Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (18): 3583-3597.doi: 10.3864/j.issn.0578-1752.2025.18.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study on Spike Architecture Traits and Elite Haplotype Mining in Winter Wheat

LI Ming1(), CHENG YuKun1,2, BAI Bin3, LEI Bin4, GENG HongWei1,2   

  1. 1 College of Agronomy, Xinjiang Agricultural University/Engineering Technology Research Center of High-Quality Special Wheat Crops, Xinjiang Agricultural University, Urumqi 830052
    2 International Joint Laboratory of Crop Biology Breeding for the Silk Road Economic Belt, Urumqi 830052
    3 Institute of Wheat Research, Gansu Academy of Agricultural Sciences, Lanzhou 730070
    4 Xinjiang Academy of Agricultural Sciences, Urumqi 830091
  • Received:2025-03-12 Accepted:2025-05-06 Online:2025-09-18 Published:2025-09-18
  • Contact: GENG HongWei

Abstract:

【Objective】Spike-related traits constitute a key factor influencing wheat yield. This study conducted a genome-wide association study (GWAS) on wheat spike-related traits to identify significant loci controlling these traits, thereby providing theoretical references for research on genetic improvement of wheat spike-related traits. 【Method】Using a panel of 261 winter wheat varieties (lines), we measured spike-related phenotypic traits and performed genome-wide association studies (GWAS) with the wheat 90K SNP array, employing the Fixed and Random Model Circulating Probability Unification (Farm CPU) model. Stable and significant loci identified through this analysis were further subjected to haplotype analysis. 【Result】Under three environmental conditions, all 11 panicle-related traits exhibited extensive phenotypic variation, with coefficients of variation (CV) ranging from 3.63 to 64.29. The heritability estimates for these traits varied between 0.42 and 0.84. Highly significant differences (P<0.001) were observed among genotype, environment, and genotype × environment interactions. Genome-wide association study (GWAS) identified 171 loci significantly associated with the 11 traits (P<0.001), including 20 pleiotropic loci detected in two or more environments. These loci were associated with eight panicle traits: panicle length (3 loci), peduncle length (7 loci), sterile spikelet number (1 locus), fertile spikelet number (2 loci), total spikelet number (2 loci), grains per panicle (1 locus), grain weight per panicle (2 loci), and thousand-grain weight (2 loci). The phenotypic contribution rates of these loci ranged from 0.95% to 18.54%. A pleiotropic locus (Ra_c10072_677) significantly associated with both grain weight per panicle and grains per panicle was identified on chromosome 7B, demonstrating phenotypic contribution rates ranging from 2.62% to 6.16%. The marker wsnp_Ex_rep_c69639_68590556, which showed consistent association with peduncle length across two or more environmental conditions (explaining 5.94% of the genetic variation), was selected for haplotype analysis. Three haplotypes (Hap1, Hap2, and Hap3) were characterized, with distribution frequencies of 77.40%, 13.70%, and 8.80%, respectively. Phenotypic analysis revealed that 261 winter wheat cultivars (lines) carrying haplotype Hap3 (30.58 cm) exhibited significantly greater peduncle length (P<0.001) compared to those with Hap1 (28.67 cm) and Hap2 (27.49 cm). The haplotype distribution frequencies showed significant geographic divergence: Hap1 predominated in the Northern Winter Wheat Region, Hap2 was more prevalent in the Huang-Huai Winter Wheat Region, while Hap3 displayed no substantial frequency (>5%) across all winter wheat regions. For stably detected loci across three environments, candidate gene mining identified four genes associated with panicle development. These genes, functionally annotated as encoding MYB transcription factors and F-box domain-containing proteins, represent key candidates influencing panicle architecture. 【Conclusion】The spike traits of wheat exhibited significant variation across different genotypes. A total of twenty stably associated loci were identified across two or more environments. Three distinct haplotypes significantly associated with the peduncle length were detected on chromosome 7B, and four candidate genes potentially related to spike traits were screened out.

