. 开启中国设计育种新篇章——“分子模块设计育种创新体系”战略性先导科技专项进展. 中国科学院院刊, 2015, 30:393-402. |
XUE Y B, ZHONG K, HAN B, GUI J F, WANG T, FU X D, HE Z H, CHU C C, TIAN Z X, CHEN Z K, LIN S Y. New chapter of designer breeding in China: Update on strategic program of molecular module-based designer breeding systems. Bulletin of Chinese Academy of Sciences, 2015, 30:393-402. (in Chinese) | |
[36] |
WEI X, QIU J, YONG K, FAN J, ZHANG Q, HUA H, LIU J, WANG Q, OLSEN K M, HAN B, HUANG X. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 2021, 53:243-253.
doi: 10.1038/s41588-020-00769-9 |
[37] |
WANG R, JIANG G, FENG X, NAN J, ZHANG X, YUAN Q, LIN S. Updating the genome of the elite rice variety Kongyu131 to expand its ecological adaptation region. Frontiers in Plant Science, 2019, 10:288.
doi: 10.3389/fpls.2019.00288 |
[38] |
XU Y, LU Y, XIE C, GAO S, WAN J, PRASANNA B M. Whole- genome strategies for marker-assisted plant breeding. Molecular Breeding, 2012, 29:833-854.
doi: 10.1007/s11032-012-9699-6 |
[39] | XU Y. Developing marker-assisted selection strategies for breeding hybrid rice. Plant Breeding Reviews, 2003, 23:73-174. |
[40] | 徐云碧. 2017分子植物育种理论、技术平台和应用. 北京: 分子植物育种大会组织委员会, 2017. |
XU Y. Molecular plant breeding: Theories, technical platforms and applications. Beijing: Organization Committee for China National Conference of Molecular Plant Breeding, 2017. (in Chinese) | |
[41] | 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53(15): 2983-3004. |
XU Y, YANG Q N, ZHENG H J, XU Y F, SANG Z Q, GUO Z F, PENG H, ZHANG C, LAN H F, WANG Y B, WU K S, TAO J J, ZHANG J N. Genotyping by target sequencing (GBTS) and its applications. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. (in Chinese) | |
[42] |
XU C, REN Y, JIAN Y, GUO Z, ZHANG Y, XIE C, FU J, WANG H, WANG G, XU Y, LI P, ZOU C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 2017, 37:20.
doi: 10.1007/s11032-017-0622-z |
[43] |
SUN C, DONG Z, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18:1354-1360.
doi: 10.1111/pbi.v18.6 |
[44] |
SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2013, 33:1-14.
doi: 10.1007/s11032-013-9917-x |
[45] |
ERTIRO B T, OGUGO V, WORKU M, DAS B, OLSEN M, LABUSCHAGNE M, SEMAGN K. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics, 2015, 16:908.
doi: 10.1186/s12864-015-2180-2 |
[46] | GUO Z, YANG Q, HUANG F, ZHENG H, SANG Z, XU Y, ZHANG C, WU K, AO J, PRASANNA B M, OLSEN M S, WANG Y, ZHANG J, XU Y. Development of high-resolution multiple-SNP arrays for genetics and molecular breeding through improved genotyping by target sequencing and liquid chip. Plant Communications, 2021, 2:100230. |
[47] |
GUO Z, WANG H, TAO J, REN Y, XU C, WU K, ZOU C, ZHANG J, XU Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019, 39:37.
doi: 10.1007/s11032-019-0940-4 |
[48] |
XU Y, LI P, ZOU C, LU Y, XIE C, ZHANG X, PRASANNA B M, OLSEN M S. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 2017, 68:2641-2666.
doi: 10.1093/jxb/erx135 |
[49] |
GAO S, MARTINEZ C, SKINNER D J, KRIVANEK A F, CROUCH J H, XU Y. Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Molecular Breeding, 2008, 22:477-494.
doi: 10.1007/s11032-008-9192-4 |
[50] | 周发松. 利用水稻基因组技术培育水稻多系品种. 长春: 分子植物育种大会组织委员会, 2019. |
ZHOU F S. Development of rice multiple lines using genomic techniques. Changchun: Organization Committee for China National Conference of Molecular Plant Breeding, 2019. (in Chinese) | |
[51] | XU Y, LIU X, FU J, WANG H, WANG J, HUANG C, PRASANNA B M, OLSEN M S, WANG G, ZHANG A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Communications, 2020, 1:100005. |
[52] |
SANTANTONIO N, ATANDA S A, BEYENE Y, VARSHNEY R V, OLSEN M, JONES E, ROORKIWAL M, GOWDA M, BHARADWAJ C, GAUR P M, ZHANG X, DREHER K, AYALA-HERNÁNDEZ C, CROSSA J, PÉREZ-RODRÍGUEZ P, RATHORE A, GAO S Y, MCCOUCH S, ROBBINS K R. Strategies for effective use of genomic information in crop breeding programs serving Africa and South Asia. Frontiers in Plant Science, 2020, 11:353.
doi: 10.3389/fpls.2020.00353 |
[1] | JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247. |
[2] | DAI Si-lan, HONG Yan. Molecular Breeding for Flower Colors Modification on Ornamental Plants Based on the Mechanism of Anthocyanins Biosynthesis and Coloration [J]. Scientia Agricultura Sinica, 2016, 49(3): 529-542. |
[3] | YU Shu-xun, FAN Shu-li, WANG Han-tao, WEI Heng-ling, PANG Chao-you. Progresses in Research on Cotton High Yield Breeding in China [J]. Scientia Agricultura Sinica, 2016, 49(18): 3465-3476. |
[4] | XU Shi-wei, WANG Dong-jie, LI Zhe-min. Application Research on Big Data Promote Agricultural Modernization [J]. Scientia Agricultura Sinica, 2015, 48(17): 3429-3438. |
[5] |
YU Xiu-dao,XU Zhao-shi,CHEN Ming,LI Lian-cheng,MA You-zhi . The Progress and Application of Wheat Transformation Technology [J]. Scientia Agricultura Sinica, 2010, 43(8): 1539-1553 . |
[6] |
LI Lin,LI Qing,WANG Li-bo,ZHANG Zu-xin,LI Jian-sheng,YAN Jian-bing . Genetic Analysis of QTL Affecting Recombination Frequency in Whole Genome of Maize and Rice#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2262-2270 . |
[7] | ,,,,,. Advance of Molecular Breeding on Flax in China [J]. Scientia Agricultura Sinica, 2006, 39(12): 2428-2434 . |
|