Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 1917-1933.doi: 10.3864/j.issn.0578-1752.2025.10.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Phosphorus Fertilizer Application Rates on Photosynthetic Characteristics, Yield and Water Use Efficiency of Broad Bean Mulched in Alpine Region

XU QiuYun1(), ZHOU WeiDi1, HAN ChengLong2, GU YanJie1()   

  1. 1 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016
    2 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016
  • Received:2024-11-01 Accepted:2025-03-31 Online:2025-05-16 Published:2025-05-21
  • Contact: GU YanJie

Abstract:

【Objective】 To investigate the effects of different mulching methods and phosphorus (P) fertilizer application levels on the photosynthetic characteristics, yield, and water use efficiency of broad bean, so as to provide data support for the selection of broad bean planting modes and soil nutrient management practices in alpine regions. 【Method】 Used spring broad bean 'Qinghai No.13' as experimental material, a field experiment was conducted to investigate the effects of different mulching methods and P fertilizer application levels on soil hydrothermal conditions, the photosynthetic characteristics of broad bean, yield, and water use efficiency in the eastern of Qinghai Province from 2020 to 2023. For plot setup, the random block design was used, and three mulching methods were set up, i.e. double ridges and furrows mulch (DRM), and three ridges and furrows mulch (TRM), and no mulch (NMF), with three P fertilizer application levels (P0, no fertilizer; P1, 9.10 kg P·hm-2; P2, 18.2 kg P·hm-2). 【Result】 (1) Compared with NMF, DRM and TRM treatments increased the daily mean soil temperature within the 10 cm soil layer by 16.1% to 20.5% and 16.7% to 23.0%, respectively, and also increased soil water content and storage in the 0-2 m soil layer of broad bean growing season. (2) Compared with NMF, DRM and TRM treatments decreased the leaf transpiration rate, stomatal conductance, intercellular CO2 concentration, net photosynthesis rate and leaf area index during the flowering and podding periods, and deceased grain yield, aboveground biomass, and water use efficiency of broad bean too. The highest mean annual grain yield was 2 273 kg·hm-2 under NMF treatment, followed by 1 030 kg·hm-2 under TRM and 943 kg·hm-2 under DRM. (3) P fertilizer application enhanced the net photosynthetic rate, transpiration rate, intercellular CO2 concentration, stomatal conductance, and leaf area index in the flowering and podding periods of broad bean under NMF and DRM treatments, but the trends under TRM treatment were reversed. (4) The correlation analysis indicated that the grain yield, aboveground biomass, and water use efficiency were significantly positive correlated with the net photosynthetic rate, transpiration rate, intercellular CO2 concentration, stomatal conductance, and leaf area index, and were significantly negative correlated with the daily mean soil temperature of the growing seasons. 【Conclusion】 Ridge-furrow plastic film mulching treatments (DRM and TRM) inhibited the growth of broad bean in later growth stages, slowed down the growth rate of leaf area index, reduced photosynthesis, which resulted in the decreased grain yield, aboveground biomass, and water use efficiency. Under the conditions of this experiment, no mulch with flat planting combined with 18.2 kg P·hm-2 phosphorus fertilizer significantly enhanced photosynthetic area and photosynthesis, thus increase the grain yield and water use efficiency of broad bean, which could be used as an effective practice to increase broad bean productivity in alpine region.

Key words: broad bean, film mulching, phosphorus levels, photosynthesis, yield

Fig. 1

Monthly mean precipitation and air temperature from 2020 to 2023 at the experimental site"

Fig. 2

Schematic diagram of experimental processing"

Table 1

Mean soil temperature in 10 cm soil layer of broad bean at flowering and podding, and growth periods under different mulching methods and phosphorus application levels from 2021 to 2023"