Key words: wheat, spike architecture traits, genome-wide association study (GWAS), SNP markers, haplotype blocks

Table 1

Statistical analysis of stalk characters of 261 varieties (lines)"

性状
Trait
环境
Environment
范围
Range
平均值±标准差
Mean±SD
变异系数
CV
(%)
偏度
Skewness
峰度
Kurtosis
均方值Mean square 遗传力
H2
基因型
Genotype
(G)
环境
Environment
(E)
G×E互作
G×E
穗长
SL (cm)
E1 5.61—11.14 8.39±1.03 12.23 0.12 -0.01 4.80*** 33.77*** 1.02*** 0.81
E2 6.08—11.97 8.66±1.03 11.93 0.54 0.65
E3 5.97—12.90 8.9±1.14 12.80 0.58 0.61
BLUP 6.66—11.14 8.65±0.77 8.86 0.40 0.55
穗下节长
PL (cm)
E1 20.09—45.14 29.48±4.74 16.80 0.43 -0.23 97.01*** 5072.93*** 16.39*** 0.84
E2 15.58—40.36 25.21±4.42 17.54 0.47 0.14
E3 20.25—49.29 31.28±4.78 15.29 0.49 0.39
BLUP 22.80—36.51 28.66±2.88 10.04 0.38 -0.34
不育小穗数
SSN
E1 0.00—4.13 1.49±0.76 51.01 0.59 0.45 365.77*** 51.27*** 395.34*** 0.55
E2 0.00—4.60 1.05±0.67 64.29 1.33 3.69
E3 0.00—4.10 1.24±0.66 53.08 0.58 0.58
BLUP 0.65—1.98 1.26±0.27 21.32 0.29 -0.32
可育小穗数
FSN
E1 12.73—24.77 17.14±1.67 9.75 0.39 1.08 8.62*** 88.72*** 3.46*** 0.66
E2 13.80—22.30 17.76±1.54 8.69 0.31 -0.32
E3 12.80—22.80 17.92±1.61 8.99 0.16 0.01
BLUP 15.78—20.06 17.61±0.82 4.66 0.22 -0.16
小穗结实率
SF (%)
E1 0.75—1.00 0.92±0.04 4.46 -0.60 0.76 0.00*** 0.08*** 0.00*** 0.55
E2 0.81—1.00 0.94±0.03 3.63 -1.00 1.69
E3 0.80—1.00 0.93±0.04 3.78 -0.53 0.23
BLUP 0.89—0.96 0.93±0.01 1.53 -0.24 -0.22
总小穗数
TSN
E1 15.17—25.13 18.63±1.56 8.38 0.22 0.41 8.31*** 39.44*** 3.14*** 0.69
E2 15.80—24.00 18.81±1.6 8.48 0.36 -0.25
E3 14.50—24.40 19.17±1.52 7.93 0.15 0.17
BLUP 16.75—21.07 18.87±0.87 4.60 -0.03 -0.31
穗粒数
GNS
E1 17.00—67.47 40.99±7.07 17.25 0.43 1.39 158.71*** 3458.58*** 78.16*** 0.58
E2 29.70—70.70 45.32±7.34 16.19 0.59 0.28
E3 26.60—68.80 45.57±7.33 16.08 0.33 0.06
BLUP 35.33—51.80 43.97±2.98 6.77 0.22 -0.02
穗粒重
GWPS (g)
E1 0.81—3.05 1.63±0.31 19.27 0.74 1.64 0.37*** 25.83*** 0.23*** 0.53
E2 1.04—3.47 2.07±0.40* 19.25 0.76 0.72
E3 0.82—2.85 1.78±0.39 22.08 0.27 -0.30
BLUP 1.53—2.16 1.83±0.11 6.20 0.26 0.12
千粒重
TGW (g)
E1 27.31—51.72 39.3±4.63 11.77 -0.47 -0.04 91.76*** 7452.80*** 33.25*** 0.72
E2 33.32—60.15 45.74±4.89 10.69 0.06 -0.30
E3 18.21—52.64 39.1±5.81 14.87 -0.34 -0.08
BLUP 34.04—47.27 41.43±2.71 6.54 -0.42 -0.35
小穗着生密度
SD
E1 1.55—3.58 2.26±0.3 13.30 1.02 2.25 0.21*** 0.80*** 0.08*** 0.68
E2 1.69—3.08 2.21±0.22 9.86 0.37 0.79
E3 1.52—3.09 2.19±0.23 10.33 0.48 1.33
BLUP 1.86—2.66 2.22±0.14 6.26 0.38 0.49
每小穗粒数
GNSL
E1 1.03—3.32 2.24±0.3 13.53 -0.11 0.91 0.26*** 3.85*** 0.19*** 0.42
E2 1.53—3.43 2.41±0.34 14.29 0.22 0.00
E3 1.52—3.54 2.37±0.33 13.84 0.28 0.18
BLUP 2.09—2.54 2.34±0.08 3.52 -0.11 -0.23

