Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2583-2598.doi: 10.3864/j.issn.0578-1752.2024.13.007

• PLANT PROTECTION • Previous Articles     Next Articles

The Dynamic Wetting and Spreading Behavior of Pesticide Droplet on Rice Leaf Surface

ZHANG JianTao1,2,3(), HUANG LuSheng1,3, LIU GuangBin1,3, LAN YuBin3, WEN Sheng3,4()   

  1. 1 College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642
    2 Key Laboratory of Smart Agricultural Technology in Tropical South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642
    3 National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, Guangzhou 510642
    4 College of Engineering, South China Agricultural University, Guangzhou 510642
  • Received:2023-12-29 Accepted:2024-02-22 Online:2024-07-09 Published:2024-07-09
  • Contact: WEN Sheng

Abstract:

【Objective】 The objective of this study is to investigate the effects of surface tension, droplet size, and leaf angle on the dynamic wetting and spreading behavior of pesticide droplets on both adaxial and abaxial surfaces of rice leaf, and to provide a basis for realizing the “reduce application and increase efficiency” of rice spraying by regulating the dynamic wetting and spreading behavior of pesticide droplets on the rice leaf surface.【Method】 A full factorial experiment was designed to investigate the dynamic wetting and spreading behavior of single droplet on both adaxial and abaxial surfaces of rice leaf in this study. The Silwet-408 solutions with surface tension of 21.4, 33.2, and 43.7 mN·m-1 were formulated by adjusting the concentration of Silwet-408 to replace the pesticide solutions. A droplet generator was used to produce the single droplets of 532, 627, 746, 830, and 957 μm. The leaf angles were set as 40°, 65°, and 85°.【Result】 There were significant effects of surface tension, droplet size, and leaf angle on the rate of change of droplet contact angle on the rice leaf surface (P<0.05), and the overall trend of the influences on the adaxial and abaxial surfaces was basically the same; increasing leaf angle or reducing droplet size or lowering surface tension could increase the rate of change of contact angle and promote the wetting and spreading of droplet. Among them, the effect of lowering surface tension was the most significant. When the surface tension was decreased from 33.2 to 21.4 mN·m-1, which was close to the critical surface tension of rice leaf surface, the rate of change of the contact angle (advancing contact angle and receding contact angle) increased by 7.49 and 6.22 times for the adaxial surface, and 11.13 and 7.61 times for the abaxial surface, and the wettability of the droplets was changed from relatively poor or poor (80°≤contact angle<100° or contact angle≥100°) to medium or positive (60°≤contact angle<80° or contact angle<60°) within 75 s; when the surface tension was much larger than the critical surface tension of rice leaf surface, the rate of change of contact angle increased with the increase of leaf angle, and increased with the decrease of droplet size, but the effect of leaf angle was less than that of droplet size, and droplets of almost all particle sizes still maintained relatively poor or poor wettability (80°≤contact angle<100° or contact angle≥100°) after 75 s. In addition, the analysis of droplet wetting hysteresis phenomenon showed that the roughness of the rice leaf surface was relatively small, and the droplet wetting hysteresis phenomenon was not serious. The droplet with surface tension close to the critical surface tension of rice leaf was driven by the dynamic surface tension of the solid-liquid-gas three-phase system to wet and spread on the leaf surface, and the dynamic change of the contact angle with time could be fitted by the model θ=θe+Aexp(-Kt); although the droplet with a surface tension much higher than the critical surface tension of rice leaf could steadily adhere to the leaf surface without the phenomenon of roll-off, it was never able to break through the pinning effect and retention resistance of the leaf surface, and could not achieve wetting and spreading.【Conclusion】 All three factors, surface tension, droplet size, and leaf angle, significantly affect the dynamic wetting and spreading behavior of pesticide droplets on the rice leaf surface. In the actual application scenarios, since the leaf angle cannot be adjusted artificially, the surface tension and droplet size of the pesticide solution can be adjusted according to the purpose of the application to regulate the dynamic wetting and spreading behavior of the droplet. The results of this study are helpful to understand the mechanism of dynamic wetting and spreading of pesticide droplet on the rice leaf surface, and can provide theoretical support and guidance for the rational selection of surface tension and droplet size in rice pesticide application scenarios.