覆膜方式
Mulching treatment
磷水平
Phosphate level
开花结荚期土壤平均温度
Mean soil temperature during flowering and podding period (℃)
生育期土壤平均温度
Mean soil temperature during the growth period (℃)
2021 2022 2023 2021 2022 2023
平作不覆膜
No film mulching with flat planting (NMF)
P0 20.09±0.38aB 17.90±1.68aB 18.05±1.23aB 16.63±0.67aB 16.91±1.33aB 15.92±1.06aB
P1 20.31±0.82aB 18.47±0.43aB 18.40±0.94aB 16.92±0.00aB 17.27±0.51aC 16.20±0.60aB
P2 22.08±1.72aA 18.50±0.74aA 19.29±1.26aB 16.99±0.05aB 17.31±0.47aB 16.63±0.72aB
全膜双垄沟播
Double ridges and furrows mulched with one plastic film (DRM)
P0 23.03±0.72aAB 20.74±2.20aAB 22.39±0.42aA 19.66±0.77aA 20.48±1.18aA 19.45±0.17aA
P1 23.08±1.25aA 20.82±1.02aA 22.82±1.41aA 19.63±0.57aA 20.59±0.27aB 19.93±0.87aA
P2 22.32±0.86aA 21.15±2.63aA 21.75±0.59aA 19.34±0.16aA 19.95±0.63aA 19.35±0.53aA
三垄全覆膜沟播
Three ridges and furrows mulched with one plastic film (TRM)
P0 21.90±1.91aB 22.29±0.75aB 23.06±0.16aA 19.43±0.78aA 21.48±0.33aA 20.27±0.16aA
P1 23.70±0.55aA 22.05±0.34aA 22.25±0.68aA 19.97±0.03aA 21.27±0.05aA 19.64±0.62aA
P2 23.66±2.72aA 21.15±0.54aA 22.30±0.73aA 19.56±0.64aA 20.58±0.09bA 19.54±0.27aA
方差分析 Analysis of variance
覆膜方式Mulching treatment (M) *** ***
磷水平Phosphate level (P) ns ns
年份Year (Y) *** ***
M×P ns ns
M×Y ns ns
P×Y ns ns
M×P×Y ns ns

Fig. 3

Soil water content in the 0-2 m soil layer before sowing under different mulching methods and phosphorus application levels in 2021-2023 NMF-P0:平作不覆膜不施磷肥 No film mulching with flat planting and no P fertilizer applied;NMF-P1:平作不覆膜施9.1 kg P·hm-2磷肥 No film mulching with flat planting and 9.1 kg P·hm-2 applied;NMF-P2:平作不覆膜施18.2 kg P·hm-2磷肥No film mulching with flat planting and 18.2 kg P·hm-2 applied;DRM-P0:全膜双垄沟播不施磷肥 Double ridges and furrows mulched with one plastic film and no P fertilizer applied;DRM-P1:全膜双垄沟播施9.1 kg P·hm-2磷肥 Double ridges and furrows mulched with one plastic film and 9.1 kg P·hm-2 applied;DRM-P2:全膜双垄沟播施18.2 kg P·hm-2磷肥 Double ridges and furrows mulched with one plastic film and 18.2 kg P·hm-2 applied;TRM-P0:三垄全覆膜沟播不施磷肥 Three ridges and furrows mulched with one plastic film and no P fertilizer applied;TRM-P1:三垄全覆膜沟播施9.1 kg P·hm-2磷肥 Three ridges and furrows mulched with one plastic film and 9.1 kg P·hm-2 applied;TRM-P2:三垄全覆膜沟播施18.2 kg P·hm-2磷肥 Three ridges and furrows mulched with one plastic film and 18.2 kg P·hm-2 applied。下同 The same as below"

Fig. 4

Soil water storage in 0-2 m soil layer before sowing and after harvest under different mulching methods and phosphorus application levels in 2021-2023"

Fig. 5

Leaf area index of broad bean seedling, bud branching, and flowering and podding periods under different mulching methods and phosphorus application levels from 2021 to 2023"

Fig. 6

Photosynthetic characteristics parameters of broad bean at flowering and podding period under different mulching methods and phosphorus application levels from 2021 to 2023"

Table 2

Grain yield and aboveground biomass under different mulching methods and phosphorus application levels"