Fig. 1

Population structure analysis of 261 wheat varieties (lines) A: Group structure composition; B: Delta K value line chart; C: Schematic diagram of principal component analysis"

Fig. 2

Manhattan map and Q-Q map of wheat ear traits based on BLUP value A: Spike length; B: Peduncle length; C: Sterile spikelet number; D: Fertile spikelet number; E: Spikelet fertility; F: Total spikelet number; G: Grain numberper spike; H: Grain weight per spike; I: Thousand grain weight; J: Spike density; K: Grain number per spikelet"

Table 2

Stably associated loci significantly linked to wheat grain quality traits"

性状
Trait
标记
Marker
染色体
Chr.
位置
Position (Mb)
P
P-value
贡献率
R2(%)
环境
Environment
穗长SL wsnp_Ex_c19094_28015035 2B 784.30 1.50E-04—4.06E-04 18.00—18.54 E1/BLUP
Tdurum_contig62138_385 2D 45.80 7.59E-05—3.20E-04 5.57—5.89 E2/BLUP
wsnp_Ex_c26128_35374652 3B 440.89 9.17E-05—3.28E-04 5.64—7.15 E1/E2/BLUP
穗下节长PL Kukri_rep_c87640_135 3A 573.99 6.43E-05—2.03E-04 5.81—9.23 E1/E2
RAC875_c929_170 5B 462.15 6.43E-05—8.20E-04 1.53—5.94 E1/E2
Tdurum_contig42655_1727 6B 12.67 5.42E-07—3.09E-04 1.60—5.94 E3/BLUP
Jagger_c3477_441 6D 20.85 3.34E-04—3.51E-04 3.28—5.94 E1/E2
Kukri_rep_c70199_506 7A 709.41 5.47E-04—8.35E-04 5.01—5.64 E1/E2
wsnp_Ex_rep_c69639_68590556 7B 198.94 3.86E-04—9.04E-04 0.95—5.94 E1/E2/BLUP
wsnp_Ex_c17176_25816766 7B 700.39 3.48E-04—5.68E-04 5.94—9.32 E1/E2
不育小穗数SSN Tdurum_contig42729_242 6A 35.64 6.71E-04—7.92E-04 1.45—2.62 E2/BLUP
可育小穗数FSN Kukri_c7218_1145 3A 504.80 5.11E-04—5.21E-04 3.61—3.66 E1/BLUP
wsnp_Ex_c18318_27140346 4B 12.53 5.90E-04—9.38E-04 1.05—3.55 E1/BLUP
总小穗数TSN wsnp_Ex_c1924_3630519 7A 582.64 3.49E-04—6.84E-04 1.60—4.89 E2/BLUP
Excalibur_c87219_204 7B 747.47 2.01E-04—3.95E-04 1.00—4.12 E1/BLUP
穗粒数GNS Ra_c10072_677 7B 295.33 2.65E-04—6.77E-04 2.62—3.84 E1/BLUP
穗粒重GWPS Excalibur_rep_c68296_2217 4A 327.75 5.96E-04—8.19E-04 5.13—9.31 E1/BLUP
Ra_c10072_677 7B 295.33 9.75E-05—2.60E-04 2.85—6.16 E2/BLUP
千粒重TGW BS00076889_51 1B 22.15 3.82E-05—5.87E-04 1.16—4.61 E1/BLUP
RFL_Contig5418_347 3B 567.25 3.63E-04—4.64E-04 1.09—4.30 E1/BLUP

Fig. 3

Haplotype analysis of wsnp_Ex_rep_c69639_68590556 A: LD Block Analysis of the wsnp_ wsnp_Ex_rep_c69639_68590556 Locus; B: Phenotypic differences in peduncle length among varieties (lines) with different haplotypes. *: P<0.05; **: P<0.01; ***: P<0.001; C: Three haplotypes of different alleles; D: Distribution frequency of haplotypes at wsnp_Ex_rep_c69639_68590556 in winter wheat from different sources"

