Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2096-2117.doi: 10.3864/j.issn.0578-1752.2025.11.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Nitrogen Fertilization Levels on Matter Accumulation and Nitrogen Uptake in Different Source and Library Types of Japonica Rice

ZHOU Yu(), SUN Tong, ZHANG YanHong, RU Yan, SU Tan, WANG Shuai, ZHU JinYan, HU JinLong, XIONG QiangQiang, ZHANG HongCheng, ZHOU NianBing()   

  1. Rice Industry Engineering Technology Research Institute of Yangzhou University/Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Province High Quality Japonica Rice Industry Engineering Research Center, Yangzhou 225009, Jiangsu
  • Received:2024-11-11 Accepted:2025-04-29 Online:2025-06-01 Published:2025-06-09
  • Contact: ZHOU NianBing

Abstract:

【Objective】 This study aimed to investigate the overground part material accumulation and nitrogen transport of japonica rice with different sources and library types under different nitrogen application conditions, in order to select the japonica rice strain with high yield and high nitrogen efficiency, and explore the optimal nitrogen application rate for the growth of this japonica rice variety, ultimately achieve an increase in yield.【Method】 The trial was conducted in 2022-2023, with the source library interaction type Yangchan35003, source restriction type Yangchan35002, and library restriction type Yangchan35004 as test materials, and the split zone design was adopted. Four nitrogen application treatments of 180 kg·hm-2, 225 kg·hm-2, 270 kg·hm-2 and 315 kg·hm-2 were set. The yield, dry matter accumulation and nitrogen related indexes (mainly taking nitrogen transport efficiency, nitrogen transport contribution rate, harvest index, nitrogen harvest index, grain production efficiency, dry matter production efficiency and nitrogen fertilizer productivity as the evaluation indexes of nitrogen utilization efficiency) of different types of japonica rice under each treatment were measured at the key stage, the changes of different types of japonica rice under different nitrogen treatment were analyzed in the bar chart, and the influence of nitrogen application on material accumulation and transport was delved; the index mean value and variation coefficient of japonica rice were compared, the differences in indicators caused by different nitrogen application amounts were eliminated, and the differences between different types of japonica rice were highlighted; by using the correlation coefficient, the relationship between yield types of japonica rice and nitrogen utilization efficiency were explored, and the influence of nitrogen application on the accumulation of dry matter, nitrogen utilization and yield of japonica rice in heading and maturity period were analyzed.【Result】 (1) Applying additional nitrogen fertilizer within the range of 180-315 kg·hm-2 could significantly increased the yield of each type of japonica rice (9.68%-29.19%), dry matter and nitrogen accumulation at heading stage (3.26%-28.57% and 8.57%-47.91%), and dry matter and nitrogen accumulation at maturity stage (1.01%-24.84% and 3.83%-57.98%) during the two-year period. Meanwhile, it was also beneficial to improve nitrogen transport capacity of leaves and stem at maturity stage. (2) Under the same nitrogen application conditions, the accumulation of dry matter, the accumulation of nitrogen, 1000-grain weight and setting percentage in Yangchan35003 were higher than that in Yangchan35002 and Yangchan35004 (29.08%-44.12%, 9.32%-29.21%, 11.40%-15.42%, 17.67%-40.70% and 25.93%-44.13%, 18.25%-26.17%, 6.16%-8.30%,-1.50%-13.96%, respectively) during the two-year period, the final yield exceeded the two types of japonica rice (24.26%-32.33% and 21.14%-30.05% higher than the yield Yangchan35002 and 35004, respectively) during the two-year period.(3) The high nitrogen transport capacity was not a unique feature of the source library interaction type strain. In this experiment, under the same nitrogen level condition, the nitrogen transport efficiency of Yangchan35004 was similar to the source library interaction type strain in the experiment, but the nitrogen intake was lower than Yangchan35003 (15.43%-20.74%), and the yield was lower than Yangchan35003 (17.45%-23.11%) during the two-year period, so it was a low yield and high nitrogen efficiency rice strain.【Conclusion】 Under the condition of applying 270 kg·hm-2 of nitrogen fertilizer, Yangchan35002 could significantly optimize the synergy utilization efficiency of nutrients and temperature-light resources, enhance the nitrogen absorption and transportation capacity of plants, and improve the yield performance of the population. It was determined as the optimal combination in this experiment.

Key words: japonica rice, yield, nitrogen fertilizer, material accumulation, nitrogen efficiency

Table 1

Fertilizer application amount and distribution ratio during the whole growth period"

处理
Treatment
施氮量 Nitrogen application levels (kg·hm-2)
基肥 Base fertilize 分蘖肥 Tillering fertilize 穗肥 Grain fertilize 总施肥量 Total fertilizer
N1 63.00 63.00 54.00 180.00
N2 78.75 78.75 67.50 225.00
N3 94.50 94.50 81.00 270.00
N4 110.25 110.25 94.50 315.00

Table 2

Effects of different nitrogen application rates on japonica rice yield and component factors"

