Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (15): 3007-3019.doi: 10.3864/j.issn.0578-1752.2025.15.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Impact of Nitrogen Addition on the Species Stability of Artificial Grasslands Under Different Planting Patterns

YUAN Bo1,2,5(), XU LiJun1,*(), CUO MeJi1, NIE YingYing1, ZHANG HongZhi1, LIU XinWei1,2,*(), YANG Min1,3, GUO MingYing4   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Hulunber Grassland Ecosystem National Observation and Research Station, Beijing 100081
    2 College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, Shandong
    3 Integrated Agricultural and Rural Service Center of Dujiang Town, Sandu 558106, Guizhou
    4 Hulunbeir Forestry and Grassland Science Research Institute, Hulunbeir 021000, Inner Mongolia
    5 Agricultural Technology Extension Center of Gaochang District, Turpan City 838000, Xinjiang
  • Received:2025-02-14 Accepted:2025-06-13 Online:2025-08-01 Published:2025-07-30
  • Contact: XU LiJun, LIU XinWei

Abstract:

【Objective】 The agro-pastoral ecotone in northern China is an important production base for agricultural and livestock products and a crucial ecological security barrier. This study analyzed the effects of different planting patterns on pasture yield, interspecific compatibility, and yield stability, aiming to provide the important scientific evidence for revealing the sustainable utilization of artificially established grasslands under different planting patterns with nitrogen addition.【Method】 Based on the long-term cultivated grassland core experimental platform at the Hulunbuir National Field Station, three planting patterns were established: single sowing of Medicago varia (M), single sowing of Bromus inermis (B), and a 1:1 mixed sowing of Medicago varia and Bromus inermis (M:B). Additionally, three nitrogen application levels were set: no nitrogen (CK), 75 kg N·hm-2 (N75), and 150 kg N·hm-2 (N150). Indicators, such as yield, relative yield (RY), relative yield total (RYT), competition ratio (CR), stability, and asynchrony, were utilized to investigate the response of forage yield to nitrogen addition under different planting patterns in artificial grasslands.【Result】 (1) Through eight years of long-term site-specific observations, the results showed that both N75 and N150 treatments significantly increased the forage yield of mixed-sown grasslands in the early stages. Specifically, the N150 treatment promoted the forage yield of monoculture grasslands. Moreover, under different nitrogen application levels, the forage yield and stability of mixed-sown grasslands were consistently higher than those of monoculture grasslands. (2) In the mixed-sown grassland of variegated alfalfa and smooth brome, the competition ratio of variegated alfalfa was greater than 1 in the first to fifth year after establishment, and less than 1 in the sixth to eighth year. This indicated that variegated alfalfa was highly competitive in the early stages, while smooth brome maintained system balance through continuous nutrient utilization in the later stages. This temporal complementarity enhanced the forage yield stability of the mixed-sown grassland by 1.41-1.53 times and the asynchrony by 1.27-1.57 times, thereby buffering yield fluctuations. Furthermore, there was a positive correlation between stability and asynchrony.【Conclusion】 Species yield asynchrony and stability were key factors determining the stability of mixed-sowing yields. For establishing monoculture artificial grasslands of variegated alfalfa or smooth brome in the Hulunbuir region, it was recommended to apply 150 kg N·hm-2 of nitrogen. For establishing mixed-sown grasslands of variegated alfalfa and smooth brome, it was advisable to increase the nitrogen application rate to 75 kg N·hm-2 during the initial establishment phase. Through complementary symbiosis, legume-grass mixed-sown pastures could effectively utilize soil nutrients, increase forage yield, and simultaneously reduce the amount of exogenous nitrogen applied, thereby achieving the goal of promoting and maintaining high pasture productivity.

Key words: nitrogen addition, pastureland, cropping pattern, yield, interspecific compatibility, asynchronism

Table 1

Significance of differences in forage yield under different nitrogen application levels and planting patterns"