Key words: pesticide droplet, rice leaf surface, dynamic wetting and spreading, contact angle, wetting hysteresis, surface tension

Fig. 1

The shape of single droplet on the inclined plane"

Table 1

Surface tension of Silwet-408 solutions with different concentrations and their contact angles on the adaxial and abaxial surfaces of rice leaf"

浓度
Concentration (mg·mL-1)
表面张力
Surface tension (mN·m-1)
接触角(近轴面)
Contact angle (the adaxial surface) (°
接触角(远轴面)
Contact angle (the abaxial surface) (°
0 72.8±0.07 132.0±0.51 118.4±0.90
0.002 43.7±0.10 127.4±0.19 115.7±0.68
0.01 33.2±0.10 108.5±0.68 83.6±0.88
0.1 21.4±0.03 24.1±1.24 20.9±1.90

Fig. 2

Dynamic contact angle on the adaxial surface of rice leaf"

Fig. 3

Dynamic contact angle on the abaxial surface of rice leaf"

Table 2

ANOVA of the influence of experimental factors on the rate of change of contact angle"

变异来源
Source of variability
平方和
Sum of squares
自由度
Degree of freedom
均方
Mean square
F P 效应量
Effect size
水稻叶片近轴面θa
θa on the adaxial surface of rice leaf
修正模型Correction model 11.178 44 0.254 142.562 <0.001 0.986
A 0.097 4 0.024 13.610 <0.001 0.377
B 10.637 2 5.318 2984.524 <0.001 0.985
C 0.054 2 0.027 15.061 <0.001 0.251
A×B 0.039 8 0.005 2.757 0.009 0.197
A×C 0.041 8 0.005 2.863 0.007 0.203
B×C 0.162 4 0.041 22.766 <0.001 0.503
A×B×C 0.148 16 0.009 5.194 <0.001 0.480
水稻叶片近轴面θr
θr on the adaxial surface of rice leaf
修正模型Correction model 10.266 44 0.233 198.958 <0.001 0.990
A 0.114 4 0.029 24.385 <0.001 0.520
B 9.739 2 4.869 4152.493 <0.001 0.989
C 0.011 2 0.005 4.512 0.014 0.091
A×B 0.062 8 0.008 6.648 <0.001 0.371
A×C 0.069 8 0.009 7.338 <0.001 0.395
B×C 0.061 4 0.015 13.070 <0.001 0.367
A×B×C 0.209 16 0.013 11.152 <0.001 0.665
水稻叶片远轴面θa
θa on the abaxial surface of rice leaf
修正模型Correction model 12.127 44 0.276 182.035 <0.001 0.989
A 0.051 4 0.013 8.503 <0.001 0.274
B 11.661 2 5.831 3850.864 <0.001 0.988
C 0.063 2 0.032 20.901 <0.001 0.317
A×B 0.075 8 0.009 6.158 <0.001 0.354
A×C 0.056 8 0.007 4.593 <0.001 0.290
B×C 0.125 4 0.031 20.680 <0.001 0.479
A×B×C 0.096 16 0.006 3.954 <0.001 0.413
水稻叶片远轴面θr
θr on the abaxial surface of rice leaf
修正模型Correction model 10.285 44 0.234 189.769 <0.001 0.989
A 0.054 4 0.013 10.871 <0.001 0.326
B 10.011 2 5.005 4063.746 <0.001 0.989
C 0.009 2 0.005 3.777 0.027 0.077
A×B 0.044 8 0.006 4.488 <0.001 0.285
A×C 0.052 8 0.006 5.254 <0.001 0.318
B×C 0.019 4 0.005 3.824 0.006 0.145
A×B×C 0.096 16 0.006 4.881 <0.001 0.465