年份
Year
品系
Cultivar
处理 Treatment 有效穗数
Number of effective panicle (×104·hm-2)
穗粒数
Spikelets per panicle
千粒重
1000-grain weight (g)
结实率
Filled grain rate (%)
产量
Grain yield
(t·hm-2)
2022 扬产35003
Yangchan35003
N1 195.86b 190.56b 26.4b 90.88a 8.29c
N2 201.53b 220.36a 26.81a 85.29b 9.77b
N3 203.56b 219.58a 26.89a 91.32a 10.06ab
N4 213.59a 216.89a 26.88a 86.59b 10.71a
扬产35002
Yangchan35002
N1 240.85b 184.26d 23.16b 64.59c 6.59c
N2 255.96a 191.56c 23.49b 67.89b 7.72b
N3 237.46b 207.65b 23.74ab 72.01a 8.05a
N4 235.16b 216.59a 24.13a 71.56a 8.39a
扬产35004
Yangchan35004
N1 190.26b 182.56b 24.46b 80.56b 6.79c
N2 199.26b 182.89b 24.99a 86.59a 7.82b
N3 219.56a 187.56b 25.01a 83.59ab 7.99b
N4 223.59a 203.56a 25.32a 75.98c 8.59a
2023 扬产35003
Yangchan35003
N1 201.25b 196.90c 26.56b 91.99a 9.19c
N2 205.63b 215.36b 26.76ab 90.55a 10.17b
N3 207.90b 218.78ab 26.92a 89.26a 10.55ab
N4 217.53a 225.85a 26.81ab 86.21b 10.89a
扬产35002
Yangchan35002
N1 250.88a 189.13d 23.01b 67.46c 6.95c
N2 255.60a 198.36c 23.47b 70.30b 8.12b
N3 247.05a 212.35b 23.69ab 74.02a 8.49ab
N4 237.60b 222.94a 24.03a 73.26a 8.71a
扬产35004
Yangchan35004
N1 200.55b 185.23c 24.56b 87.26a 7.13c
N2 208.80b 188.21bc 24.95a 86.52a 7.82b
N3 229.80a 192.10b 25.15a 83.73b 8.45ab
N4 237.60a 200.32a 25.23a 78.48c 8.99a
F-value
年份Year (Y) 0.684 0.322 0.001 0.265 0.588
品系Cultivar (C) 15.189** 3.192* 4.712* 13.181** 0.012
施氮量Nitrogen (N) 1.535 17.457** 0.808 0.068 9.859**

Table 3

Effects of differences among japonica rice with different source library types on yield and component factors"

年份
Year
指标
Trait
扬产35003 Yangchan35003 扬产35002 Yangchan35002 扬产35004 Yangchan35004
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
2022 有效穗数
Number of effective panicle (×104·hm-2)
191.15—217.72 203.64 4.07 229.79—257.10 242.36 4.42 182.09—234.05 208.17 8.35
穗粒数
Spikelets per panicle
186.39—222.92 211.85 6.56 188.00—221.38 200.02 7.21 177.63—207.35 189.14 5.43
千粒重
1000-grain weight (g)
26.42—27.07 26.77 0.90 22.91—24.34 23.63 1.84 24.25—25.52 24.95 1.59
结实率
Filled grain rate (%)
80.57—93.78 88.52 4.70 62.56—73.43 69.01 5.22 75.21—87.10 81.68 5.75
产量
Grain yield (t·hm-2)
7.67—10.82 9.71 10.61 6.36—8.57 7.69 9.96 6.60—8.84 7.80 9.37
2023 有效穗数
Number of effective panicle (×104·hm-2)
196.89—221.13 208.08 3.64 234.61—258.77 247.78 3.82 192.01—248.51 219.19 8.56
穗粒数
Spikelets per panicle
190.92—233.55 214.22 6.02 184.66—228.45 205.69 7.23 182.32—204.50 191.47 4.09
千粒重
1000-grain weight (g)
26.63—26.95 26.76 0.58 22.87—24.13 23.55 1.74 24.46—25.33 24.97 1.19
结实率
Filled grain rate (%)
85.48—94.27 89.50 3.44 65.63—76.44 71.26 4.76 80.34—92.10 84.00 5.50
产量
Grain yield (t·hm-2)
8.58—10.97 10.20 7.67 6.75—8.91 8.07 9.56 6.91—9.25 8.10 9.66

Fig. 1

Effects of nitrogen application rate on dry matter accumulation of japonica rice with different source library types"

Table 4

Effects of differences among japonica rice with different source library types on accumulation of dry matter"

年份
Year
指标
Trait
扬产35003 Yangchan35003 扬产35002 Yangchan35002 扬产35004 Yangchan35004
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
2022 抽穗期总干重
Heading total dry matter weight (t·hm-2)
13.25—14.74 13.92 3.15 12.31—14.87 13.62 6.40 10.29—13.42 11.68 9.81
抽穗期茎干重
Heading stem dry matter weight (t·hm-2)
7.83—8.82 8.30 3.98 7.66—8.85 8.15 5.22 6.00—7.71 6.70 9.50
抽穗期叶干重
Heading leaf dry matter weight (t·hm-2)
3.92—4.73 4.20 5.95 3.17—4.42 3.79 10.91 2.88—3.83 3.33 10.38
抽穗期穗干重
Heading panicle dry matter weight (t·hm-2)
1.07—1.72 1.42 16.23 1.07—2.19 1.68 20.44 1.41—1.88 1.66 11.35
成熟期总干重
Mature total dry matter weight (t·hm-2)
21.49—24.22 22.59 4.43 14.89—18.72 16.64 7.69 14.80—18.26 16.90 8.96
成熟期茎干重
Mature stem dry matter weight (t·hm-2)
6.59—7.40 6.99 3.81 4.26—5.42 4.76 8.27 3.68—5.65 4.66 13.82
成熟期叶干重
Mature leaf dry matter weight (t·hm-2)
4.23—5.16 4.73 7.47 3.50—4.81 4.13 11.39 2.88—3.84 3.30 9.48
成熟期穗干重
Mature panicle dry matter weight (t·hm-2)
10.67—11.65 10.87 4.35 7.13—8.49 7.75 6.11 8.24—9.64 8.95 6.86
2023 抽穗期总干重
Heading total dry matter weight (t·hm-2)
13.37—14.73 13.99 2.98 12.26—14.50 13.41 6.55 10.24—13.64 11.73 10.80
抽穗期茎干重
Heading stem dry matter weight (t·hm-2)
7.91—9.06 8.38 4.46 7.69—8.68 8.10 4.70 6.03—7.90 6.77 10.58
抽穗期叶干重
Heading leaf dry matter weight (t·hm-2)
3.92—4.53 4.19 5.53 3.03—4.52 3.78 13.39 2.78—3.88 3.34 11.23
抽穗期穗干重
Heading panicle dry matter weight (t·hm-2)
1.55—1.68 1.42 15.98 0.91—2.21 1.53 29.45 1.31—1.86 1.62 12.80
成熟期总干重
Mature total dry matter weight (t·hm-2)
21.58—24.62 22.90 4.46 14.99—18.67 16.84 7.88 15.00—19.33 17.20 9.14
成熟期茎干重
Mature stem dry matter weight (t·hm-2)
6.66—7.40 7.08 3.80 4.33—5.05 4.82 8.45 3.79—5.65 4.72 14.14
成熟期叶干重
Mature leaf dry matter weight (t·hm-2)
4.28—5.23 4.77 6.88 3.53—4.92 4.15 11.26 2.94—3.96 3.38 10.18
成熟期穗干重
Mature panicle dry matter weight (t·hm-2)
10.64—12.00 11.05 4.31 7.13—8.69 7.87 6.97 8.26—9.72 9.10 6.88