处理方式
Treatment
牧草产量 Yield of grass (kg·hm-2) 平均值
Average value
2016 2017 2018 2019 2020 2021 2022 2023
M-CK 1725.00±329.13abD 9954.26±1310.15aB 9998.66±862.82aB 7218.33±2878.70aC 9315.65±1059.68bBC 12969.72±375.53aA 10720.28±3095.22aAB 9628.52±1212.77aABC 8941.30±3541.97a
M-N75 2249.63±550.10aB 10337.13±3116.74aA 10989.95±1353.53aA 9555.60±3174.82aA 12089.91±1559.61aA 12701.57±1856.93aA 10852.04±1285.57aA 11777.96±3174.54aA 10069.22±3814.67a
M-N150 1385.93±392.70bE 9546.30±2410.74aCD 10938.10±1112.34aBC 7850.00±2368.79aD 10886.94±1614.57abBC 14150.56±1515.30aA 13013.43±2614.56aAB 12257.13±1705.02aABC 10003.55±4176.72a
B-CK 2592.69±628.78aE 15475.00±2669.89aA 9012.59±1325.26aC 4872.22±1256.79aDE 8384.35±2283.31aC 12781.85±1562.70aB 7565.46±1146.32aC 6457.87±1670.56aCD 8392.75±4226.25a
B-N75 1855.28±720.52aD 13648.33±4796.95aA 11305.09±2736.12aAB 3514.63±873.51aD 7441.11±1553.76aC 14047.04±1456.17aA 8882.87±1963.69aBC 7624.17±1328.37aC 8539.81±4718.40a
B-N150 2767.69±1030.97aE 13633.80±1387.09aA 11381.67±2043.47aB 5238.70±1347.22aD 7935.93±538.57aC 15451.94±1146.30aA 7364.51±378.68aC 7955.83±1209.02aC 8966.26±4165.87a
M:B-CK 1936.85±567.71aE 12151.11±2944.89aBC 11082.13±1645.66aB 6676.85±2086.63aD 13015.83±2211.19aBC 18254.72±2316.09aA 10426.48±3036.11aCD 11586.20±2144.68aCD 11207.62±5018.71a
M:B-N75 2016.85±371.92aD 11133.33±2308.68aB 12107.59±2171.98abAB 5830.86±1325.76aC 12053.98±826.56aAB 15402.41±3047.63aA 10462.69±2025.77aB 10322.31±1957.68aB 10499.88±4301.56a
M:B-N150 2412.04±920.17aD 12298.70±1648.81aBC 14381.85±753.80aB 6165.74±1084.21aC 12009.26±1801.24aA 18610.56±4521.26aA 9286.67±2575.09aC 8982.87±1120.55aC 11140.28±5187.74a

Fig. 1

Effects of different nitrogen levels on forage yield of alfalfa under monoculture and mixed sowing conditions"

Fig. 2

Effects of different nitrogen application levels on forage yield of smooth bromegrass under monoculture and mixed cropping systems"

Fig. 3

Effects of different fertilization treatments on the relative yield (RY), total relative yield (RYT), and competition ratio (CR) of mixed grasslands"

Table 2

Analysis of species stability differences under different planting modes"

处理方式
Treatment
单播稳定性 The stability of single sowing 混播稳定性 The stability of mixed sowing 混播异步性 The asynchrony of mixed sowing
2016—2019 2020—2023 2016—2019 2020—2023 2016—2019 2020—2023
M-CK 2.00±0.11aB 5.91±1.73aA 3.21±0.61aB 10.67±3.39aA 0.62±0.04aA 0.56±0.36aA
M-N75 2.26±0.18aB 6.83±1.61aA 2.77±0.57aA 10.43±5.87aA 0.70±0.08aA 0.73±0.54aA
M-N150 1.99±0.24aB 7.58±2.65aA 3.02±0.52aB 9.51±3.24aA 0.63±0.08aA 0.41±0.21aA
B-CK 1.65±0.27aB 3.46±0.59aA 4.84±0.63aA 5.41±2.12aA 0.41±0.05aB 1.00±0.29aA
B-N75 1.57±0.40aB 3.65±1.10aA 4.39±1.71aA 5.10±1.00aA 0.39±0.06aB 0.97±0.19aA
B-N150 1.85±0.34aB 2.93±0.42aA 4.79±1.11aA 3.70±0.92aA 0.40±0.06aB 0.90±0.02aA
平均值 Average
CK 1.83±0.27aB 4.68±1.78aA 4.02±1.02aB 8.04±3.86aA 0.52±0.11aA 0.78±0.39aA
N75 1.91±0.46aB 5.24±2.11aA 3.58±1.51aA 7.77±4.98aA 0.54±0.17aA 0.85±0.42aA
N150 1.92±0.30aB 5.26±3.00aA 3.91±1.24aA 6.61±3.76aA 0.51±0.13aA 0.65±0.29aA

Fig. 4

Correlation analysis diagram: nitrogen level, year, forage yield, planting patterns and their relationships with yield stability and asynchrony"

