Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (22): 4601-4612.doi: 10.3864/j.issn.0578-1752.2020.22.007

• PLANT PROTECTION • Previous Articles     Next Articles

Carbon Source Metabolism of Trichoderma afroharzianum with High-Yield of Antifungal Volatile Organic Compounds

CHEN JingShi,HUANG YuYang,XIANG Jie,GUO QingHua,LI ShiGui,GU JinGang()   

  1. Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2020-03-07 Accepted:2020-04-11 Online:2020-11-16 Published:2020-11-28
  • Contact: JinGang GU E-mail:gujingang@caas.cn

Abstract:

【Objective】The objective of this study is to obtain mutant strains of Trichoderma afroharzianum ACCC 33109 with high yield of inhibitory volatile organic compounds (VOCs) and analyze the carbon utilization mechanism.【Method】Mutant strains were obtained through protoplast ultraviolet mutagenesis of wild-type ACCC 33109 and screened by sandwiched Petri plate method. The wild type and mutant strains MU153, MU792 were then subjected to carbon utilization analysis using Omnilog phenotype microassays.【Result】A total of 828 mutant strains were obtained by 2.0 min ultraviolet mutagenesis, with the lethality rate of 76.63%. Among them, 30 mutants showed higher inhibitory activities against Fusarium oxysporum than the wild type. MU153 showed the highest inhibitory rate (53.86%), which was 16.68% higher than that of the wild type, while the inhibitory rate of MU792 was as low as 15.83%. The pot experiments showed that both ACCC 33109 and MU153 had the effects of promoting cucumber growth and preventing cucumber fusarium wilt. Compared with ACCC 33109, the relative control effect of MU153 on cucumber fusarium wilt increased by 15.88%, which was as high as 89.69%. UV mutagenesis caused changes in the morphologies of colony, hypha, and conidiogenous structures and metabolic capacity to utilize carbon sources of the mutants. Compared with ACCC 33109, the mycelia of MU153 grew rapidly and densely, became flocculent, and pigment was produced, while the mycelia of MU792 grew slowly and loosely, and the colony color changed from green to white at the late stage. The sizes of conidia and pedicels of MU153 and MU792 increased, and the base width of the conidia decreased. Moreover, MU153 had a higher metabolic capacity for 46 substances in FF plate, including D-arabinol, diethanolamine, maltose, arbutin, cellobiose and α-D-glucose, but less active on the other 50 substances, such as 4-hydroxyphenylacetic acid, succinic acid, succinamic acid, glucogen, bromosuccinic acid and L-threonine. MU792 had a higher metabolic capacity for 27 substances in FF plate, including γ-hydroxybutyric acid, glucose-1-phosphate, β-hydroxybutyric acid, D-methyl lactate, D-sorbitol and propanamide, and lower metabolic capacity on the other 69 substances, including succinamic acid, N-acetyl-D-glucosamine, 4-hydroxyphenylacetic acid, sebacic acid, Tween-80, D-saccharic acid. α-D-Glucose was the most favorable substrate for antifungal VOCs production. With α-D-glucose as the carbon source, the inhibitory rates of VOCs of ACCC 33109, MU153 and MU792 to F. oxysporum were 48.08%, 56.17% and 40.94%, respectively. 【Conclusion】T. afroharzianum MU153 has the capability of producing a large amount of inhibitory VOCs, favors α-D-glucose for the highest yield of VOCs, and thus represents a great candidate of biocontrol agent.

Key words: Trichoderma afroharzianum, volatile organic compounds (VOCs), ultraviolet mutagenesis, phenotypic analysis

Table 1

Design of the pot experiment"

处理Treatment
无菌水对照CK1 等量无菌水 Sterile ddH2O
病原菌对照CK2 ACCC 37438孢子悬浮液 ACCC 37438 spore suspension (1.0×10 7 conidia/g soil)
处理1 Treatment 1 ACCC 33109孢子悬浮液ACCC 33109 spore suspension (1.0×10 7 conidia/g soil)
处理2 Treatment 2 ACCC 37438和ACCC 33109孢子混合液 ACCC 37438 and ACCC 33109 spore suspensions (each at 1.0×10 7 conidia/g soil)
处理3 Treatment 3 MU153孢子悬浮液MU153 spore suspension (1.0×10 7 conidia/g soil)
处理4 Treatment 4 ACCC 37438和MU153孢子混合液ACCC 37438 and MU153 spore suspensions (each at 1.0×10 7 conidia/g soil)

Fig. 1

Effects of UV mutagenesis duration on the protoplast lethality rate of T. afroharzianum ACCC 33109"

Fig. 2

Inhibitory activities of the VOCs produced by T. afroharzianum against F. oxysporum (28℃, 5 d)"

Fig. 3

A pot experiment of T. afroharzianum against cucumber fusarium wilt"

Table 2

Incidence rate, disease index and relative control effect of cucumber fusarium wilt"

处理 Treatment 发病率 Incidence rate (%) 病情指数 Disease index 相对防治效果 Relative control effect (%)
无菌水对照CK1 0 0 -
病原菌对照CK2 88.89±19.24 52.78±4.81 -
处理1 Treatment 1 0 0 -
处理2 Treatment 2 33.33±0 13.89±4.82 73.81±8.59
处理3 Treatment 3 0 0 -
处理4 Treatment 4 22.22±19.24 5.55±4.81 89.69±9.01

Fig. 4

Colony morphology of T. afroharzianum ACCC 33109, MU153 and MU792 on CMA, PDA, and SNA plates"