[1]
苏培森, 隋超, 郭尚敬, 臧娇娇, 满全财. 过氧化物酶基因TaPRX-2A调控小麦穗部性状的功能分析. 麦类作物学报, 2023, 43(3): 296-301.
SU P S, SUI C, GUO S J, ZANG J J, MAN Q C. Function analysis of TaPRX-2A encoding peroxidase on regulating traits of wheat spike. Journal of Triticeae Crops, 2023, 43(3): 296-301. (in Chinese)
[2]
魏艳丽, 王彬龙, 李瑞国, 蒋会利, 张安静. 大穗小麦穗部性状的遗传分析. 麦类作物学报, 2015, 35(10): 1366-1371.
WEI Y L, WANG B L, LI R G, JIANG H L, ZHANG A J. Genetic analysis on spike characteristics of wheat variety with large spike. Journal of Triticeae Crops, 2015, 35(10): 1366-1371. (in Chinese)
[3]
LIU J, XU Z B, FAN X L, ZHOU Q, CAO J, WANG F, JI G S, YANG L, FENG B, WANG T. A genome-wide association study of wheat spike related traits in China. Frontiers in Plant Science, 2018, 9: 1584.

doi: 10.3389/fpls.2018.01584 pmid: 30429867
[4]
GAHLAUT V, JAISWAL V, BALYAN H S, JOSHI A K, GUPTA P K. Multi-locus GWAS for grain weight-related traits under rain-fed conditions in common wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12: 758631.
[5]
SHER M A, KHAN A S, ALI Z, KHAN S H. Association mapping of agronomic traits in bread wheat using a high density 90K SNP array. Pakistan Journal of Biochemistry and Biotechnology, 2021, 2(2): 236-247.
[6]
马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析. 作物学报, 2024, 50(6): 1394-1405.
MA Y M, LOU H Y, WANG W, SUN N, YAN G R, ZHANG S J, LIU J, NI Z F, XU L. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat. Acta Agronomica Sinica, 2024, 50(6): 1394-1405. (in Chinese)

doi: 10.3724/SP.J.1006.2024.31030
[7]
LI F J, WEN W E, LIU J D, ZHANG Y, CAO S H, HE Z H, RASHEED A, JIN H, ZHANG C, YAN J, ZHANG P Z, WAN Y X, XIA X C. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019, 19(1): 168.

doi: 10.1186/s12870-019-1781-3 pmid: 31035920
[8]
董继梓, 陈林渠, 郭浩儒, 张梦宇, 刘志霄, 韩磊, 田赵飒爽, 徐宁浩, 郭庆杰, 黄振洁, 等. 小麦穗长主效QTL—qSl-2D的遗传和育种选择效应解析. 中国农业科学, 2023, 56(20): 3917-3930. doi: 10.3864/j.issn.0578-1752.2023.20.001.
DONG J Z, CHEN L Q, GUO H R, ZHANG M Y, LIU Z X, HAN L, TIAN Z, XU N H, GUO Q J, HUANG Z J, et al. Analysis of genetic and breeding selection effects of a major QTL-qSl-2D for wheat spike length. Scientia Agricultura Sinica, 2023, 56(20): 3917-3930. doi: 10.3864/j.issn.0578-1752.2023.20.001. (in Chinese)
[9]
丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型、遗传效应、地理分布及育种利用分析. 作物学报, 2022, 48(9): 2196-2209.

doi: 10.3724/SP.J.1006.2022.11078
DING P Y, ZHOU J G, ZHAO C H, TANG H P, MU Y, TANG L W, DENG M, WEI Y M, LAN X J, MA J. Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat. Acta Agronomica Sinica, 2022, 48(9): 2196-2209. (in Chinese)
[10]
寇程, 高欣, 李立群, 李扬, 王中华, 李学军. 小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择. 作物学报, 2015, 41(11): 1640-1647.