Fig. 5

Display of statistical results from structural equation modeling and path analysis"

[1]
NIE Y Y, XU L J, XIN X P, YE L M. Long-term grassland diversity-productivity relationship regulated by management regimes in northern China. Science of The Total Environment, 2024, 949: 175084.
[2]
XU L J, LI D, WANG D, YE L M, NIE Y Y, FANG H J, XUE W, BAI C L, VAN RANST E. Achieving the dual goals of biomass production and soil rehabilitation with sown pasture on marginal cropland: Evidence from a multi-year field experiment in Northeast Inner Mongolia. Frontiers in Plant Science, 2022, 13: 985864.
[3]
YUAN B, XU L J, WEI J Q, CUO M J, ZHANG H Z, NIE Y Y, GUO M Y, LI J X, LIU X W. Medicago pasture soil C: N: P stoichiometry mediated by N fertilization in northern China. Agronomy, 2025, 15(3): 724.
[4]
JENSEN E S, PEOPLES M B, BODDEY R M, GRESSHOFF P M, HAUGGAARD-NIELSEN H, J R ALVES B, MORRISON M J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development, 2012, 32(2): 329-364.
[5]
OLIVARES J, BEDMAR E J, SANJUÁN J. Biological nitrogen fixation in the context of global change. Molecular Plant-Microbe Interactions, 2013, 26(5): 486-494.