覆膜方式
Mulching treatment
磷水平
Phosphate level
籽粒产量 Grain yield (kg·hm-2) 地上生物量 Above-ground biomass (kg·hm-2)
2020 2021 2022 2023 2020 2021 2022 2023
平作不覆膜
No film mulching with flat planting (NMF)
P0 4544±10aA 1549±108aA 1035±7bA 740±256aA 8037±230aA 3278±24bA 2132±90aA 1259±127abA
P1 4778±2118aA 1790±681aA 980±245bA 784±180aA 8860±1305aA 3826±615abA 2105±838aA 1203±38bA
P2 6224±130aA 2487±436aA 1471±100aA 889±121aA 9209±533aA 4650±392aA 2153±238aA 1396±53aA
全膜双垄沟播
Double ridges and furrows mulched with one plastic film (DRM)
P0 1492±87cC 963±137bC 224±30cC 198±8bB 2977±293bC 1832±262aC 1091±493aB 357±45bC
P1 1899±28bB 1009±174bA 347±9bB 223±47bB 3259±202bB 1874±349aB 1176±100aA 552±201abB
P2 2622±46aB 1349±173aB 487±45aB 500±87aB 4192±224aB 2420±238aB 1262±168aB 843±169aB
三垄全覆膜沟播
Three ridges and furrows mulched with one plastic film (TRM)
P0 2628±54aB 1331±50aB 470±66aB 308±34aB 4424±211aB 2362±260aB 1193±130aB 567±61aB
P1 2327±59bB 1207±9bA 478±16aB 290±77aB 4388±45aB 2279±201aB 1167±91aA 536±107aB
P2 1713±63cC 967±8cB 399±39aB 247±15aC 4019±381aB 1819±71bC 1034±40aB 488±65aC
方差分析Analysis of variance
覆膜方式Mulching treatment (M) *** ***
磷水平Phosphate level (P) ** **
年份Year (Y) *** ***
覆膜方式×磷水平M×P *** ***
覆膜方式×年份M×Y *** ***
磷水平×年份P×Y ns ns
覆膜方式×磷水平×年份M×P×Y ns ns

Table 3

Water consumption and water use efficiency under different lamination methods and phosphorus application levels"

覆膜方式
Mulching treatment
磷水平
Phosphate level
耗水量 Water consumption (mm) 水分利用效率 Water use efficiency (kg·hm-2·mm-1)
2020 2021 2022 2023 2020 2021 2022 2023
平作不覆膜
No film mulching with flat planting (NMF)
P0 471.48±16.84bA 316.53±6.34bB 385.90±2.00cA 321.06±5.00bA 9.48±0.18bA 4.89±0.24cA 2.68±0.03bA 1.97±0.55aA
P1 473.79±10.03bA 345.18±5.00aA 399.17±2.00bA 326.60±1.17bA 12.40±2.50aA 6.25±0.41bA 2.77±0.30bA 2.4±0.55aA
P2 502.41±11.59aA 350.71±6.07aA 412.86±3.00aA 339.70±3.75aA 12.67±0.28aA 7.73±0.76aA 3.56±0.27aA 2.62±0.39aA
全膜双垄沟播
Double ridges and furrows mulched with one plastic film (DRM)
P0 389.05±3.32bC 320.17±8.19bB 363.87±3.00cC 274.90±0.80bC 3.83±0.21cC 3.02±0.51bC 0.61±0.08cC 0.72±0.03bB
P1 393.84±4.07bB 329.54±10.00abA 372.85±3.00bC 291.43±2.70aB 4.82±0.02bB 3.32±0.16abB 0.93±0.03bB 0.85±0.08bB
P2 403.45±4.25aB 339.58±7.28aAB 381.00±2.00aB 288.81±5.53aB 6.50±0.16aB 3.97±0.43aB 1.28±0.11aB 1.38±0.08aB
三垄全覆膜沟播
Three ridges and furrows mulched with one plastic film (TRM)
P0 408.91±1.17aB 339.34±5.39aA 378.45±3.03aB 302.82±5.00aB 6.43±0.14aB 3.92±0.19aB 1.33±0.10aB 1.02±0.11aB
P1 402.92±4.00bB 337.56±10.83aA 378.18±1.07aB 296.87±4.41aB 5.78±0.18bB 3.58±0.09bB 1.26±0.04aB 0.98±0.25aB
P2 372.78±2.32cC 331.90±2.19aB 363.87±2.96bC 283.80±0.25bB 4.54±0.08cC 2.91±0.02cC 1.04±0.06bB 0.87±0.05aC
方差分析
Analysis of variance
覆膜方式
Mulching treatment (M)
*** ***
磷水平
Phosphate level (P)
*** ***
年份Year (Y) *** ***
覆膜方式×磷水平M×P *** ***
覆膜方式×年份M×Y *** ***
磷水平×年份P×Y * *
覆膜方式×磷水平×年份
M×P×Y
** ***

Table 4

The effect of different phosphorus application levels on the phosphorus fertilizer utilization rate during the flowering and podding period of covered broad beans"