doi: 10.3724/SP.J.1006.2015.01640
KOU C, GAO X, LI L Q, LI Y, WANG Z H, LI X J. Composition and selection of TaGW2-6A alleles for wheat kernel weight. Acta Agronomica Sinica, 2015, 41(11): 1640-1647. (in Chinese)
[11]
张颖, 石婷瑞, 曹瑞, 潘文秋, 宋卫宁, 王利, 聂小军. ICARDA引进-小麦苗期抗旱性的全基因组关联分析. 中国农业科学, 2024, 57(9): 1658-1681. doi: 10.3864/j.issn.0578-1752.2024.09.004.
ZHANG Y, SHI T R, CAO R, PAN W Q, SONG W N, WANG L, NIE X J. Genome-wide association study of drought tolerance at seedling stage in ICARDA-introduced wheat. Scientia Agricultura Sinica, 2024, 57(9): 1658-1681. doi: 10.3864/j.issn.0578-1752.2024.09.004. (in Chinese)
[12]
严勇亮, 时晓磊, 张金波, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦籽粒主要品质性状的全基因组关联分析. 中国农业科学, 2021, 54(19): 4033-4047. doi: 10.3864/j.issn.0578-1752.2021.19.001.
YAN Y L, SHI X L, ZHANG J B, GENG H W, XIAO J, LU Z F, NI Z F, CONG H. Genome-wide association study of grain quality related characteristics of spring wheat. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047. doi: 10.3864/j.issn.0578-1752.2021.19.001. (in Chinese)
[13]
常利芳, 李欣, 郭慧娟, 乔麟轶, 张树伟, 陈芳, 畅志坚, 张晓军. 小偃麦衍生系表型遗传多样性分析及综合评价. 草业学报, 2022, 31(11): 61-74.

doi: 10.11686/cyxb2022004
CHANG L F, LI X, GUO H J, QIAO L Y, ZHANG S W, CHEN F, CHANG Z J, ZHANG X J. Genetic diversity analysis and comprehensive evaluation of octoploid Tritipyrum-derived wheat breeding lines based on agronomic traits. Acta Prataculturae Sinica, 2022, 31(11): 61-74. (in Chinese)
[14]
REMINGTON D L, THORNSBERRY J M, MATSUOKA Y, WILSON L M, WHITT S R, DOEBLEY J, KRESOVICH S, GOODMAN M M, BUCKLER E S. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11479-11484.
[15]
刘佩瑶, 冉莉萍, 杨佳庆, 王海博, 熊飞, 余徐润. 小麦穗形态建成和生理特征及外界影响因素的研究进展. 作物杂志, 2025(1): 1-9.
LIU P Y, RAN L P, YANG J Q, WANG H B, XIONG F, YU X R. Research progress on morphogenesis, physiological characteristics, and its external influencing factors in wheat spike. Crops, 2025(1): 1-9. (in Chinese)
[16]
刘阳娜, 刘丽华, 张风廷, 张立平, 苑少华, 张明明, 李宏博, 庞斌双, 赵昌平. 利用永久F2群体定位小麦穗部性状相关的QTL. 麦类作物学报, 2021, 41(5): 525-531.
LIU Y N, LIU L H, ZHANG F T, ZHANG L P, YUAN S H, ZHANG M M, LI H B, PANG B S, ZHAO C P. QTL mapping for spike traits of wheat using immortalized F2 population. Journal of Triticeae Crops, 2021, 41(5): 525-531. (in Chinese)
[17]
陈彩锦, 张尚沛, 师尚礼, 曾燕霞, 吴娟, 尚继红, 高婷, 张蓉. 基于GGE双标图对苜蓿品种丰产性和稳定性综合评价. 草地学报, 2021, 29(5): 912-918.

doi: 10.11733/j.issn.1007-0435.2021.05.007
CHEN C J, ZHANG S P, SHI S L, ZENG Y X, WU J, SHANG J H, GAO T, ZHANG R. Comprehensive evaluation of fertility and stability of alfalfa varieties based on GGE-biplot. Acta Agrestia Sinica, 2021, 29(5): 912-918. (in Chinese)
[18]
刘易科, 朱展望, 陈泠, 邹娟, 佟汉文, 朱光, 何伟杰, 张宇庆, 高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性. 作物学报, 2020, 46(2): 307-314.
LIU Y K, ZHU Z W, CHEN L, ZOU J, TONG H W, ZHU G, HE W J, ZHANG Y Q, GAO C B. Revealing the genetic diversity of wheat varieties(lines) in China based on SNP markers. Acta Agronomica Sinica, 2020, 46(2): 307-314. (in Chinese)
[19]
张帅, 张希兰, 张娜, 赵明辉, 乔文臣, 孙丽静, 李辉, 傅晓艺, 何明琦, 纪军, 李俊明. 黄淮麦区北片小麦穗部相关性状的全基因组关联分析. 华北农学报, 2020, 35(S1): 31-39.