Fig. 2

Effect of nitrogen application on dry matter redistribution in japonica rice with different source library types"

Fig. 3

Effect of nitrogen application on nitrogen accumulation in japonica rice with different source library types"

Table 5

Effects of differences among japonica rice with different source library types on accumulation of nitrogen"

年份
Year
指标
Trait
扬产35003 Yangchan35003 扬产35002 Yangchan35002 扬产35004 Yangchan35004
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
2022 抽穗期总吸氮量
Heading total nitrogen content (kg·hm-2)
112.97—169.55 140.34 13.79 108.54—170.70 139.5 15.56 107.99—166.37 137.40 14.59
抽穗期茎吸氮量
Heading stem nitrogen content (kg·hm-2)
34.38—56.00 45.33 15.97 35.24—60.54 47.08 18.47 32.40-54.76 42.51 18.63
抽穗期叶吸氮量
Heading leaf nitrogen content (kg·hm-2)
62.44—99.85 80.06 16.96 60.32—95.23 75.75 16.20 60.61—93.02 77.48 14.10
抽穗期穗吸氮量
Heading panicle nitrogen content (kg·hm-2)
13.32—16.74 14.95 9.56 9.82—24.10 16.67 28.50 14.98—18.59 17.41 9.21
成熟期总吸氮量
Mature total nitrogen content (kg·hm-2)
147.75—210.81 172.11 12.81 113.02—189.52 150.15 17.88 117.54—171.71 141.67 13.13
成熟期茎吸氮量
Mature stem nitrogen content (kg·hm-2)
18.82—31.42 23.49 17.91 14.32—31.02 23.04 25.80 13.44—26.55 19.51 22.29
成熟期叶吸氮量
Mature leaf nitrogen content (kg·hm-2)
33.23—61.02 45.14 22.06 33.50—60.86 46.78 21.07 26.44—45.18 34.08 18.82
成熟期穗吸氮量
Mature panicle nitrogen content (kg·hm-2)
95.70—118.38 103.49 7.79 65.20—97.64 80.33 14.08 77.65—99.97 88.08 9.02
2023 抽穗期总吸氮量
Heading total nitrogen content (kg·hm-2)
114.40—170.77 138.95 14.66 102.59—164.30 136.57 16.40 110.87—172.42 139.33 15.00
抽穗期茎吸氮量
Heading stem nitrogen content (kg·hm-2)
35.09—56.51 45.55 16.07 34.69—58.75 45.98 18.34 32.91—56.69 42.87 20.04
抽穗期叶吸氮量
Heading leaf nitrogen content (kg·hm-2)
63.13—100.67 78.60 18.27 55.14—96.11 75.77 18.41 63.48—97.67 79.86 13.82
抽穗期穗吸氮量
Heading panicle nitrogen content (kg·hm-2)
12.92—16.74 14.79 10.60 8.35—23.50 14.83 37.75 14.47—18.05 16.60 9.72
成熟期总吸氮量
Mature total nitrogen content (kg·hm-2)
150.41—217.61 176.49 13.52 115.91—193.42 153.69 17.95 119.02—176.15 144.55 13.76
成熟期茎吸氮量
Mature stem nitrogen content (kg·hm-2)
19.17—32.58 24.39 18.45 14.25—32.44 23.12 26.86 13.99—26.97 19.76 22.18
成熟期叶吸氮量
Mature leaf nitrogen content (kg·hm-2)
34.52—62.72 46.12 22.56 34.06—60.29 47.76 20.49 26.84—47.19 35.12 20.03
成熟期穗吸氮量
Mature panicle nitrogen content (kg·hm-2)
96.73—122.31 105.98 8.64 67.60—100.69 82.80 14.12 78.18—101.99 89.67 9.66

Fig. 4

Effect of nitrogen application on nitrogen redistribution in japonica rice with different source library types"

Fig. 5

Effect of nitrogen application on nitrogen transfer in japonica rice with different source library types"

Fig. 6

Effects of nitrogen application on nitrogen transport rate in japonica rice with different source library types"

Fig. 7

Effects of nitrogen application on nitrogen use characteristics in japonica rice with different source library types"

Table 6

Effects of differences among japonica rice with different source library types on nitrogen transfer and use characteristics"