覆膜方式 Mulching treatment 磷水平 Phosphate level 2021 2022 2023
平作不覆膜
No film mulching with flat planting (NMF)
P0
P1 9.96±2.68 4.30±1.20 4.18±1.43
P2 7.98±2.90 1.91±0.66 2.12±0.57
全膜双垄沟播
Double ridges and furrows mulched with one plastic film (DRM)
P0
P1 7.37±1.87 3.66±1.17 1.61±0.68
P2 8.29±0.85 2.88±0.93 1.47±0.40
三垄全覆膜沟播
Three ridges and furrows mulched with one plastic film (TRM)
P0
P1 -4.08±0.62 -2.37±0.16 -1.87±0.32
P2 -4.65±0.96 -1.17±0.59 -1.20±0.39

Fig. 7

Correlation analysis of grain yield and water use efficiency with photosynthetic characteristics parameters"

[1]
ZHANG X D, YANG L C, XUE X K, KAMRAN M, AHMAD I, DONG Z Y, LIU T N, JIA Z K, ZHANG P, HAN Q F. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Research, 2019, 233: 101-113.
[2]
ETEMADI F, HASHEMI M, BARKER A V, ZANDVAKILI O R, LIU X B. Agronomy, nutritional value, and medicinal application of faba bean (Vicia faba L.). Horticultural Plant Journal, 2019, 5(4): 170-182.
[3]
滕长才, 刘玉皎. 青海省蚕豆未来产业发展探讨. 青海农林科技, 2022, (2): 50-52.
TENG C C, LIU Y J. Discussion on the development of faba bean industry in qinghai province. Science and Technology of Qinghai Agriculture and Forestry, 2022, (2): 50-52. (in Chinese)
[4]
DE MASTRO F, TRAVERSA A, BRUNETTI G, DEBIASE G, COCOZZA C, NIGRO F. Soil culturable microorganisms as affected by different soil managements in a two year wheat-faba bean rotation. Applied Soil Ecology, 2020, 149: 103533.
[5]
SMITH E N, VAN AALST M, TOSENS T, NIINEMETS Ü, STICH B, MOROSINOTTO T, ALBORESI A, ERB T J, GÓMEZ-CORONADO P A, TOLLETER D, FINAZZI G, CURIEN G, HEINEMANN M, EBENHÖH O, HIBBERD J M, SCHLÜTER U, SUN T S, WEBER A P M. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives. Molecular Plant, 2023, 16(10): 1547-1563.

doi: 10.1016/j.molp.2023.08.017 pmid: 37660255
[6]
林明, 鲁伟丹, 陈友强, 刘华君, 潘竟海, 阿不都卡地尔·库尔班, 周远航, 王志敏. 覆膜方式与灌水量对滴灌甜菜叶丛生长及光合特性的影响. 干旱地区农业研究, 2022, 40(5): 182-189.
LIN M, LU W D, CHEN Y Q, LIU H J, PAN J H, ABDUKADIER K, ZHOU Y H, WANG Z M. Effects of film mulching method and drip irrigation amount on foliage growth and photosynthetic characteristics of sugar beet leaves. Agricultural Research in the Arid Areas, 2022, 40(5): 182-189. (in Chinese)
[7]
雷俊, 张健, 赵福年, 齐月, 张秀云, 李强, 尚军林. 春小麦开花期光合参数对土壤水分和温度变化的响应. 生态环境学报, 2022, 31(6): 1151-1159.

doi: 10.16258/j.cnki.1674-5906.2022.06.010
LEI J, ZHANG J, ZHAO F N, QI Y, ZHANG X Y, LI Q, SHANG J L. Response of photosynthetic parameters for spring wheat at flowering stage to soil moisture and temperature. Ecology and Environmental Sciences, 2022, 31(6): 1151-1159. (in Chinese)
[8]
高文龙, 张贵余, 张赢心, 崔浩, 高占, 贾志越, 刘树堂. 不同磷素用量对玉米光合特性及酶活性的影响. 山东农业科学, 2022, 54(3): 74-78.
GAO W L, ZHANG G Y, ZHANG Y X, CUI H, GAO Z, JIA Z Y, LIU S T. Effects of different phosphorus dosage on photosynthetic characteristics and enzyme activities of Maize. Shandong Agricultural Sciences, 2022, 54(3): 74-78. (in Chinese)
[9]
MU X H, CHEN Y L. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 2021, 158: 76-82.