Table 3

Post hoc tests on the rate of change of contact angle between different levels of various experimental factors"

试验因素
Experimental factor
样本量
Sample number
接触角变化率
The rate of change of contact angle (°·s-1)
θa θr
水稻叶片近轴面
The adaxial surface of rice leaf
液滴粒径
Droplet size (μm)
532 27 0.295a 0.306a
627 27 0.301a 0.305a
746 27 0.248b 0.252b
830 27 0.246b 0.245b
957 27 0.237b 0.241b
叶片倾角
Leaf angle (°)
40 45 0.244b 0.263b
65 45 0.260b 0.264b
85 45 0.292a 0.282a
表面张力
Surface tension (mN·m-1)
21.4 45 0.662a 0.650a
33.2 45 0.078b 0.090b
43.7 45 0.056c 0.070c
水稻叶片远轴面
The abaxial surface of rice leaf
液滴粒径
Droplet size (μm)
532 27 0.288a 0.295a
627 27 0.286a 0.290a
746 27 0.247b 0.257b
830 27 0.250b 0.255b
957 27 0.246b 0.247b
叶片倾角
Leaf angle (°)
40 45 0.247b 0.261b
65 45 0.249b 0.265b
85 45 0.294a 0.280a
表面张力
Surface tension (mN·m-1)
21.4 45 0.679a 0.654a
33.2 45 0.056b 0.076b
43.7 45 0.055b 0.076b

Fig. 4

Interaction between droplet size and surface tension on the rate of change of advancing contact angle"

Fig. 5

Interaction between droplet size and leaf angle on the rate of change of advancing contact angle"

Fig. 6

Interaction between surface tension and leaf angle on the rate of change of advancing contact angle"

Fig. 7

Changes in wetting hysteresis of 532 and 957 μm droplets on the adaxial surface of 85° inclined leaf"

Fig. 8

Dynamic wetting and spreading morphology of droplets on the adaxial surface of 85° inclined leaf"

Table 4

Fitting function for the dynamic change of advancing contact angle on the adaxial surface of rice leaf"

表面张力/叶片倾角
Surface tension (mN·m-1)/Leaf angle (°)
液滴粒径Droplet size (μm)
532 957
21.4/40 θa=61.50+38.03exp(-0.036t), R2=0.9931 θa=59.47+54.52exp(-0.031t), R2=0.9970
21.4/65 θa=53.69+51.56exp(-0.048t), R2=0.9858 θa=79.36+44.49exp(-0.063t), R2=0.9981
21.4/85 θa=40.25+58.90exp(-0.022t), R2=0.9772 θa=80.68+43.88exp(-0.062t), R2=0.9915
33.2/40 θa=98.81-0.207t, R2=0.9917 θa=118.49-0.043t, R2=0.9987
33.2/65 θa=95.13-0.115t, R2=0.9909 θa=145.18-0.056t, R2=0.9913
33.2/85 θa=104.46-0.084t, R2=0.9857 θa=108.58-0.044t, R2=0.9333
43.7/40 θa=110.84-0.100t, R2=0.9265 θa=131.38-0.040t, R2=0.9963
43.7/65 θa=117.17-0.016t, R2=0.7900 θa=119.17-0.027t, R2=0.8893
43.7/85 θa=107.24-0.132t, R2=0.9912 θa=125.43-0.041t, R2=0.7582
[1]
CHEN H B, LAN Y B, K FRITZ B, HOFFMANN W C, LIU S B. Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV). International Journal of Agricultural and Biological Engineering, 2021, 14(1): 38-49.
[2]
ZHAO X, CUI H X, WANG Y, SUN C J, CUI B, ZENG Z H. Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6504-6512.

