Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (23): 4749-4758.doi: 10.3864/j.issn.0578-1752.2012.23.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Detection of Wild Segments Associated with Number of Branches on Main Stem and Leafstalk Angle in Soybean

 WANG  Wu-Bin, HE  Qing-Yuan, YANG  Hong-Yan, XIANG  Shi-Hua, ZHAO  Tuan-Jie, XING  Guang-nan, GAI  Jun-Yi   

  1. Soybean Research Institute, Nanjing Agricultural University/National Center for Soybean Improvement/MOA Key Laboratory for Biology and Genetic Improvement of Soybean (General)/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095
  • Received:2012-08-20 Online:2012-12-01 Published:2012-10-20

Abstract: 【Objective】 The number of branches on main stem (NB) and leafstalk angle (LA) are important factors for plant type and therefore, closely related to yield potential in soybean. The wild soybean (Glycine soja Sieb et Zucc.) usually has the characteristics of multiple NB and wide LA, of which the genetic construction is of relevant meaning in the improvement of yield potential of soybean. The present study was aimed at detecting the wild segments related to the two traits and evaluating their genetic effects from a wild soybean chromosome segment substitution line population (CSSL) with cultivated soybean genetic background, so as to provide genetic materials for further gene cloning and its function study. 【Method】 A wild soybean CSSL population with 151 lines, designated as SojaCSSLP1 was used to identify the wild alleles/segments for NB and LA by using joint comparisons of CSSLs significantly different from the recurrent parent based on QTL mapping with the methods of single marker analysis (SMA), interval mapping (IM), inclusive composite interval mapping (ICIM) and mixed linear composite interval mapping (MCIM). 【Result】 Three NB and five LA wild alleles/segments were detected in this study. Of them, the wild segment of Sat_160 for NB and that of Sat_286 for LA could be detected repeatedly by all the four QTL mapping procedures. Among them, the LA QTL on the segment of Sat_286 could explain up to 22% of the phenotypic variation. The eight wild alleles/segments for the two plant-type characteristics were all associated with positive effect, which coincided with the expectation of the wild parent. 【Conclusion】 All the QTL/segments detected in the present study were newly identified in wild soybean, which reflected the characteristics of wild soybean.

Key words: wild soybean, chromosome segment substitution line (CSSL), number of branches on main stem, leafstalk angle, plant type

[1]宋启建, 盖钧镒, 马育华. 长江中游夏大豆地方品种品质及产量等性状的典型相关与通径分析. 大豆科学, 1996, 15(1): 11-16.

Song Q J, Gai J Y, Ma Y H. Canonical correlation analysis and path coefficient analusis of protein content, oil content and yield of summer soybean landrace population from mid-yangtze river valley. Soybean Science, 1996, 15(1): 11-16. (in Chinese)

[2]Sayama T, Hwang T Y, Yamazaki H, Yamaguchi N, Komatsu K, Takahashi M, Suzuki C, Miyoshi T, Tanaka Y, Xia Z, Tsubokura Y, Watanabe S, Harada K, Funatsuki H, Ishimoto M. Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breeding Science, 2010, 60(4): 380-389.

[3]汪宝卿, 张礼凤, 慈敦伟, 李  伟, 徐  冉. 黄淮海地区夏大豆农艺性状与产量的相关性及灰色关联度分析. 山东农业科学, 2010(3): 20-25.

Wang B Q, Zhang L F, Ci D W, Li W, Xu R. Correlation and grey relation analysis of agronomic traits with yield of summer soybean in the Huanghe-huaihe-haihe area. Shandong Agricultural Sciences, 2010(3): 20-25. (in Chinese)

[4]Cooper R L. Breeding semidwarf soybeans. Plant Breeding Reviews, 1985, 3: 289-311.

[5]Evenson R E, Gollin D. Assessing the impact of the green revolution, 1960 to 2000. Science, 2003, 300(5620): 758-762.

[6]盖钧镒. 大豆育种应用基础和技术研究进展. 南京: 江苏科学技术出版社, 1990: 8-12.

Gai J Y. Advance of Basic and Technological Aspects in Breeding for Soybeans. Nanjing: Jiangsu Science and Technology Publishing House Press, 1990: 8-12. (in Chinese)

[7]Nelson R. The inheritance of a branching type in soybean. Crop Science, 1996, 36(5): 1150-1152.

[8]陈庆山, 张忠臣, 刘春燕. 大豆主要农艺性状的QTL分析. 中国农业科学, 2007, 40(1): 41-47.

Chen Q S, Zhang Z C, Liu C Y. QTL analysis of major agronomic traits in soybean. Scientia Agricultura Sinica, 2007, 40(1): 41-47. (in Chinese)

[9]王贤智. 大豆产量相关性状的遗传与稳定性分析及QTL定位研究[D]. 武汉: 中国农业科学院, 2008.