doi: 10.1016/j.plaphy.2020.11.019 pmid: 33296848
[10]
张明静, 韩笑, 胡雪, 臧倩, 许轲, 蒋敏, 庄恒扬, 黄丽芬. 不同种植方式下温度升高对水稻产量及同化物转运的影响. 中国农业科学, 2021, 54(7): 1537-1552. doi: 10.3864/j.issn.0578-1752.2021.07.017.
ZHANG M J, HAN X, HU X, ZANG Q, XU K, JIANG M, ZHUANG H Y, HUANG L F. Effects of elevated temperature on rice yield and assimilate translocation under different planting patterns. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552. doi: 10.3864/j.issn.0578-1752.2021.07.017. (in Chinese)
[11]
魏琼, 王龙, 文俊, 申文斌, 杨荣赞, 余航. 土壤水分条件对蚕豆花荚期光合作用-光响应特征的影响. 节水灌溉, 2018, (4): 1-4, 10.
WEI Q, WANG L, WEN J, SHEN W B, YANG R Z, YU H. Effects of soil water conditions on photosynthesis-light response characteristics in anthesis and fruiting period of board beans. Water Saving Irrigation, 2018, (4): 1-4, 10. (in Chinese)
[12]
靳乐乐, 乔匀周, 董宝娣, 杨红, 王亚凯, 刘孟雨. 起垄覆膜栽培技术的增产增效作用与发展. 中国生态农业学报(中英文), 2019, 27(9): 1364-1374.
JIN L L, QIAO Y Z, DONG B D, YANG H, WANG Y K, LIU M Y. Crop yield increasing and efficiency improving effects and development of technology of ridge-furrow cultivation with plastic film mulching. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1364-1374. (in Chinese)
[13]
孙新荣, 仲彩萍, 张维彪. 旱作农业区全膜微垄沟播蚕豆留膜免耕穴播胡麻栽培技术研究. 干旱地区农业研究, 2018, 36(6): 125-130.
SUN X R, ZHONG C P, ZHANG W B. Study on micro ridge-furrow film mulching cultivation techniques of faba bean and flax rotation in dryland farming areas. Agricultural Research in the Arid Areas, 2018, 36(6): 125-130. (in Chinese)
[14]
吴佳瑞, 康建宏, 吴娜, 禄兴丽, 慕宇, 孙建波. 覆膜对宁南山区马铃薯光合特性和产量的影响. 干旱地区农业研究, 2019, 37(4): 208-214.
WU J R, KANG J H, WU N, LU X L, MU Y, SUN J B. Effects of film mulching on photosynthetic characteristics and yield of potato in hilly area of Southern Ningxia. Agricultural Research in the Arid Areas, 2019, 37(4): 208-214. (in Chinese)
[15]
GU Y J, XU Q Y, ZHOU W D, HAN C L, SIDDIQUE K H M. Enhancing faba bean yields in alpine agricultural regions: The impact of plastic film mulching and phosphorus fertilization on soil dynamics. Agronomy, 2024, 14(3): 447.
[16]
张月荷, 梁霞, 曹浚铂, 张雨晴, 刘小利, 王金金, 任小龙. 垄沟集雨种植的研究进展. 节水灌溉, 2022, (10): 23-30.

doi: 10.12396/jsgg.2022.135
ZHANG Y H, LIANG X, CAO J B, ZHANG Y Q, LIU X L, WANG J J, REN X L. Research progress of ridge furrow rainwater harvesting systems. Water Saving Irrigation, 2022, (10): 23-30. (in Chinese)
[17]
周旭姣, 王琦, 张登奎, 尹鑫卫, 李晓玲, 刘青林, 贾生海. 垄沟集雨种植对土壤水热效应及紫花苜蓿产量的影响. 草业学报, 2019, 28(11): 60-74.

doi: 10.11686/cyxb2018787
ZHOU X J, WANG Q, ZHANG D K, YIN X W, LI X L, LIU Q L, JIA S H. Effects of ridge-furrow rainwater harvesting on soil moisture, temperature, and alfalfa fodder yield in a semi-arid region of China. Acta Prataculturae Sinica, 2019, 28(11): 60-74. (in Chinese)
[18]
THUYNSMA R, VALENTINE A, KLEINERT A. Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus. Journal of Plant Physiology, 2014, 171(3): 285-291.
[19]
VENEKLAAS E J, LAMBERS H, BRAGG J, FINNEGAN P M, LOVELOCK C E, PLAXTON W C, PRICE C A, SCHEIBLE W R, SHANE M W, WHITE P J, RAVEN J A. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, 2012, 195(2): 306-320.