doi: 10.1021/acs.jafc.7b02004 pmid: 28654254
[3]
康峰, 吴潇逸, 王亚雄, 郑永军, 李守根, 陈冲冲. 农药雾滴沉积特性研究进展与展望. 农业工程学报, 2021, 37(20): 1-14.
KANG F, WU X Y, WANG Y X, ZHENG Y J, LI S G, CHEN C C. Research progress and prospect of pesticide droplet deposition characteristics. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 1-14. (in Chinese)
[4]
宋玉莹, 曹冲, 徐博, 冉刚超, 曹立冬, 李凤敏, 赵鹏跃, 黄啟良. 农药雾滴在植物叶面的弹跳行为及调控技术研究进展. 农药学学报, 2019, 21(5/6): 895-907.
SONG Y Y, CAO C, XU B, RAN G C, CAO L D, LI F M, ZHAO P Y, HUANG Q L. Research progress on bouncing behavior and control technology of pesticide droplets at plant leaf surface. Chinese Journal of Pesticide Science, 2019, 21(5/6): 895-907. (in Chinese)
[5]
ZWERTVAEGHER I K, VERHAEGHE M, BRUSSELMAN E, VERBOVEN P, LEBEAU F, MASSINON M, NICOLAÏ B M, NUYTTENS D. The impact and retention of spray droplets on a horizontal hydrophobic surface. Biosystems Engineering, 2014, 126: 82-91.
[6]
马英剑, 甄硕, 孙喆, 于萌, 赵锐, 郭鑫宇, 徐勇, 吴学民. 农药制剂研发的精细化、功能化与农业生产高效利用. 农药学学报, 2022, 24(5): 1080-1098.
MA Y J, ZHEN S, SUN Z, YU M, ZHAO R, GUO X Y, XU Y, WU X M. Refinement and functionalization of pesticide formulation research and development and efficient utilization in agricultural production. Chinese Journal of Pesticide Science, 2022, 24(5): 1080-1098. (in Chinese)
[7]
张海艳, 兰玉彬, 文晟, 陈春玲, 许童羽, 陈盛德. 无人机旋翼风场作用下雾滴在水稻植株上的黏附量模型构建. 农业工程学报, 2022, 38(18): 40-50.
ZHANG H Y, LAN Y B, WEN S, CHEN C L, XU T Y, CHEN S D. Modelling approach of spray retention on rice in plant protection using unmanned aerial vehicle. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 40-50. (in Chinese)
[8]
ZHOU Z L, CAO C, CAO L D, ZHENG L, XU J, LI F M, HUANG Q L. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves. PLoS ONE, 2017, 12(5): e0176870.
[9]
ZHOU Z L, CAO C, CAO L D, ZHENG L, XU J, LI F M, HUANG Q L. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves. Colloids and Surfaces B: Biointerfaces, 2018, 167: 206-212.
[10]
王潇楠, 齐鹏, 于聪伟, 何雄奎. 农药雾滴雾化沉积飘失研究进展. 农药学学报, 2022, 24(5): 1065-1079.
WANG X N, QI P, YU C W, HE X K. Research and development of atomization, deposition and drift of pesticide droplets. Chinese Journal of Pesticide Science, 2022, 24(5): 1065-1079. (in Chinese)
[11]
王穗, 彭尔瑞, 吴国星, 张天顺, 时玲, 张川, 余杨. 植物叶面农药雾滴蒸发时间研究在我国的应用. 广东农业科学, 2009(11): 104-107.
WANG S, PENG E R, WU G X, ZHANG T S, SHI L, ZHANG C, YU Y. Application of evaporation of pesticide droplets on plant leaves in China. Guangdong Agricultural Sciences, 2009(11): 104-107. (in Chinese)
[12]
周召路, 曹冲, 曹立冬, 郑丽, 马超, 李凤敏, 黄啟良. 不同类型界面液滴蒸发特性与农药利用效果研究进展. 农药学学报, 2017, 19(1): 9-17.
ZHOU Z L, CAO C, CAO L D, ZHENG L, MA C, LI F M, HUANG Q L. Research advances of droplet evaporation on different interfaces and the efficiency of pesticide utilization. Chinese Journal of Pesticide Science, 2017, 19(1): 9-17. (in Chinese)
[13]
OLIVEIRA R B, BONADIO PRECIPITO L M, GANDOLFO M A, OLIVEIRA J V, LUCIO F R. Effect of droplet size and leaf surface on retention of 2,4-D formulations. Crop Protection, 2019, 119: 97-101.
[14]
郑丽, 程雪健, 黄桂珍, 赵鹏跃, 曹冲, 曹立冬, 吴进龙, 黄修柱, 黄啟良. 农药兑水茎叶喷施对靶沉积剂量传递与调控研究进展. 农药学学报, 2022, 24(5): 1034-1048.
ZHENG L, CHENG X J, HUANG G Z, ZHAO P Y, CAO C, CAO L D, WU J L, HUANG X Z, HUANG Q L. Research progress in target dose transfer and regulation of pesticides deposition by foliar spray diluted with water. Chinese Journal of Pesticide Science, 2022, 24(5): 1034-1048. (in Chinese)
[15]
张红涛, 陆军, 魏德云, 胡玉霞. 烷基聚葡糖苷液滴在黄瓜叶面的润湿状态及动态铺展行为. 农业工程学报, 2017, 33(3): 81-87.
ZHANG H T, LU J, WEI D Y, HU Y X. Wetting state and dynamic spreading behavior of alkyl polyglycoside drop on cucumber leaf surface. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 81-87. (in Chinese)
[16]
马悦, 张晨辉, 杜凤沛. 农药制剂发展趋势及前沿技术概况. 现代农药, 2022, 21(1): 1-8.
MA Y, ZHANG C H, DU F P. Development tendency and frontier technology of pesticide formulations. Modern Agrochemicals, 2022, 21(1): 1-8. (in Chinese)
[17]
XU L Y, ZHU H P, OZKAN H E, BAGLEY W E, KRAUSE C R. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants. Pest Management Science, 2011, 67(7): 842-851.