年份
Year
指标
Trait
扬产35003 Yangchan35003 扬产35002 Yangchan35002 扬产35004 Yangchan35004
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
变幅
Range
平均值
Mean
变异系数
CV (%)
2022 总氮素转运量
Total nitrogen transport (kg·hm-2)
44.77—63.42 56.76 13.55 47.74—63.90 53.01 10.70 53.12—76.04 66.40 12.45
茎鞘氮素转运量
Stem nitrogen transport (kg·hm-2)
15.57—25.57 21.84 16.44 20.92—29.53 24.05 11.88 18.22—28.21 23.00 16.37
叶片氮素转运量
Leaf nitrogen transport (kg·hm-2)
29.20—38.83 34.92 13.52 26.82—34.37 28.96 10.65 34.17—47.83 43.40 11.27
氮素转运效率
Nitrogen transportation efficiency (%)
41.02—47.77 45.51 6.85 39.75—48.73 43.62 8.56 52.37—56.84 55.56 3.84
氮素转运贡献率
Nitrogen transportation contribution rate (%)
47.87—61.87 54.80 10.63 62.78—70.94 65.89 5.57 71.29—79.64 75.22 4.67
氮素籽粒生产效率
Nitrogen grain yield production efficiency (kg·kg-1)
52.64—61.81 56.62 7.09 45.32—55.90 51.67 9.09 51.62—58.50 55.29 5.23
氮素干物质生产效率
Nitrogen dry matter production efficiency (kg·kg-1)
115.85—143.12 132.44 9.10 98.63—128.25 112.21 11.30 112.33—125.29 119.91 4.80
收获指数Harvest index (%) 38.05—45.44 42.91 7.73 43.58—47.86 46.14 4.08 44.92—47.44 46.11 2.25
氮素收获指数
Nitrogen harvest index (%)
56.60—63.81 60.43 5.20 51.24—57.26 54.00 4.66 59.15—64.88 62.43 4.06
氮肥偏生产力
Nitrogen partial productivity (kg·kg-1)
34.00—46.06 40.18 13.76 26.63—36.61 31.84 14.05 27.27—37.72 32.34 14.73
2023 总氮素转运量
Total nitrogen transport (kg·hm-2)
44.54—61.87 53.64 13.51 41.53—62.13 50.86 13.28 55.56—80.21 67.85 12.14
茎鞘氮素转运量
Stem nitrogen transport (kg·hm-2)
15.93—25.36 21.16 15.67 20.44—26.31 22.85 9.98 17.73—29.73 23.11 18.65
叶片氮素转运量
Leaf nitrogen transport (kg·hm-2)
28.61—37.94 32.48 14.81 21.09—35.82 28.01 16.38 36.64—50.48 44.74 9.78
氮素转运效率
Nitrogen transportation efficiency (%)
40.57—45.26 43.50 4.97 40.05—46.81 42.18 7.54 52.37—57.24 55.55 4.09
氮素转运贡献率
Nitrogen transportation contribution rate (%)
47.70—52.34 50.50 4.25 59.84—64.52 61.55 3.40 73.44—77.27 75.54 2.23
氮素籽粒生产效率
Nitrogen grain yield production efficiency (kg·kg-1)
51.73—62.07 58.24 7.75 46.23—58.26 53.24 10.07 52.62—58.57 56.30 4.64
氮素干物质生产效率
Nitrogen dry matter production efficiency (kg·kg-1)
113.78—143.15 131.10 9.74 98.29—127.48 111.36 11.39 111.34—125.16 119.67 5.40
收获指数Harvest index (%) 41.96—45.51 44.51 3.84 45.70—49.53 47.87 3.82 46.34—47.84 47.06 1.37
氮素收获指数
Nitrogen harvest index (%)
56.60—63.42 60.37 5.01 52.07—57.70 54.22 4.59 58.73—64.57 62.32 4.24
氮肥偏生产力
Nitrogen partial productivity (kg·kg-1)
34.57—51.08 42.48 16.94 27.65—38.60 33.45 14.56 28.54—39.61 33.55 14.23

Table 7

Correlation coefficients between yield, dry matter, nitrogen accumulation, and nitrogen use efficiency with different source sink types"