doi: 10.1094/MPMI-12-12-0293-CR pmid: 23360457
[6]
谢开云, 张英俊, 李向林, 何峰, 万里强, 王栋, 秦燕. 无芒雀麦和紫花苜蓿在(1: 1)混播中的竞争与共存. 中国农业科学, 2015, 48(18): 3767-3778. doi:10.3864/j.issn.0578-1752.2015.18.020.
XIE K Y, ZHANG Y J, LI X L, HE F, WAN L Q, WANG D, QIN Y. Competition and coexistence of alfalfa (Medicago sativa L.) and smooth brome(Bromus inermis layss.) in mixture. Scientia Agricultura Sinica, 2015, 48(18): 3767-3778. doi:10.3864/j.issn.0578-1752.2015.18.020. (in Chinese)
[7]
汪爱霞, 马彦麟, 齐广平, 康燕霞, 银敏华, 汪精海, 贾琼, 唐仲霞, 姜渊博. 无芒雀麦与苜蓿混播草地生产力提升的水氮调控模式. 水土保持学报, 2022, 36(2): 321-330.
WANG A X, MA Y L, QI G P, KANG Y X, YIN M H, WANG J H, JIA Q, TANG Z X, JIANG Y B. Water and nitrogen regulation patterns for productivity improvement of bromus inermis and alfalfa mixed grassland. Journal of Soil and Water Conservation, 2022, 36(2): 321-330. (in Chinese)
[8]
WANG L L, XIE J H, LUO Z Z, NIU Y N, COULTER J A, ZHANG R Z, LI L L. Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China. Agricultural Water Management, 2021, 243: 106415.
[9]
XU L J, YE L M, NIE Y Y, YANG G X, XIN X P, YUAN B, YANG X F. Sown alfalfa pasture decreases grazing intensity while increasing soil carbon: Experimental observations and DNDC model predictions. Frontiers in Plant Science, 2022, 13: 1019966.
[10]
崔增. 人工草地对半干旱区农田土壤质量改善及水分效应研究[D]. 杨凌: 西北农林科技大学, 2019.
CUI Z. Effects of artificial grasslands on soil quality and soil moisture of farmland in semi-arid areas[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[11]
吴宛萍. 混播比例对陇东黄土高原紫花苜蓿/无芒雀麦草地土壤有机碳库的影响[D]. 兰州:兰州大学 2023.
WU W P. Effect of mixing ratio on soil organic carbon pool of alfalfa/ smooth bromegrass mixture in Longdong Loess Plateau[D]. Lanzhou: Lanzhou University, 2023. (in Chinese)
[12]
郑伟, 朱进忠, 加娜尔古丽, 李海, 张景路. 不同混播方式对豆禾混播草地生产性能的影响. 中国草地学报, 2011, 33(5): 45-52.
ZHENG W, ZHU J Z, JIA N, LI H, ZHANG J L. Effects of different mixed sowing patterns on production performance of legume-grass mixture. Chinese Journal of Grassland, 2011, 33(5): 45-52. (in Chinese)
[13]
赵保文, 詹圆, 方嘉琪, 周青平, 汪辉. 混播比例对燕麦与箭筈豌豆生产性能的影响. 中国草地学报, 2024, 46(3): 81-90.
ZHAO B W, ZHAN Y, FANG J Q, ZHOU Q P, WANG H. Mixing ratios effects on production performance and quality in oat and common vetch intercropping systems. Chinese Journal of Grassland, 2024, 46(3): 81-90. (in Chinese)
[14]
祁亚淑, 朱林, 许兴. 宁夏绿洲禾豆牧草混播组合及其比例效应. 草业科学, 2015, 32(9): 1463-1472.
QI Y S, ZHU L, XU X. Effects of mixed combination and proportion between leguminous and graminaceous forages grown in Ningxia desert steppe. Pratacultural Science, 2015, 32(9): 1463-1472. (in Chinese)
[15]
FOSTER A, VERA C L, MALHI S S, CLARKE F R. Forage yield of simple and complex grass-legume mixtures under two management strategies. Canadian Journal of Plant Science, 2014, 94(1): 41-50.
[16]
FRANKOW-LINDBERG B E, DAHLIN A S. N2 fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. Plant and Soil, 2013, 370(1): 567-581.
[17]
许莹月, 侯钰荣, 王静, 周晨烨, 孙宗玖, 朝木力嘎, 柯梅, 王玉祥. 豆禾间行混播对草地生产性能与土壤养分的影响. 中国草地学报, 2024, 46(10): 75-86.
XU Y Y, HOU Y R, WANG J, ZHOU C Y, SUN Z J, ZHAO M L G, KE M, WANG Y X. Effects of intercropping mixture of legume and grass on grassland production performance and soil nutrients. Chinese Journal of Grassland, 2024, 46(10): 75-86. (in Chinese)
[18]
刘敏, 龚吉蕊, 王忆慧, 张梓榆, 徐沙, 罗亲普. 豆禾混播建植人工草地对牧草产量和草质的影响. 干旱区研究, 2016, 33(1): 179-185.
LIU M, GONG J R, WANG Y H, ZHANG Z Y, XU S, LUO Q P. Effects of legume-grass mixed sowing on forage grass yield and quality in artificial grassland. Arid Zone Research, 2016, 33(1): 179-185. (in Chinese)
[19]
LI W J, LI J H, LU J F, ZHANG R Y, WANG G. Legume-grass species influence plant productivity and soil nitrogen during grassland succession in the eastern Tibet Plateau. Applied Soil Ecology, 2010, 44(2): 164-169.
[20]
WICHERN F, MAYER J, JOERGENSEN R G, MÜLLER T. Rhizodeposition of C and N in peas and oats after 13C-15N double labelling under field conditions. Soil Biology and Biochemistry, 2007, 39(10): 2527-2537.
[21]
SHAH Z, SHAH S H, PEOPLES M B, SCHWENKE G D, HERRIDGE D F. Crop residue and fertiliser N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility. Field Crops Research, 2003, 83(1): 1-11.
[22]
DONOHUE I, HILLEBRAND H, MONTOYA J M, PETCHEY O L, PIMM S L, FOWLER M S, HEALY K, JACKSON A L, LURGI M, MCCLEAN D, O’CONNOR N E, O’GORMAN E J, YANG Q. Navigating the complexity of ecological stability. Ecology Letters, 2016, 19(9): 1172-1185.

doi: 10.1111/ele.12648 pmid: 27432641
[23]
WANG S P, LAMY T, HALLETT L M, LOREAU M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography, 2019, 42(6): 1200-1211.
[24]
YAN Y, CONNOLLY J, LIANG M W, JIANG L, WANG S P. Mechanistic links between biodiversity effects on ecosystem functioning and stability in a multi-site grassland experiment. Journal of Ecology, 2021, 109(9): 3370-3378.
[25]
张永亮, 张丽娟, 于铁峰, 潘东. 禾豆组合与间作方式对牧草产量及产量稳定性的影响. 草地学报, 2019, 27(5):1410-1418.