doi: 10.1002/ps.2122 pmid: 21370389
[18]
ZHU Y Q, GAO Y X, ZHANG C H, ZHAO X, MA Y, DU F P. Static and dynamic wetting behavior of TX-100 solution on super- hydrophobic rice (Oryza sativa) leaf surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 148-156.
[19]
段洁利, 蒋婷婷, 蒋寅龙, 杨洲. 香蕉叶表面特征及浸润性机理研究. 华南农业大学学报, 2023, 44(2): 314-323.
DUAN J L, JIANG T T, JIANG Y L, YANG Z. Study on the surface characteristics and infiltration mechanism of banana leaf. Journal of South China Agricultural University, 2023, 44(2): 314-323. (in Chinese)
[20]
徐广春, 顾中言, 徐德进, 许小龙. 稻叶表面特性及雾滴在倾角稻叶上的沉积行为. 中国农业科学, 2014, 47(21): 4280-4290. doi: 10.3864/j.issn.0578-1752.2014.21.013.
XU G C, GU Z Y, XU D J, XU X L. Characteristics of rice leaf surface and droplets deposition behavior on rice leaf surface with different inclination angles. Scientia Agricultura Sinica, 2014, 47(21): 4280-4290. doi: 10.3864/j.issn.0578-1752.2014.21.013. (in Chinese)
[21]
ZHU H P, YU Y, OZKAN H E, DERKSEN R C, KRAUSE C R. Influence of spray additives on droplet evaporation and residual patterns on wax and wax-free surfaces//An ASABE Meeting Presentation Paper Number:083752, 2008.
[22]
ZHU H P, SALYANI M, FOX R D. A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 2011, 76(1): 38-43.
[23]
QIU W, GUO H B, ZHENG H, CAO Y B, LV X L, FANG J, ZHAI C Y, YU H F. CFD modelling to analyze the droplets deposition behavior on vibrating rice leaves. Computers and Electronics in Agriculture, 2022, 201: 107330.
[24]
YARNOLD G D. The motion of a mercury index in a capillary tube. Proceedings of the Physical Society, 1938, 50(4): 540-552.
[25]
徐广春, 顾中言, 徐德进, 许小龙, 董玉轩. 常用农药在水稻叶片上的润湿能力分析. 中国农业科学, 2012, 45(9): 1731-1740. doi: 10.3864/j.issn.0578-1752.2012.09.008.
XU G C, GU Z Y, XU D J, XU X L, DONG Y X. Wettability analysis of pesticides on rice leaf. Scientia Agricultura Sinica, 2012, 45(9): 1731-1740. doi: 10.3864/j.issn.0578-1752.2012.09.008. (in Chinese)
[26]
王晓东, 彭晓峰, 陆建峰, 刘涛, 王补宣. 粗糙表面接触角滞后现象分析. 热科学与技术, 2003, 2(3): 230-234.
WANG X D, PENG X F, LU J F, LIU T, WANG B X. Analysis of contact angle hysteresis on rough surfaces. Journal of Thermal Science and Technology, 2003, 2(3): 230-234. (in Chinese)
[27]
肖易航, 郑军, 何勇明, 刘鸿博, 龚丁. 不同润湿性液体在粗糙表面的润湿滞后现象. 中国表面工程, 2019, 32(6): 150-156.