doi: 10.1111/j.1469-8137.2012.04190.x pmid: 22691045
[20]
王磊, 张浩, 宋炜, 赵昕, 吴子龙. 不同供磷水平对谷子光合性能及磷吸收利用效率的影响. 饲料研究, 2023, 46(23): 79-83.
WANG L, ZHANG H, SONG W, ZHAO X, WU Z L. Effect of different phosphorus supply levels on photosynthetic performance and phosphorus absorption and utilization of millet. Feed Research, 2023, 46(23): 79-83. (in Chinese)
[21]
杨佳鹤, 何进宇, 刘飞杨, 崔烜玮. 不同土壤水分对植物光合作用的影响研究进展. 节水灌溉, 2023, (11): 39-46.

doi: 10.12396/jsgg.2023220
YANG J H, HE J Y, LIU F Y, CUI X W. Research progress on effects of different soil moisture on plant photosynthesis. Water Saving Irrigation, 2023, (11): 39-46. (in Chinese)
[22]
贾曼曼, 肖靖秀, 汤利, 郑毅. 不同施氮量对小麦蚕豆间作作物产量及其光合特征的影响. 云南农业大学学报(自然科学), 2017, 32(2): 350-357.
JIA M M, XIAO J X, TANG L, ZHENG Y. Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping. Journal of Yunnan Agricultural University (Natural Science), 2017, 32(2): 350-357. (in Chinese)
[23]
杨成存, 黄金文, 韩凡香, 包正育, 柴守玺, 程宏波, 马建涛, 黄彩霞, 常磊. 不同覆盖时期和方式对旱地马铃薯土壤水热及产量的影响. 西北农业学报, 2023, 32(2): 253-263.
YANG C C, HUANG J W, HAN F X, BAO Z Y, CHAI S X, CHEN H B, MA J T, HUANG C X, CHANG L. Effects of different mulching periods and methods on soil moisture,temperature and yield of potato in dryland. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(2): 253-263. (in Chinese)
[24]
吴杨, 贾志宽, 边少锋, 王永军. 不同方式周年覆盖对黄土高原玉米农田土壤水热的调控效应. 中国农业科学, 2018, 51(15): 52-65. doi : 10.3864/j.issn.0578-1752.2018.15.004.
WU Y, JIA Z K, BIAN S F, WANG Y J. Regulation effects of different mulching patterns during the whole season on soil water and temperature in the maize field of Loess Plateau. Scientia Agricultura Sinica, 2018, 51(15): 52-65. doi: 10.3864/j.issn.0578-1752.2018.15.004. (in Chinese)
[25]
闫立伟, 赵铁锋, 王嘉兴, 黄硕, 边丽梅, 洪钟, 于丽红, 于大伟, 李欣, 李小平, 柴晓娇, 李海东. 不同地膜覆盖对土壤水热、谷子产量及水分利用效率的影响. 作物研究, 2023, 37(5): 470-474.
YAN L W, ZHAO T F, WANG J X, HUANG S, BIAN L M, HONG Z, YU L H, YU D W, LI X, LI X P, CHAI X J, LI H D. Effects of different plastic film mulching on soil water and heat,millet yield and water use efficiency. Crop Research, 2023, 37(5): 470-474. (in Chinese)
[26]
姜寒冰, 张玉翠, 任晓东, 要家威, 沈彦俊. 作物水分利用效率研究方法及尺度传递研究进展. 中国生态农业学报(中英文), 2019, 27(1): 50-59.
JIANG H B, ZHANG Y C, REN X D, YAO J W, SHEN Y J. A review of progress in research and scaling-up methods of crop water use efficiency. Chinese Journal of Eco-Agriculture, 2019, 27(1): 50-59. (in Chinese)
[27]
LI H R, LI X L, MEI X R, NANGIA V, GUO R, HAO W P, WANG J D. An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study. Agricultural Water Management, 2023, 276: 108053.
[28]
王艳丽, 王京, 刘国顺, 丁松爽, 张璐. 磷施用量对烤烟根系生理及叶片光合特性的影响. 植物营养与肥料学报, 2016, 22(2): 410-417.
WANG Y L, WANG J, LIU G S, DING S S, ZHANG L. Effects of different phosphorus levels on root physiological and leaf photosynthetic characteristics of flue-cured tobacco. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 410-417. (in Chinese)
[29]
李凤民, 鄢珣, 王俊, 李世清, 王同朝. 地膜覆盖导致春小麦产量下降的机理. 中国农业科学, 2001, 34(3): 330-333.
LI F M, YAN X, WANG J, LI S Q, WANG T C. The mechanism of yield decrease of spring wheat resulted from plastic film mulching. Scientia Agricultura Sinica, 2001, 34(3): 330-333. (in Chinese)
[30]
邱黛玉, 缪志伟, 赵伟民. 磷素对不同覆膜垄作模式下当归光合效能的影响. 中国野生植物资源, 2021, 40(4): 28-32.
QIU D Y, MIAO Z W, ZHAO W M. Effects of phosphorus on photosynthetic efficiency of Angelica sinensis under different plastic-film mulching ridges. Chinese Wild Plant Resources, 2021, 40(4): 28-32. (in Chinese)
[31]