doi: 10.11733/j.issn.1007-0435.2019.05.037
ZHANG Y L, ZHANG L J, YU T F, PAN D. Effects of grass-legume combinations and intercropping patterns on the forage yield and yield stability. Chinese Journal of Grassland, 2019, 27(5):1410-1418. (in Chinese)
[26]
董世魁. 高寒地区多年生禾草混播草地群落稳定性及其调控机制研究[D]. 兰州: 甘肃农业大学, 2001.
DONG S K. The stability of mixture grassland of cultivated perennial grass and its regulation in alpine region of Qinghai-Tibetan plateau of China[D]. Lanzhou: Gansu Agricultural University, 2001. (in Chinese)
[27]
YAN H L, GU S S, LI S Z, SHEN W L, ZHOU X L, YU H, MA K, ZHAO Y G, WANG Y C, ZHENG H, DENG Y, LU G X. Grass- legume mixtures enhance forage production via the bacterial community. Agriculture, Ecosystems & Environment, 2022, 338: 108087.
[28]
王建光. 农牧交错区苜蓿-禾草混播模式研究[D]. 北京: 中国农业科学院, 2012.
WANG J G. Study on mixed-sowing modes of alfalfa and grasses in the farming pasture region[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[29]
曾昭海. 豆科作物与禾本科作物轮作研究进展及前景. 中国生态农业学报, 2018, 26(1): 57-61.
ZENG Z H. Progress and perspective of legume-gramineae rotations. Chinese Journal of Eco-Agriculture, 2018, 26(1): 57-61. (in Chinese)
[30]
MONTEROS M J, HAN Y, BRUMMER E C. Alfalfa. Genetics, Genomics and Breeding of Forage Crops. Boca Raton: CRC Press, 2014: 187-219.
[31]
ILYAS N, YANG Y J, ZHANG C S, SINGH R P, YU Q G, YUAN Y, YOU X W, LI Y Q. Temporal dynamics and variation in the alfalfa root nodule and rhizosphere microbial communities of coastal sand and lawn soil. Journal of Plant Interactions, 2022, 17(1): 173-182.
[32]
JI S N, LU X W, LI X N, HAUTIER Y, WANG C. Nitrogen addition strengthens the stabilizing effect of biodiversity on productivity by increasing plant trait diversity and species asynchrony in the artificial grassland communities. Frontiers in Plant Science, 2023, 14: 1301461.
[33]
王博杰, 唐海萍, 何丽, 林国辉, 赵世杰, 赵明旭. 农牧交错区旱作条件下苜蓿和冰草人工草地稳定性研究. 草业学报, 2016, 25(4): 222-229.

doi: 10.11686/cyxb2015287
WANG B J, TANG H P, HE L, LIN G H, ZHAO S J, ZHAO M X. Stability of alfalfa and wheatgrass pasture under dry farming in a pastoral agronomy area. Acta Protoculture Sinica, 2016, 25(4): 222-229. (in Chinese)
[34]
冀超, 殷国梅, 刘思博, 慕宗杰, 薛艳林, 李敬忠, 马春梅, 张英, 杨风兰, 梁叶文. 氮肥水平对紫花苜蓿农艺性状及经济效益的影响. 北方农业学报, 2021, 49(5): 127-134.

doi: 10.12190/j.issn.2096-1197.2021.05.18
JI C, YIN G M, LIU S B, MU Z J, XUE Y L, LI J Z, MA C M, ZHANG Y, YANG F L, LIANG Y W. Effect of nitrogen levels on alfalfa agronomic traits and economic benefit. Journal of Northern Agriculture, 2021, 49(5): 127-134. (in Chinese)

doi: 10.12190/j.issn.2096-1197.2021.05.18
[35]
万井尉. 紫花苜蓿人工草地施肥试验. 现代畜牧兽医, 2015, 1: 10-14.
WAN J W. Fertilization experiment of alfalfa artificial grassland. Modern Journal of Animal Husbandry and Veterinary Medicine, 2015, 1: 10-14. (in Chinese)
[36]
徐然然, 常生华, 贾倩民, SHAHZAD A, 张程, 刘永杰, 侯扶江. 施氮和利用方式对黄土高原禾豆混播草地产量、品质和水分利用的影响. 草地学报, 2020, 28(6): 1744-1755.

doi: 10.11733/j.issn.1007-0435.2020.06.030
XU R R, CHANG S H, JIA Q M, SHAHZAD A, ZHANG C, LIU Y J, HOU F J. Effects of nitrogen application and utilization methods on yield, quality and water use of grass-legume mixed grassland in loess plateau. Chinese Journal of Grassland, 2020, 11: 174-1755. (in Chinese)
[37]
谢开云, 李向林, 何峰, 万里强, 王栋, 秦燕, 余群. 单播与混播下紫花苜蓿与无芒雀麦生物量对氮肥的响应. 草业学报, 2014, 23(6): 148-156.