品系
Cultivar
指标
Trait
施氮量
Nitrogen application
产量 Grain yield 氮素转
运效率
NTE
氮素转
运贡献率
NTCR
籽粒生
产效率
GYE
干物质
生产效率
NDMPE
收获指数
HI
氮素收
获指数
NHI
氮肥偏
生产力
NPFP
扬产35003
Yangchan35003
施氮量 Nitrogen application 1.000 0.899** -0.673 0.488 -0.556 -0.962** 0.750* -0.992** -0.965**
产量 Grain yield 0.899** 1.000 -0.609 0.400 -0.196 -0.827* 0.954** -0.870** -0.774*
有效穗数
Nitrogen transportation efficiency
0.905** 0.908** -0.847** 0.154 -0.517 -0.946** 0.776* -0.916** -0.780*
穗粒数 Spikelets per panicle 0.811* 0.902** -0.288 0.645 -0.039 -0.674 0.905** -0.749* -0.746*
千粒重 1000-grain weight 0.822* 0.880** -0.265 0.699 -0.024 -0.643 0.877** -0.763* -0.784*
结实率 Filled grain rate -0.583 -0.533 0.388 -0.240 0.291 0.591 -0.522 0.561 0.566
成熟期总干重 Mature total dry matter weight 0.966** 0.789* -0.606 0.546 -0.626 -0.932** 0.629 -0.972** -0.968**
成熟期茎干重
Mature stem dry matter weight
0.950** 0.798* -0.451 0.684 -0.490 -0.851** 0.662 -0.925** -0.982**
成熟期叶干重
Mature leaf dry matter weight
0.978** 0.852** -0.609 0.540 -0.537 -0.912** 0.700 -0.970** -0.972**
成熟期穗干重
Mature panicle dry matter weight
0.831* 0.609 -0.620 0.386 -0.721* -0.875** 0.448 -0.870** -0.821*
成熟期总吸氮量
Mature total nitrogen content
0.956** 0.783* -0.744* 0.374 -0.718* -0.982** 0.602 -0.977** -0.928**
成熟期茎吸氮量
Mature stem nitrogen content
0.928** 0.752* -0.754* 0.323 -0.734* -0.974** 0.575 -0.951** -0.897**
成熟期叶吸氮量
Mature leaf nitrogen content
0.977** 0.817* -0.746* 0.394 -0.697 -0.987** 0.632 -0.993** -0.950**
成熟期穗吸氮量
Mature panicle nitrogen content
0.930** 0.745* -0.724* 0.368 -0.724* -0.964** 0.571 -0.955** -0.904**
扬产35002
Yangchan35002
施氮量 Nitrogen application 1.000 0.904** -0.885** -0.522 -0.954** -0.991** 0.370 -0.964** -0.974**
产量 Grain yield 0.904** 1.000 -0.984** -0.795* -0.742* -0.948** 0.711* -0.940** -0.797*
有效穗数
Nitrogen transportation efficiency
-0.595 -0.237 0.174 -0.295 0.751* 0.502 0.356 0.432 0.723*
穗粒数 Spikelets per panicle 0.970** 0.914** -0.876** -0.600 -0.895** -0.964** 0.436 -0.907** -0.914**
千粒重 1000-grain weight 0.987** 0.882** -0.874** -0.475 -0.956** -0.979** 0.333 -0.977** -0.973**
结实率 Filled grain rate 0.852** 0.941** -0.900** -0.748* -0.674 -0.893** 0.734* -0.847** -0.752*
成熟期总干重
Mature total dry matter weight
0.983** 0.874** -0.870** -0.493 -0.956** -0.970** 0.306 -0.962** -0.962**
成熟期茎干重
Mature stem dry matter weight
0.955** 0.786* -0.784* -0.404 -0.980** -0.917** 0.131 -0.892** -0.949**
成熟期叶干重
Mature leaf dry matter weight
0.993** 0.870** -0.855** -0.484 -0.973** -0.972** 0.283 -0.945** -0.972**
成熟期穗干重
Mature panicle dry matter weight
0.934** 0.893** -0.901** -0.543 -0.858** -0.948** 0.454 -0.974** -0.900**
成熟期总吸氮量 Mature total nitrogen content 0.995** 0.884** -0.872** -0.491 -0.962** -0.982** 0.327 -0.964** -0.976**
成熟期茎吸氮量
Mature stem nitrogen content
0.994** 0.906** -0.899** -0.547 -0.950** -0.986** 0.361 -0.969** -0.960**
成熟期叶吸氮量
Mature leaf nitrogen content
0.994** 0.890** -0.868** -0.487 -0.954** -0.983** 0.348 -0.962** -0.974**
成熟期穗吸氮量
Mature panicle nitrogen content
0.992** 0.863** -0.856** -0.462 -0.970** -0.974** 0.290 -0.959** -0.980**
扬产35004
Yangchan35004
施氮量 Nitrogen application 1.000 0.956** -0.880** 0.761* -0.844** -0.965** 0.296 -0.968** -0.980**
产量 Grain yield 0.956** 1.000 -0.816* 0.728* -0.681 -0.905** 0.532 -0.906** -0.898**
有效穗数
Nitrogen transportation efficiency
0.912** 0.937** -0.766* 0.797* -0.695 -0.894** 0.480 -0.887** -0.855**
穗粒数 Spikelets per panicle 0.889** 0.842** -0.950** 0.493 -0.872** -0.930** 0.153 -0.938** -0.820*
千粒重 1000-grain weight 0.941** 0.962** -0.751* 0.717* -0.643 -0.844** 0.469 -0.848** -0.915**
结实率 Filled grain rate -0.663 -0.488 0.861** -0.187 0.931** 0.773* 0.335 0.763* 0.667
成熟期总干重
Mature total dry matter weight
0.987** 0.935** -0.866** 0.730* -0.828* -0.938** 0.267 -0.946** -0.978**
成熟期茎干重
Mature stem dry matter weight
0.974** 0.941** -0.892** 0.657 -0.817* -0.932** 0.277 -0.944** -0.944**
成熟期叶干重
Mature leaf dry matter weight
0.975** 0.888** -0.933** 0.655 -0.912** -0.971** 0.155 -0.976** -0.961**
成熟期穗干重
Mature panicle dry matter weight
0.963** 0.910** -0.751* 0.829* -0.751* -0.880** 0.306 -0.884** -0.981**
成熟期总吸氮量
Mature total nitrogen content
0.989** 0.920** -0.918** 0.704 -0.890** -0.972** 0.205 -0.980** -0.971**
成熟期茎吸氮量
Mature stem nitrogen content
0.986** 0.916** -0.938** 0.686 -0.912** -0.986** 0.189 -0.991** -0.961**
成熟期叶吸氮量
Mature leaf nitrogen content
0.975** 0.897** -0.946** 0.652 -0.913** -0.979** 0.170 -0.986** -0.950**
成熟期穗吸氮量
Mature panicle nitrogen content
0.991** 0.929** -0.874** 0.745* -0.851** -0.949** 0.239 -0.958** -0.982**
[1]
赵灿, 刘光明, 戴其根, 许轲, 高辉, 霍中洋. 氮肥对水稻产量、品质和氮利用效率的影响研究进展. 中国稻米, 2022, 28(1): 48-52, 57.