doi: 10.11933/j.issn.1007-9289.20190216001
XIAO Y H, ZHENG J, HE Y M, LIU H B, GONG D. Contact angle hysteresis with different wetting-liquids on rough surfaces. China Surface Engineering, 2019, 32(6): 150-156. (in Chinese)

doi: 10.11933/j.issn.1007-9289.20190216001
[28]
周兆兵, 张洋, 贾翀. 木质材料动态润湿性能的表征. 南京林业大学学报(自然科学版), 2007, 31(5): 71-74.

doi: 10.3969/j.jssn.1000-2006.2007.05.016
ZHOU Z B, ZHANG Y, JIA C. Describing on dynamic wettability of wood and wood-based materials. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(5): 71-74. (in Chinese)
[29]
张越, 张高勇, 韩富. 新型三硅氧烷表面活性剂在低能表面的铺展机理. 化学学报, 2007, 65(5): 465-469.
ZHANG Y, ZHANG G Y, HAN F. Spreading mechanism of new glucosamide-based trisiloxane surfactant on low-energy surface. Acta Chimica Sinica, 2007, 65(5): 465-469. (in Chinese)
[30]
ZHANG Y, ZHANG G Y, HAN F. The spreading and superspeading behavior of new glucosamide-based trisiloxane surfactants on hydrophobic foliage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276(1/3): 100-106.
[31]
LIN J, ZHU M N, WU X, ZHENG C, LIU Z L, WANG Q Y, LU D D, HE Q Y, CHEN X Y. Microwave-assisted synthesis of trisiloxane superspreader and its superspreading behavior on plant leaves surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511: 190-200.
[32]
张晨辉, 赵欣, 雷津美, 马悦, 杜凤沛. 非离子表面活性剂Triton X-100溶液在不同生长期小麦叶片表面的润湿行为. 物理化学学报, 2017, 33(9): 1846-1854.
ZHANG C H, ZHAO X, LEI J M, MA Y, DU F P. Wettability of Triton X-100 on wheat (Triticum aestivum) leaf surfaces with respect to developmental changes. Acta Physico-Chimica Sinica, 2017, 33(9): 1846-1854. (in Chinese)
[33]
PICKNETT R G, BEXON R. The evaporation of sessile or pendant drops in still air. Journal of Colloid and Interface Science, 1977, 61(2): 336-350.
[34]
高荣, 黄路生, 文晟, 尹选春, 张建桃. 农药液滴在玉米叶片表面铺展面积的影响因素. 农业工程学报, 2022, 38(20): 41-48.
GAO R, HUANG L S, WEN S, YIN X C, ZHANG J T. Factors influencing the spreading areas of pesticide droplets on the surface of maize leaves. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20): 41-48. (in Chinese)
[35]
曹军琳, 祁力钧, 杨知伦, 葛鲁振, 吴亚垒, 程一帆. 基于图像处理的雾滴沉积分布试验研究. 中国农业大学学报, 2019, 24(1): 130-137.
CAO J L, QI L J, YANG Z L, GE L Z, WU Y L, CHENG Y F. Experimental study of droplet distribution based on image processing. Journal of China Agricultural University, 2019, 24(1): 130-137. (in Chinese)