doi: 10.7668/hbnxb.20190900
ZHANG S, ZHANG X L, ZHANG N, ZHAO M H, QIAO W C, SUN L J, LI H, FU X Y, HE M Q, JI J, LI J M. Genome-wide association study of spike-related traits of bread wheat in north Huanghuai River valley wheat region. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 31-39. (in Chinese)

doi: 10.7668/hbnxb.20190900
[20]
王亚飞, 李世景, 徐萍, 张正斌, 景蕊莲. 黄淮和长江中下游冬麦区小麦品种(系)农艺性状及其聚类分析. 中国生态农业学报(中英文), 2020, 28(3): 395-404.
WANG Y F, LI S J, XU P, ZHANG Z B, JING R L. Agronomic traits and cluster analysis of winter wheat varieties(lines) in the Huanghuai and the middle/lower reaches of the Yangtze River wheat areas. Chinese Journal of Eco-Agriculture, 2020, 28(3): 395-404. (in Chinese)
[21]
ALEMU A, FEYISSA T, TUBEROSA R, MACCAFERRI M, SCIARA G, LETTA T, ABEYO B. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). The Crop Journal, 2020, 8(5): 757-768.
[22]
SHEORAN S, JAISWAL S, RAGHAV N, SHARMA R, SABHYATA, GAUR A, JAISRI J, TANDON G, SINGH S, SHARMA P, et al. Genome-wide association study and post-genome-wide association study analysis for spike fertility and yield related traits in bread wheat. Frontiers in Plant Science, 2022, 12: 820761.
[23]
LIU Y Y, CHEN J, YIN C B, WANG Z Y, WU H, SHEN K C, ZHANG Z L, KANG L P, XU S, BI A Y, et al. A high-resolution genotype-phenotype map identifies the TaSPL 17 controlling grain number and size in wheat. Genome Biology, 2023, 24(1): 196.
[24]
WANG J Z, CHEN Y J, LAI X J, LIU Z H, LIU M S, XU S B. Genome-wide association study for spike traits and distribution of two QTLs for grain number in Chinese wheat cultivars. Agronomy, 2023, 13(10): 2538.
[25]
KIROS A Y, MICA E, BATTAGLIA R, MAZZUCOTELLI E, DELL’ACQUA M, CATTIVELLI L, DESIDERIO F. Independent genetic factors control floret number and spikelet number in Triticum turgidum ssp. Frontiers in Plant Science, 2024, 15: 1390401.
[26]
HALDER J, GILL H S, ZHANG J F, ALTAMEEMI R, OLSON E, TURNIPSEED B, SEHGAL S K. Genome-wide association analysis of spike and kernel traits in the U.S. hard winter wheat. The Plant Genome, 2023, 16(1): e20300.
[27]
MALIK P, KUMAR J, SHARMA S, SHARMA R, SHARMA S. Multi-locus genome-wide association mapping for spike-related traits in bread wheat (Triticum aestivum L.). BMC Genomics, 2021, 22(1): 597.
[28]
ZHOU Y P, CONWAY B, MILLER D, MARSHALL D, COOPER A, MURPHY P, CHAO S, BROWN-GUEDIRA G, COSTA J. Quantitative trait loci mapping for spike characteristics in hexaploid wheat. The Plant Genome, 2017, 10(2). DOI:10.3835/plantgenome2016.10.0101.
[29]
ALEMU A, SULIMAN S, HAGRAS A, THABET S, AL-ABDALLAT A, ABDELMULA A A, TADESSE W. Multi-model genome-wide association and genomic prediction analysis of 16 agronomic, physiological and quality related traits in ICARDA spring wheat. Euphytica, 2021, 217(11): 205.
[30]
周淼平, 张鹏, 杨学明, 张平平, 宋桂成, 何漪. 扬麦158/西风重组自交系群体千粒重QTL的初步定位. 江苏农业学报, 2025, 41(1): 1-8.
ZHOU M P, ZHANG P, YANG X M, ZHANG P P, SONG G C, HE Y. Preliminary QTL mapping for thousand kernel weight in Yangmai 158/Xifeng recombinant inbred line population. Jiangsu Journal of Agricultural Sciences, 2025, 41(1): 1-8. (in Chinese)
[31]
ELTAHER S, SALLAM A, EMARA H A, NOWER A A, SALEM K F M, BÖRNER A, BAENZIGER P S, MOURAD A M I. Genome-wide association mapping revealed SNP alleles associated with spike traits in wheat. Agronomy, 2022, 12(6): 1469.
[32]
陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22(6): 1698-1707.