doi: 10.3969/j.issn.1006-8082.2022.01.010
ZHAO C, LIU G M, DAI Q G, XU K, GAO H, HUO Z Y. Research progress on the effects of nitrogen fertilizer on rice yield, quality and nitrogen use efficiency. China Rice, 2022, 28(1): 48-52, 57. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2022.01.010
[2]
PENG S B, BURESH R J, HUANG J L, ZHONG X H, ZOU Y B, YANG J C, WANG G H, LIU Y Y, HU R F, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A. Improving nitrogen fertilization in rice by sitespecific N management: A review. Agronomy for Sustainable Development, 2010, 30(3): 649-656.
[3]
蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望. 生命科学, 2018, 30(10): 1060-1071.
JIANG Z M, WANG W, CHU C C. Towards understanding of nitrogen use efficiency in plants. Chinese Bulletin of Life Sciences, 2018, 30(10): 1060-1071. (in Chinese)
[4]
闫聪硕, 杨莉莉, 周奇, 陈林, 支金虎. 我国水稻不同产区施氮量与产量分析比较. 农业科技与装备, 2023(1): 17-19, 22.
YAN C S, YANG L L, ZHOU Q, CHEN L, ZHI J H. Analysis and comparison of nitrogen application rate and yield in different rice production areas in China. Agricultural Science&Technology and Equipment, 2023(1): 17-19, 22. (in Chinese)
[5]
阮新民, 从夕汉, 施伏芝, 罗志祥. 氮素高效利用水稻新品种筛选与评价. 上海农业学报, 2020, 36(5): 7-11.
RUAN X M, CONG X H, SHI F Z, LUO Z X. Screening and evaluation of rice cultivars with high nitrogen use efficiency. Acta Agriculturae Sinica of Shanghai, 2020, 36(5): 7-11. (in Chinese)
[6]
魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34(1): 119-125.
WEI H Y, ZHANG H C, HANG J, DAI Q G, HUO Z Y, XU K, ZHANG S F, MA Q, ZHANG Q, ZHANG J. Characteristics of N accumulation and translocation in rice geno-types with different N use efficiencies. Acta Agronomica Sinica, 2008, 34(1): 119-125. (in Chinese)
[7]
孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40(9): 1639-1649.
SUN Y J, SUN Y Y, XU H, LI Y, YAN F J, JIANG M J, MA J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agronomica Sinica, 2014, 40(9): 1639-1649. (in Chinese)
[8]
陈天祥, 杨顺瑛, 苏彦华. 基于高氮投入和基因型差异的水稻氮素营养特征. 土壤, 2023, 55(5): 954-963.
CHEN T X, YANG S Y, SU Y H. Characteristics of nitrogen nutrition in rice based on high nitrogen input and genotype differences. Soils, 2023, 55(5): 954-963. (in Chinese)
[9]
龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻氮素吸收利用与转运差异研究. 植物营养与肥料学报, 2014, 20(4): 796-810.
GONG J L, XING Z P, HU Y J, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H. Differences of nitrogen uptake, utilization and translocation between indica and Japonica super rice. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 796-810. (in Chinese)
[10]
单玉华, 王余龙, 山本由德, 黄建晔, 董桂春, 杨连新, 张传胜, 居静. 常规籼稻与杂交籼稻氮素利用效率的差异. 江苏农业研究, 2001(1): 12-15.
SHAN Y H, WANG Y L, YAMAMOTO Y D, HUANG J Y, DONG G C, YANG L X, ZHANG C S, JU J. Genotypic differences of nitrogen use efficiency in various types of Indica rice (Oryza sativa L.), 2001(1): 12-15. (in Chinese)
[11]
李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25(5): 1057-1063, 1056.
LI M, ZHANG H C, LI G Y, WEI H Y, YIN C Y, MA Q, YANG X. Genotypic difference of nitrogen use efficiency in rice its morphological and physiological mechanisms. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 1057-1063, 1056. (in Chinese)

doi: 10.11869/hnxb.2011.05.1057
[12]
PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12(1): 3-8.
[13]
王振洋, 王冀川, 郭子扬, 袁杰, 张凯雨, 王奉斌, 康德锐. 施氮量与栽插密度对南疆水稻氮素利用率及产量的影响. 华中农业大学学报, 2023, 42(5): 72-81.
WANG Z Y, WANG J C, GUO Z Y, YUAN J, ZHANG K Y, WANG F B, KANG D R. Effects of nitrogen application rate and planting density on nitrogen use efficiency and yield of rice in Southern Xinjiang. Journal of Huazhong Agricultural University, 2023, 42(5): 72-81. (in Chinese)
[14]
从夕汉, 施伏芝, 阮新民, 罗玉祥, 王元垒, 许有尊, 罗志祥. 施氮量对不同品种水稻氮素利用及碳氮代谢关键酶的影响. 河南农业大学学报, 2019, 53(3): 325-330.
CONG X H, SHI F Z, RUAN X M, LUO Y X, WANG Y L, XU Y Z, LUO Z X. Effects of nitrogen application rate on nitrogen use efficiency and key enzymes for carbon and nitrogen metabolism in different rice varieties. Journal of Henan Agricultural University, 2019, 53(3): 325-330. (in Chinese)
[15]
王艳, 易军, 高继平, 张丽娜, 杨继芬, 赵艳泽, 辛威, 甄晓溪, 张文忠. 不同叶龄蘖、 穗氮肥组合对粳稻产量及氮素利用的影响. 作物学报, 2020, 46(1): 102-116.
WANG Y, YI J, GAO J P, ZHANG L N, YANG J F, ZHAO Y Z, XIN W, ZHEN X X, ZHANG W Z. Effects of precision leaf age fertilization on yield and nitrogen utilization of Japonica rice. Acta Agronomica Sinica, 2020, 46(1): 102-116. (in Chinese)
[16]
易秉怀, 袁帅, 苏雨婷, 覃诗棋, 陈平平, 易镇邪. 氮肥运筹对湘南双季稻氮素吸收转运与利用及产量的影响. 杂交水稻, 2023, 38(1): 112-121.
YI B H, YUAN S, SU Y T, QIN S Q, CHEN P P, YI Z X. E ffects of nitrogen management on uptake, transport and utilization of nitrogen and yield of double-cropping rice in southern Hunan. Hybrid Rice, 2023, 38(1): 112-121. (in Chinese)
[17]
董立强, 杨铁鑫, 李睿, 商文奇, 马亮, 李跃东, 隋国民. 株行距配置对超高产田水稻产量及根系形态生理特性的影响. 中国水稻科学, 2023, 37(4): 392-404.

doi: 10.16819/j.1001-7216.2023.221007
DONG L Q, YANG T X, LI R, SHANG W Q, MA L, LI Y D, SUI G M. Effect of plant-row spacing on rice yield and root morphological and physiological characteristics in super high yield field. Chinese Journal of Rice Science, 2023, 37(4): 392-404. (in Chinese)