高黎明, 张乐乐, 陈克龙, 毛亚辉. 青海湖流域高寒湿地光合有效辐射特征. 干旱区研究, 2018, 35(1): 50-56.
GAO L M, ZHANG L L, CHEN K L, MAO Y H. Photosynthetically active radiation in alpine wetland in the Qinghai Lake watershed. Arid Zone Research, 2018, 35(1): 50-56. (in Chinese)
[32]
陈连珠, 张雪彬, 杨小锋. 根际高温对快白菜根系结构、光合及叶绿素荧光参数的影响. 中国瓜菜, 2020, 33(2): 48-52.
CHEN L Z, ZHANG X B, YANG X F. Effects of rhizosphere high temperature on root, photosynthesis and chlorophyll fluorescence parameters of Chinese cabbages. China Cucurbits and Vegetables, 2020, 33(2): 48-52. (in Chinese)
[33]
王浩, 李中瀚, 徐鲁成, 王明, 康慧, 姚玉新, 杜远鹏, 高振. 根区高温胁迫下不同空气温度对葡萄叶片PSⅡ活性的影响及恢复情况. 中国果树, 2022, (4): 23-28, 52.
WANG H, LI Z H, XU L C, WANG M, KANG H, YAO Y X, DU Y P, GAO Z. Effect of different air temperature synergistic root zone high temperature stress on PSⅡ activity and recovery in grape leaves. China Fruits, 2022, (4): 23-28, 52. (in Chinese)
[34]
郝婷, 丁小涛, 余纪柱, 金海军, 张红梅, 朱月林. 根际温度对黄瓜幼苗生长及生理生化指标的影响. 西北植物学报, 2014, 34(6): 1245-1251.
HAO T, DING X T, YU J Z, JIN H J, ZHANG H M, ZHU Y L. Effect of root-zone temperature on the growth, physiological and biochemical indexes in cucumber seedlings. Acta Botanica Boreali- Occidentalia Sinica, 2014, 34(6): 1245-1251. (in Chinese)
[35]
万涛, 邸伟, 马春梅, 龚振平, 董守坤. 大豆根瘤固氮酶活性与温度关系的研究. 作物杂志, 2012, (6): 56-60.
WAN T, DI W, MA C M, GONG Z P, DONG S K. Study on the relationship between soybean nodule nitrogenase activitiy. Crops, 2012, (6): 56-60. (in Chinese)
[36]
鲁一薇, 崔纪菡, 郭帅, 李顺国, 校诺娅, 刘寒双, 刘猛, 夏雪岩. 缺氮胁迫对谷子幼苗生长发育的影响. 中国农业大学学报, 2022, 27(3): 18-25.
LU Y W, CUI J H, GUO S, LI S G, XIAO N Y, LIU H S, LIU M, XIA X Y. Effects of nitrogen deficiency stress on the growth of foxtail millet seedlings. Journal of China Agricultural University, 2022, 27(3): 18-25. (in Chinese)
[37]
KANG J, CHU Y Y, MA G, ZHANG Y F, ZHANG X Y, WANG M, LU H F, WANG L F, KANG G Z, MA D Y, XIE Y X, WANG C Y. Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. The Crop Journal, 2023, 11(2): 638-650.
[38]
GU Y J, HAN C L, KONG M, SHI X Y, ZDRULI P, LI F M. Plastic film mulch promotes high alfalfa production with phosphorus-saving and low risk of soil nitrogen loss. Field Crops Research, 2018, 229: 44-54.
[39]
HU Y J, MA P H, DUAN C X, WU S F, FENG H, ZOU Y F. Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China. Agricultural Water Management, 2020, 231: 106031.
[40]
何文铸, 李贝弗, 刘永红, 荣廷昭. 不同耕作方式对小麦花后干物质积累及产量的影响. 西南农业学报, 2005, 18(4): 397-402.
HE W Z, LI B F, LIU Y H, RONG T Z. Effect of different farming methods on dry matter accumulation of dry land wheat after blooming. Southwest China Journal of Agricultural Sciences, 2005, 18(4): 397-402. (in Chinese)
[41]
TAN G, LIU Y J, PENG S G, YIN H Q, MENG D L, TAO J M, GU Y B, LI J, YANG S, XIAO N W, LIU D M, XIANG X W, ZHOU Z C. Soil potentials to resist continuous cropping obstacle: Three field cases. Environmental Research, 2021, 200: 111319.
[42]
胡国彬, 董坤, 董艳, 郑毅, 汤利, 李欣然, 刘一鸣. 间作缓解蚕豆连作障碍的根际微生态效应. 生态学报, 2016, 36(4): 1010-1020.
HU G B, DONG K, DONG Y, ZHENG Y, TANG L, LI X R, LIU Y M. Effects of cultivars and intercropping on the rhizosphere microenvironment for alleviating the impact of continuous cropping of faba bean. Acta Ecologica Sinica, 2016, 36(4): 1010-1020. (in Chinese)
[43]
JENSEN E S, PEOPLES M B, HAUGGAARD-NIELSEN H. Faba bean in cropping systems. Field Crops Research, 2010, 115(3): 203-216.
[44]
刘云龙, 钱浩宇, 张鑫, 郑成岩, 邓艾兴, 江瑜, 张卫建. 丛枝菌根真菌对豆科作物生长和生物固氮及磷素吸收的影响. 应用生态学报, 2021, 32(5): 1761-1767.