Wang X Z. Inheritance, stability analysis and QTL mapping of yield related traits in soybean[D]. Wuhan: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)

[10]何  冉, 关荣霞, 刘章雄, 朱晓丽, 常汝镇, 邱丽娟. 用分离群体中的残余杂合系定位大豆C1连锁群的分枝数qBN-c1-1位点. 中国农业科学, 2009, 42(4): 1152-1157.

He R, Guan R X, Liu Z X, Zhu X L, Chang R Z, Qiu L J. Mapping the qBN-c1-1 locus to LG C1 for soybean branching using residual heterozygous lines derived from a segregation population. Scientia Agricultura Sinica, 2009, 42(4): 1152-1157. (in Chinese)

[11]Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z. Increased leaf angle1, a raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. The Plant Cell, 2011, 23(12): 4334-4347.

[12]Maughan P J, Maroof M A S, Buss G R. Molecular-marker analysis of seed-weight: Genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theoretical and Applied Genetica, 1996, 93(4): 574-579.

[13]Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126(3): 735-742.

[14]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Science, 1999, 39(6): 1652-1656.

[15]王永军, 吴晓雷, 喻德跃, 章元明, 陈受宜, 盖钧镒. 重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用. 作物学报, 2004, 30(5): 413-418.

Wang Y J, Wu X L, Yu D Y, Zhang Y M, Chen S Y, Gai J Y. Method of evaluation and adjustment of recombinant inbred line population and its application to the soybean RIL population NJRIKY. Acta Agronomica Sinica, 2004, 30(5): 413-418. (in Chinese)

[16]王吴彬. 野生大豆(Glycine soja Sieb. et Zucc.)染色体片段代换系群体的构建及其主要性状基因/QTL的片段定位[D]. 南京: 南京农业大学, 2012: 39-73.

Wang W B. Construction of chromosome segment substitution lines of a wild soybean (Glycine soja Sieb. et Zucc.) and determination of gene/QTL segment location of its major traits [D]. Nanjing: Nanjing Agricultural University, 2012: 39-73. (in Chinese)

[17]邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.

Qiu L J, Chang R Z. Descriptors and Data Standard for Soybean (Glycine spp.). Beijing: Chinese Agriculture Press, 2006. (in Chinese)

[18]Manly K F, Cudmore J R H, Meer J M. Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome, 2001, 12(12): 930-932.

[19]Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genetical Research, 2006, 88(2): 93-104.

[20]Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J. QTL Network: Mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24(5): 721-723.

[21]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetic Newsletter, 1997, 14: 11-13.

[22]毛传澡, 程式华. 水稻农艺性状QTL定位精确性及其影响因素的分析. 农业生物技术学报, 1999,7(4): 386-394.

Mao C Z, Cheng S H. Analysis of accuracy and influence factor in QTL mapping about agronomic traits in rice (Oryza sativa L.). Journal of Agricultural Biotechnolosy, 1999, 7(4): 386-394. (in Chinese)

[23]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141(3): 1147-1162.

[24]Kuspira J, Unrau J. Genetic analysis of certain characters in common wheat using whole chromosome substitution lines. Canadian Journal of Plant Science, 1957, 37: 300-326.

[25]Monforte A J, Tanksley S D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 2000, 43(5): 803-813.

[26]Grandillo S, Tanksley S. Advanced backcross QTL analysis: Results and perspectives// Tuberosa R, Phillips R L, Gale M. Proc. of the Int. Congr., In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution. Bologna, Italy: Avenue Media, 2003: 115-132.

[27]Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics, 2008, 179(4): 2239-2252.

[28]王立秋, 赵永锋, 薛亚东, 张祖新, 郑用琏, 陈景堂. 玉米衔接式单片段导入系群体的构建和评价. 作物学报, 2007, 33(4): 663-668.

Wang L Q, Zhao Y F, Xue Y D, Zhang Z X, Zheng Y L, Chen J T. Development and evaluation of two link-up single segment introgression lines (SSILs) in Zea mays. Acta Agronomica Sinica, 2007, 33(4): 663-668. (in Chinese)

[29]Wang P, Ding Y Z, Lu Q X, Guo W Z, Zhang T Z. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chinese Sciense Bulletin, 2008, 53(10): 1512-1517.

[30]Su C F, Lu W G, Zhao T J. Verification and fine-mapping of QTLs conferring days to flowering in soybean using residual heterozygous lines. Chinese Sciense Bull, 2010, 55(6): 499-508.

[31]Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Annals of Botany, 2007, 100(5): 1027-1038.

[32]曹  雄, 郭淑兰. 大豆高产株型形态和生理特征研究进展. 山西农业科学, 2003(1): 16-19.