doi: 10.11686/cyxb20140619
XIE K Y, LI X L, HE F, WAN L Q, WANG D, QIN Y, YU Q. Response of alfalfa and smooth brome to nitrogen fertilizer in monoculture and mixed grasslands. Acta Protoculture Sinica, 2014, 23(6): 148-156. (in Chinese)
[38]
张馨文. 氮添加对荒漠草原生产力及群落稳定性的影响机制[D]. 银川: 宁夏大学, 2022.
ZHANG X W. Effects and mechanism of nitrogen addition on productivity and community stability in the desert grassland[D]. Yinchuan: Ningxia University, 2022. (in Chinese)
[39]
才璐, 王林林, 罗珠珠, 李玲玲, 牛伊宁, 蔡立群, 谢军红. 中国苜蓿产量及水分利用效率对种植年限响应的Meta分析. 草业学报, 2020, 29(6): 27-38.

doi: 10.11686/cyxb2019404
CAI L, WANG L L, LUO Z Z, LI L L, NIU Y N, CAI L Q, XIE J H. Meta-analysis of alfalfa yield and WUE response to growing ages in China. Acta Protoculture Sinica, 2020, 29(6): 27-38. (in Chinese)
[40]
李裕元, 邵明安, 上官周平, 樊军, 王丽梅. 黄土高原北部紫花苜蓿草地退化过程与植被演替研究. 草业学报, 2006, 15(2): 85-92.
LI Y Y, SHAO M A, SHANG G Z P, FAN J, WANG L M. Study on the degrading process and vegetati on successi on of Medicagosativa grassland in north loess plateau, China. Acta Protoculture Sinica, 2006, 15(2): 85-92. (in Chinese)
[41]
NUTTALL W F, MCCARTNEY D H, HORTON P R, BITTMAN S, WADDINGTON J. The effect of N, P, S fertilizer, temperature and precipitation on the yield of bromegrass and alfalfa pasture established on a Luvisolic soil. Canadian Journal of Plant Science, 1991, 71(4): 1047-1055.
[42]
谢开云. 氮素添加对紫花苜蓿和无芒雀麦种间关系及氮素平衡的影响[D]. 北京: 中国农业大学, 2015.
XIE K Y. Effect of nitrogen addition on interspecific relationship and nitrogen balance of alfalfa and smooth bromegrass[D]. Beijing: Chinese Agricultural University, 2015. (in Chinese)
[43]
WU Q, REN H Y, WANG Z W, LI Z G, LIU Y H, WANG Z, LI Y H, ZHANG R Y, ZHAO M L, CHANG S X, HAN G D, HECTOR A. Additive negative effects of decadal warming and nitrogen addition on grassland community stability. Journal of Ecology, 2020, 108(4): 1442-1452.
[44]
李治国. 紫花苜蓿-无芒雀麦混播群落稳定性及其产量因子模型建立的研究[D]. 呼和浩特: 内蒙古农业大学, 2005.
LI Z G. The study of community stability and the establishment of yield factors model about mix-sowing of Medicago Sativa&Bromus Innermis[D]. Hohhot: Inner Mongolia Agricultural University, 2005. (in Chinese)
[45]
LOREAU M, DE MAZANCOURT C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist, 2008, 172(2): E48-E66.
[46]
NIU D C, YUAN X B, CEASE A J, WEN H Y, ZHANG C P, FU H, ELSER J J. The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. Science of The Total Environment, 2018, 618: 1529-1538.
[47]
杜忠毓. 水氮添加对荒漠草原植物种间关系及群落稳定性的影响[D]. 银川: 宁夏大学, 2021.
DU Z Y. Effects of water and nitrogen addition on the plant interspecific association and community stability in the desert grassland[D]. Yinchuan: Ningxia University, 2021. (in Chinese)
[48]
HEJCMAN M, ČEŠKOVÁ M, SCHELLBERG J, PÄTZOLD S. The rengen grassland experiment: effect of soil chemical properties on biomass production, plant species composition and species richness. Folia Geobotanica, 2010, 45(2): 125-142.
[49]
MOLINA J A, MARTÍN-SANZ J P, VALVERDE-ASENJO I, SÁNCHEZ-JIMÉNEZ A, QUINTANA J R. Mediterranean grassland succession as an indicator of changes in ecosystem biodiversity and functionality. Biodiversity and Conservation, 2023, 32(1): 95-118.
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!