doi: 10.16819/j.1001-7216.2023.221007
[18]
殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. 中国农业科学, 2010, 43(1): 39-50. doi: 10.3864/j.issn.0578-1752.2010.01.005.
YIN C Y, ZHANG Q, WEI H Y, ZHANG H C, DAI Q G, HUO Z Y, XU K, MA Q, HANG J, ZHANG S F. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Scientia Agricultura Sinica, 2010, 43(1): 39-50. doi: 10.3864/j.issn.0578-1752.2010.01.005. (in Chinese)
[19]
张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45(2): 267-273.
ZHANG Y L, FAN J B, DUAN Y H, WANG D S, YE L T, SHEN Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedologica Sinica, 2008, 45(2): 267-273. (in Chinese)
[20]
张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. 中国农业科学, 2010, 43(13): 2645-2660. doi: 10.3864/j.issn.0578-1752.2010.13.004.
ZHANG H C, WU G C, WU W G, DAI Q G, HUO Z Y, XU K, GAO H, WEI H Y, HUANG X F, GONG J L. The SOI model of quantitative cultivation of super-high yielding rice. Scientia Agricultura Sinica, 2010, 43(13): 2645-2660. doi: 10.3864/j.issn.0578-1752.2010.13.004. (in Chinese)
[21]
凌启鸿, 张洪程, 戴其根, 丁艳锋, 凌励, 苏祖芳, 徐茂, 阙金华, 王绍华. 水稻精确定量施氮研究. 中国农业科学, 2005, 38(12): 2457-2467.
LING Q H, ZHANG H C, DAI Q G, DING Y F, LING L, SU Z F, XU M, QUE J H, WANG S H. Study on precise and quantitative N application in rice. Scientia Agricultura Sinica, 2005, 38(12): 2457-2467. (in Chinese)

doi: 10.3864/j.issn.0578-1752.as-2003-2033
[22]
PENG S B, BURESH R J, HUANG J L, YANG J C, ZOU Y B, ZHONG X H, WANG G H, ZHANG F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006, 96(1): 37-47.
[23]
王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响. 作物学报, 2024, 50(3): 756-770.

doi: 10.3724/SP.J.1006.2024.32013
WANG L, WU Y H, QIN Y H, DAN Y B, CHEN H, HAO X S, TIAN X H. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice. Acta Agronomica Sinica, 2024, 50(3): 756-770. (in Chinese)

doi: 10.3724/SP.J.1006.2024.32013
[24]
刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54(7): 1397-1409. doi: 10.3864/j.issn.0578-1752.2021.07.007.
LIU Q Y, ZHOU L, TIAN J Y, CHENG S, TAO Y, XING Z P, LIU G D, WEI H Y, ZHANG H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe Japonica rice in the middle and lower reaches of Yangtze River. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409. doi: 10.3864/j.issn.0578-1752.2021.07.007. (in Chinese)
[25]
王云. 籽粒氮素浓度不同的水稻品种产量、氮素利用效率和稻米品质差异研究[D]. 武汉: 华中农业大学, 2022.
WANG Y. Study on Differences in yield, nitrogen use efficiency and rice quality among rice varieties with different grain nitrogen concentration[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[26]
黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47(11): 2232-2249.

doi: 10.3724/SP.J.1006.2021.02086
HUANG H, JIANG H X, LIU G M, YUAN J Q, WANG Y, ZHAO C, WANG W L, HUO Z Y, XU K, DAI Q G, ZHANG H C, LI D J, LIU G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agronomica Sinica, 2021, 47(11): 2232-2249. (in Chinese)

doi: 10.3724/SP.J.1006.2021.02086
[27]
程建峰, 戴廷波, 曹卫星, 姜东, 潘晓云. 不同氮收获指数水稻基因型的氮代谢特征. 作物学报, 2007, 33(3): 497-502.
CHENG J F, DAI T B, CAO W X, JIANG D, PAN X Y. Nitrogen metabolic characteristics in rice genotypes with different nitrogen harvest index(NHI). Acta Agronomica Sinica, 2007, 33(3): 497-502. (in Chinese)
[28]
李燕, 王俊敏, 赵向前, 施俊生, 王仁杯. 不同氮肥水平对籼粳杂交稻产量和品质的影响. 浙江农业科学, 2023, 64(7): 1672-1675.

doi: 10.16178/j.issn.0528-9017.20220746
LI Y, WANG J M, ZHAO X Q, SHI J S, WANG H B. Effects of different nitrogen fertilizer levels on the yield and quality of indica-Japonica hybrid rice. Journal of Zhejiang Agricultural Sciences, 2023, 64(7): 1672-1675. (in Chinese)
[29]
王彤, 阙补超, 夏明, 郑英杰, 于亚辉, 王莹, 李林蔚, 陈广红, 王绍林. 水稻产量和品质的研究进展. 北方水稻, 2017, 47(2): 51-55.
WANG T, QUE B C, XIA M, ZHENG Y J, YU Y H, WANG Y, LI L W, CHEN G H, WANG S L. Research progress of rice yield and quality. North Rice, 2017, 47(2): 51-55. (in Chinese)
[30]
方文英, 陈佳麒, 楚岱蔚, 丁梦佳, 姚平, 金益民, 罗天子, 沈兴连, 莫红华, 黄玉英, 郑孝孝, 朱德峰. 抽穗开花期高温对杂交稻结实率和产量影响研究. 浙江农业科学, 2025, 66(1): 30-34.

doi: 10.16178/j.issn.0528-9017.20231024
FANG W Y, CHEN J Q, CHU D W, DING M J, YAO P, JIN Y M, LUO T Z, SHEN X L, MO H H, HUANG Y Y, ZHENG X X, ZHU D F. Effects of high temperature during the period of heading and flowering on setting rate and yield of hybrid rice. Journal of Zhejiang Agricultural Sciences, 2025, 66(1): 30-34. (in Chinese)

doi: 10.16178/j.issn.0528-9017.20231024
[31]
任维晨, 常庆霞, 张亚军, 朱宽宇, 王志琴, 杨建昌. 不同氮利用率粳稻品种的碳氮积累与转运特征及其生理机制. 中国水稻科学, 2022, 36(6): 586-600.