doi: 10.13430/j.cnki.jpgr. 20210419003
CHEN L L, LIU T X, GU Y Z, SONG J, WANG J, QIU L J. Haplotype analysis of petiole angle related gene GmILPA1 in soybean. Journal of Plant Genetic Resources, 2021, 22(6): 1698-1707. (in Chinese)
[33]
朱新开, 郭文善, 李春燕, 封超年, 彭永欣. 小麦株高及其构成指数与产量及品质的相关性. 麦类作物学报, 2009, 29(6): 1034-1038.
ZHU X K, GUO W S, LI C Y, FENG C N, PENG Y X. Relationship of plant height component indexes with grain yield and quality in wheat. Journal of Triticeae Crops, 2009, 29(6): 1034-1038. (in Chinese)
[34]
黄杰, 周璐琪, 葛昌斌, 王君, 曹燕燕, 宋丹阳, 廖平安. 小麦穗下节性状与灌浆特性、穗部相关因素的关系. 江苏农业科学, 2024, 52(10): 104-111.
HUANG J, ZHOU L Q, GE C B, WANG J, CAO Y Y, SONG D Y, LIAO P A. Relationship between lower node traits of ear, filling characteristics, and related factors of ear in wheat. Jiangsu Agricultural Sciences, 2024, 52(10): 104-111. (in Chinese)
[35]
朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关. 作物学报, 2023, 49(4): 906-916.

doi: 10.3724/SP.J.1006.2023.21029
ZHU Z, LI L, LI C N, MAO X G, HAO C Y, ZHU T, WANG J Y, CHANG J Z, JING R L. Transcription factor TaMYB5-3B is associated with plant height and 1000-grain weight in wheat. Acta Agronomica Sinica, 2023, 49(4): 906-916. (in Chinese)
[36]
韩静然, 王长有, 赵宁娟, 吉万全, 赵毓, 刘雪利. 冬小麦新种质N0238D矮秆性状的遗传分析. 西北农业学报, 2010, 19(6): 60-63.
HAN J R, WANG C Y, ZHAO N J, JI W Q, ZHAO Y, LIU X L. Genetic analysis of dwarf trait in new winter wheat germplasm N0238D. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(6): 60-63. (in Chinese)
[37]
于月华, 耿洪伟, 王莉萍, 高文伟, 陈全家, 张巨松, 曲延英. 小麦TaSIM基因结构及表达分析. 西北农业学报, 2012, 21(11): 49-52.
YU Y H, GENG H W, WANG L P, GAO W W, CHEN Q J, ZHANG J S, QU Y Y. Structure and expression analysis of TaSIM gene from Triticum aestivum L. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(11): 49-52. (in Chinese)
[38]
HOANG X L T, PREROSTOVA S, THU N B A, THAO N P, VANKOVA R, TRAN L P. Histidine kinases: Diverse functions in plant development and responses to environmental conditions. Annual Review of Plant Biology, 2021, 72: 297-323.

doi: 10.1146/annurev-arplant-080720-093057 pmid: 34143645
[39]
ZENG Z H, JIA Y, HUANG X P, CHEN Z H, XIANG T H, HAN N, BIAN H W, LI C D. Transcriptional and protein structural characterization of homogentisate phytyltransferase genes in barley, wheat, and oat. BMC Plant Biology, 2023, 23(1): 528.

doi: 10.1186/s12870-023-04535-x pmid: 37904113
[40]
HONG M J, KIM J B, SEO Y W, KIM D Y. F-box genes in the wheat genome and expression profiling in wheat at different developmental stages. Genes, 2020, 11(10): 1154.
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[3] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[4] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[5] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[6] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[7] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[8] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
[9] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[10] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[11] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[12] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[13] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[14] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[15] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!