Cao X, Guo S L. Research progress of plant type and physiological characteristic of high yield soybean. Journal of Shanxi Agricultural Sciences, 2003, 31(1): 16-19. (in Chinese)
[1] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[2] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[3] BAI YanWen,ZHANG HongJun,ZHU YaLi,ZHENG XueHui,YANG Mei,LI CongFeng,ZHANG RenHe. Responses of Canopy Radiation and Nitrogen Distribution, Leaf Senescence and Radiation Use Efficiency on Increased Planting Density of Different Variety Types of Maize [J]. Scientia Agricultura Sinica, 2020, 53(15): 3059-3070.
[4] HE LianHua,CHEN Duo,ZHANG Chi,TIAN QingLan,WU ZhenYuan,LI QiuPing,ZHONG XiaoYuan,DENG Fei,HU JianFeng,LING JunYing,REN WanJun. The Daily Yield of Medium Hybrid Rice in Machine Transplanting and Its Relationship with Plant Type [J]. Scientia Agricultura Sinica, 2019, 52(6): 981-996.
[5] CHEN MinZhi,YANG YanLong,WANG YuXuan,TIAN JingShan,XU ShouZhen,LIU NingNing,DANG Ke,ZHANG WangFeng. Plant Type Characteristics and Evolution of Main Economic Characters in Early Maturing Upland Cotton Cultivar Replacement in Xinjiang [J]. Scientia Agricultura Sinica, 2019, 52(19): 3279-3290.
[6] WEN WeiLiang, GUO XinYu, ZHAO ChunJiang, XIAO BoXiang, WANG YongJian. Research on Maize Plant Type Parameter Extraction by Using Three Dimensional Digitizing Data [J]. Scientia Agricultura Sinica, 2018, 51(6): 1034-1044.
[7] LIU Kun, ZHANG XueHai, SUN GaoYang, YAN PengShuai, GUO HaiPing, CHEN SiYuan, XUE YaDong, GUO ZhanYong, XIE HuiLing, TANG JiHua, LI WeiHua. Genome-Wide Association Studies of Plant Type Traits in Maize [J]. Scientia Agricultura Sinica, 2018, 51(5): 821-834.
[8] DONG HeZhong,ZHANG YanJun,ZHANG DongMei,DAI JianLong,ZHANG WangFeng. New Grouped Harvesting-Based Population Structures of Cotton [J]. Scientia Agricultura Sinica, 2018, 51(24): 4615-4624.
[9] XIAO WanXin, LIU Jing, SHI Lei, ZHAO HaiYan, WANG YanBo. Effect of Nitrogen and Density Interaction on Morphological Traits, Photosynthetic Property and Yield of Maize Hybrid of Different Plant Types [J]. Scientia Agricultura Sinica, 2017, 50(19): 3690-3701.
[10] Lü Chuan-gen, ZOU Jiang-shi. Theory and Practice on Breeding of Two-Line Hybrid Rice, Liangyoupeijiu [J]. Scientia Agricultura Sinica, 2016, 49(9): 1635-1645.
[11] ZHU De-feng, ZHANG Yu-ping, CHEN Hui-zhe, XIANG Jing, ZHANG Yi-kai. Innovation and Practice of High-Yield Rice Cultivation Technology in China [J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414.
[12] XIANG Shi-hua, WANG Wu-bin, HE Qing-yuan, YANG Hong-yan, LIU Cheng, XING Guang-nan, ZHAO Tuan-jie, GAI Jun-yi. Identification of QTL/Segments Related to Agronomic Traits Using CSSL Population Under Multiple Environments [J]. Scientia Agricultura Sinica, 2015, 48(1): 10-22.
[13] SANG Xian-Chun, LIN Ting-Ting, HE Pei-Long, WANG Xiao-Wen, LIAO Hong-Xiang, ZHANG Xiao-Bo, MA Ling, HE Guang-Hua. Identification and Gene Mapping of a Dominant Narrow Leaf Mutant Dnal1 in Rice (Oryza sativa) [J]. Scientia Agricultura Sinica, 2014, 47(9): 1819-1827.
[14] FAN Hu, ZHAO Tuan-Jie, DING Yan-Lai, XING Guang-南, GAI Jun-Yi. Genetic Analysis of the Characteristics and Geographic Differentiation of Chinese Wild Soybean Population [J]. Scientia Agricultura Sinica, 2012, 45(3): 414-425.
[15] ZHANG Wen-Yu, TANG Liang, YAO Xin-Feng, YANG Yue, CAO Wei-Xing, ZHU Yan. Process-Based Simulation Model for Growth Dynamics of Plant Type Index in Wheat [J]. Scientia Agricultura Sinica, 2012, 45(12): 2364-2374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!