[36]
徐德进, 徐广春, 许小龙, 顾中言. 施液量、雾滴大小、叶片倾角及助剂对农药在稻叶上沉积的影响. 西南农业学报, 2015, 28(5): 2056-2062.
XU D J, XU G C, XU X L, GU Z Y. Effect of application volume, droplet size, rice leaf incline angle and spray adjuvant on pesticide deposition. Southwest China Journal of Agricultural Sciences, 2015, 28(5): 2056-2062. (in Chinese)
[37]
兰玉彬, 彭瑾, 金济. 农药喷雾粒径的研究现状与发展. 华南农业大学学报, 2016, 37(6): 1-9.
LAN Y B, PENG J, JIN J. Research status and development of pesticide spraying droplet size. Journal of South China Agricultural University, 2016, 37(6): 1-9. (in Chinese)
[38]
顾中言, 许小龙, 韩丽娟. 几种植物临界表面张力值的估测. 现代农药, 2002, 1(2): 18-20.
GU Z Y, XU X L, HAN L J. Study on the measure of the critical surface tension of plants. Modern Agrochemicals, 2002, 1(2): 18-20. (in Chinese)
[39]
屠豫钦, 李秉礼. 农药应用工艺学导论. 北京: 化学工业出版社, 2006: 33-36.
TU Y Q, LI B L. Introduction to Application Technology of Pesticides. Beijing: Chemical Industry Press, 2006: 33-36. (in Chinese)
[1] XU GuangChun, GU ZhongYan, XU DeJin, XU XiaoLong, XU Lu. Calculation Methods for the Surface Free Energy of Pepper Leaf Surface [J]. Scientia Agricultura Sinica, 2018, 51(16): 3084-3094.
[2] ZHAO Heng-ke, LAN Yue, NAN Can, HU Yue, RAO Ping, TIAN Ya, YAN Wei, QIAN Kun, HE Lin. Preparation of 8% Fenpropathrin·Cyflumetofen Nano-Emulsion and Its Performance [J]. Scientia Agricultura Sinica, 2016, 49(14): 2700-2710.
[3] XU Guang-chun, GU Zhong-yan, XU De-jin, XU Xiao-long. Characteristics of Rice Leaf Surface and Droplets Deposition Behavior on Rice Leaf Surface with Different Inclination Angles [J]. Scientia Agricultura Sinica, 2014, 47(21): 4280-4290.
[4] XU Guang-Chun, GU Zhong-Yan, XU De-Jin, XU Xiao-Long. Screening of Surfactants for Promoting the Efficiency of Pesticide Used in Paddy Field [J]. Scientia Agricultura Sinica, 2013, 46(7): 1370-1379.
[5] XU Guang-Chun, GU Zhong-Yan, XU De-Jin, XU Xiao-Long, DONG Yu-Xuan. Wettability Analysis of Pesticides on Rice Leaf [J]. Scientia Agricultura Sinica, 2012, 45(9): 1731-1740.
[6] XU De-Jin, GU Zhong-Yan, XU Guang-Chun, XU Xiao-Long, DONG Yu-Xuan. Effects of Droplet Density and Droplet Size on Control Efficiency of Chlorantraniliprole Against Cnaphalocrocis medinalis (Guenée) [J]. Scientia Agricultura Sinica, 2012, 45(4): 666-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!