doi: 10.13287/j.1001-9332.202105.022
LIU Y L, QIAN H Y, ZHANG X, ZHENG C Y, DENG A X, JIANG Y, ZHANG W J. Impacts of arbuscular mycorrhizal fungi (AMF) on growth, N bio-fixation, and phosphorus uptake of legume crop. Chinese Journal of Applied Ecology, 2021, 32(5): 1761-1767. (in Chinese)
[45]
邓随枫, 廖雨梦, 章昊, 祖艳群. 磷素对紫花苜蓿镉累积和抗氧化酶活性的影响. 农业环境科学学报, 2023, 42(10): 2175-2182.
DENG S F, LIAO Y M, ZHANG H, ZU Y Q. Effects of phosphorus on cadmium accumulation and antioxidant enzyme activities of alfalfa. Journal of Agro-Environment Science, 2023, 42(10): 2175-2182. (in Chinese)
[46]
孙东岳, 许辉, 刘倩倩, 许波, 吴兆晨, 魏凤珍, 陈翔, 李金才. 磷素后移对药隔期倒春寒小麦旗叶光合及抗氧化系统的影响. 中国农业气象, 2023, 44(2): 123-132.
SUN D Y, XU H, LIU Q Q, XU B, WU Z C, WEI F Z, CHEN X, LI J C. Effects of phosphorus fertilizer postpone on photosynthesis and antioxidant system of wheat flag leaves under late spring coldness at connectivum stage. Chinese Journal of Agrometeorology, 2023, 44(2): 123-132. (in Chinese)
[47]
李顺晋, 安雨丽, 崔玉涛, 李浩然, 陈新平, 张伟. 中国小麦生产的磷肥用量优化潜力及其对产量、籽粒营养和环境效应的影响. 浙江农业学报, 2021, 33(8): 1358-1366.

doi: 10.3969/j.issn.1004-1524.2021.08.02
LI S J, AN Y L, CUI Y T, LI H R, CHEN X P, ZHANG W. Optimization potential of phosphorus input in wheat production in China and its effects on yield, grain nutrition and ecological environment. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1358-1366. (in Chinese)

doi: 10.3969/j.issn.1004-1524.2021.08.02
[48]
侯云鹏, 王立春, 李前, 尹彩侠, 秦裕波, 王蒙, 王永军, 孔丽丽. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究. 中国农业科学, 2019, 52(20): 3573-3584. doi:10.3864/j.issn.0578-1752.2019.20.007.
HOU Y P, WANG L C, LI Q, YIN C X, QIN Y B, WANG M, WANG Y J, KONG L L. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584. doi:10.3864/j.issn.0578-1752.2019.20.007. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!