doi: 10.16819/j.1001-7216.2022.211203
REN W C, CHANG Q X, ZHANG Y J, ZHU K Y, WANG Z Q, YANG J C. Characteristics and physiological mechanisms of carbon and nitrogen accumulation and translocation in japonica rice varieties differing in nitrogen use efficiency. Chinese Journal of Rice Science, 2022, 36(6): 586-600. (in Chinese)
[32]
高波. 源库关系改变影响水稻产量和品质的FACE(Free air CO2 enrichment)研究[D]. 扬州: 扬州大学, 2022.
GAO B. Alterations in source-sink relations affect rice yield and quality: A free-air CO2 enrichment study[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
[33]
李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 水稻高产氮高效型品种的物质积累与转运特性. 作物学报, 2013, 39(1): 101-109.
LI M, ZHANG H C, YANG X, GE M J, MA Q, WEI H Y, DAI Q G, HUO Z Y, XU K. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency. Acta Agronomica Sinica, 2013, 39(1): 101-109. (in Chinese)
[34]
黄丽芬, 董芙蓉, 霍中洋, 全晓艳, 魏海燕, 戴其根, 许钶, 张洪程. 氮素水平对不同氮效率基因型水稻的物质生产与分配的影响. 核农学报, 2012, 26(9): 1290-1297.

doi: 10.11869/hnxb.2012.09.1290
HUANG L F, DONG F R, HUO Z Y, QUAN X Y, WEI H Y, DAI Q G, XU K, ZHANG H C. Effects of nitrogen levels on dry matter accumulation and distribution in rice genotype with different nitrogen use efficiencies. Journal of Nuclear Agricultural Sciences, 2012, 26(9): 1290-1297. (in Chinese)
[35]
戢林. 氮高效利用基因型水稻(Oryza sativa)氮素吸收分配特性研究[D]. 雅安: 四川农业大学, 2013.
JI L. Nitrogen absorption and distribution characteristics of rice genotype (Oryza sativa) with high nitrogen utilization efficiency[D]. Yaan: Sichuan Agricultural University, 2013. (in Chinese)
[36]
ANSARI T H, YAMAMOTO Y, YOSHIDA T, MIYAZAKI A, WANG Y L. Cultivar differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinants of the spikelet number per panicle in relation to dry matter production and nitrogen absorption. Soil Science and Plant Nutrition, 2003, 49(3): 433-444.
[37]
YOSHIDA H, HORIE T, SHIRAIWA T. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Research, 2006, 97(2/3): 337-343.
[38]
汪秀志, 刘崇文, 许谊强, 吕艳东, 刘丽华, 郑桂萍, 钱永德. 肥密互作对寒地水稻源库关系的影响. 湖南农业大学学报(自然科学版), 2013, 39(1): 17-22.
WANG X Z, LIU C W, XU Y Q, Y D, LIU L H, ZHENG G P, QIAN Y D. Interactive effects of fertilizer and density on source and sink of rice in cold area. Journal of Hunan Agricultural University (Natural Sciences), 2013, 39(1): 17-22. (in Chinese)
[39]
周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点. 作物学报, 2022, 48(9): 2285-2299.

doi: 10.3724/SP.J.1006.2022.12070
ZHOU Q, YUAN R, ZHU K Y, WANG Z Q, YANG J C. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates. Acta Agronomica Sinica, 2022, 48(9): 2285-2299. (in Chinese)

doi: 10.3724/SP.J.1006.2022.12070
[40]
陈天祥, 杨顺瑛, 王书伟, 苏彦华. 水稻氮素利用效率的基因型差异与调控途径. 土壤, 2022, 54(5): 873-881.
CHEN T X, YANG S Y, WANG S W, SU Y H. Genotypic differences and regulatory strategies of nitrogen use efficiency in rice. Soil Science, 2022, 54(5): 873-881. (in Chinese)
[41]
王艳, 米国华, 陈范骏, 张福锁. 玉米自交系氮效率基因型差异的比较研究. 应用与环境生物学报, 2002(4): 361-365.
WANG Y, MI G H, CHEN F J, ZHANG F S. Genotypic difference in nitrogen efficiency of five maize inbred lines as affected by nitrate levels. Chinese Journal of Applied&Environmental Biology, 2002(4): 361-365. (in Chinese)
[42]
马畅, 李旭, 吕小红, 王宇, 付立冬, 任海, 隋鑫, 杜萌, 李振宇, 于亚辉. 盐粳系列水稻氮肥效率差异及氮高效品种筛选. 江苏农业科学, 2022, 50(13): 32-38.
MA C, LI X, X H, WANG Y, FU L D, REN H, SUI X, DU M, LI Z Y, YU Y H. Difference in nitrogen fertilizer efficiency of salt and japonica series rice and screening of nitrogen-efficient varieties. Jiangsu Agricultural Sciences, 2022, 50(13): 32-38. (in Chinese)
[43]
朱兆良. 农田中氮肥的损失与对策. 土壤与环境, 2000, (1): 1-6.
ZHU Z L. Loss of fertilizer N from plant-soil system and the strategies and techniques for its reduction. Soil and Environment, 2000, (1): 1-6. (in Chinese)
[44]
朱兆良. 中国土壤氮素研究. 土壤学报, 2008(5): 778-783.
ZHU Z L. Study on soil nitrogen in China. Acta Pedologica Sinica, 2008(5): 778-783. (in Chinese)
[45]
JU C X, BURESH R J, WANG Z Q, ZHANG H, LIU L J, YANG J C, ZHANG J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015, 175: 47-55.
[46]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

doi: 10.1126/science.1182570 pmid: 20150447
[47]
宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响. 作物学报, 2024, 50(8): 2025-2038.

doi: 10.3724/SP.J.1006.2024.32061
SONG Z W, ZHAO L, BI J G, TANG Q Y, WANG G D, LI Y X. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation. Acta Agronomica Sinica, 2024, 50(8): 2025-2038. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] WANG Zhao, ZHANG Bing, DONG SiQi, HU YuXi, QI ShuYu, FENG GuoZhong, GAO Qiang, ZHOU Xue. Effects of Long-Term Nitrogen Fertilizer Application on the Rhizosphere Microbial Community Structure and Function in Black Soil and Sandy Soil [J]. Scientia Agricultura Sinica, 2025, 58(3): 520-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!