Fig. 5

Conidiogenous structures of T. afroharzianum ACCC 33109, MU153 and MU792"

Table 3

Conidiogenous data of T. afroharzianum ACCC 33109, MU153 and MU792"

参数Parameter ACCC 33109 MU153 MU792
瓶梗长度Phialide length (μm) 9.44±1.60 10.61±2.15 8.95±2.03
瓶梗最宽处Phialide maximum width (μm) 3.00±0.33 2.71±0.39 2.55±0.28
瓶梗长/宽Phialide length/width ratio 3.16±0.65 3.99±1.01 3.58±0.99
瓶梗基部宽度Phialide base width (μm) 2.19±0.33 2.03±0.34 1.79±0.28
支持细胞宽度Supporting cell width (μm) 2.68±0.45 2.72±0.42 2.56±0.37
支持细胞长度Supporting cell length (μm) 10.68±3.49 12.73±3.46 11.43±3.93
孢子长度Conidium length (μm) 2.93±0.44 3.09±0.40 3.04±0.40
孢子宽度Conidium width (μm) 2.36±0.22 2.44±0.19 2.58±0.34
孢子长/宽Conidium length/width ratio 1.24±0.17 1.27±0.15 1.19±0.16

Fig. 6

Heatmap of carbon utilization of T. afroharzianum (26℃, 7 d)"

Table 4

Substances utilized by T. afroharzianum ACCC 33109 at higher rate than MU792 but lower than MU153"

编号Number 底物
Substrate
面积Area
ACCC 33109 MU153 MU792
1 麦芽三糖Maltotriose 59165 62095 57507
2 甘油Glycerol 60735 61987 58852
3 β-甲基-D-葡萄糖苷β-Methyl-D-glucoside 58513 58843 57838
4 1-赤藓糖醇1-Erythritol 57976 58760 53527
5 D-核糖D-Ribose 56959 58054 56236
6 D-海藻糖D-Trehalose 56009 57807 50790
7 N-乙酰-D-葡萄糖胺N-Acetyl-D-glucosamine 56061 57514 46953
8 α-D-乳糖α-D-Lactose 56331 57189 55604
9 糊精Dextrin 54890 57178 50037
10 α-D-半乳糖α-D-Galactose 53950 56233* 51843
11 肌醇Inositol 54608 55987 51558
12 D-果糖D-Fructose 54745 55594 50364
13 α-D-葡萄糖α-D-Glucose 52286 55493 50449
14 麦芽糖Maltose 50178 54487 48708
15 N-乙酰-谷氨酸N-Acetyl-glutamic acid 53022 53290 51819
16 L-鼠李糖L-Rhamnose 51683 52537 49096
17 D-葡萄糖胺D-Glucosamine 51967 52333 49382
18 腺苷Adenosine 51170 51702 50163
19 吐温-80 Tween-80 48707 51471* 41716
20 扁桃苷Amygdalin 49287 50321 44435
21 鸟苷Guanosine 47915 49703 41058
22 腐胺Putrescine 49574 49667 45904
23 D-葡萄糖醛酸D-Gluconic acid 46310 48453** 44423
24 D-苹果酸D-Malic acid 47934 48074 46185
25 L-阿拉伯糖L-Arabinose 46014 47723 40849
26 核糖醇Ribitol 45415 46865 41124
27 N-乙酰-D-甘露糖胺N-Acetyl-D-mannosamine 42902 44170 39655
28 二胺乙醇Diethanolamine 38883 43295 35369
29 葡糖苷酸Glucosiduronide 38550 39477 31867

Fig. 7

Effects of different carbon sources on the inhibitory activities of the VOCs produced by T. afroharzianum ACCC 33109, MU153 and MU792 (28℃, 5 d) Different letters on the bars indicate significant differences at the 5% level"

[1] SCHALCHLI H, TORTELLA G R, RUBILAR O, PARRA L, HORMAZABAL E, QUIROZ A . Fungal volatiles: An environmentally friendly tool to control pathogenic microorganisms in plants. Critical Reviews in Biotechnology, 2014,36(1):144-152. DOI: 10.3109/ 07388551.2014.946466.
doi: 10.3109/07388551.2014.946466 pmid: 25198437
[2] SCHALCHLI H, HORMAZABAL E, BECERRA J, BIRKETT M, ALVEAR M, VIDAL J, QUIROZ A . Antifungal activity of volatile metabolites emitted by mycelial cultures of saprophytic fungi. Chemistry and Ecology, 2011,27(6):503-513. DOI: 10.1080/ 02757540.2011.596832.
doi: 10.1080/02757540.2011.596832
[3] 李梅云, 李天飞, 王革, 刘开启 . 木霉对烟草黑胫病菌的拮抗机制. 植物保护学报, 2002,29(4):309-312. DOI: 10.13802/j.cnki.zwbhxb.2002.04.005.
LI M Y, LI T F, WANG G, LIU K Q . Antagonistic mechanism of Trichoderma spp. against Phytophthora nicotianae. Acta Phytophylacica Sinica, 2002,29(4):309-312. DOI: 10.13802/j.cnki.zwbhxb.2002.04.005. (in Chinese)
[4] SAWANT I S, WADKAR P N, GHULE S B, SALUNKHE V P, CHAVAN V, SAWANT S D . Induction of systemic resistance in grapevines against powdery mildew by Trichoderma asperelloides strains. Australasian Plant Pathology, 2020,49:107-117. DOI: 10.1007/s13313-020-00679-8.
doi: 10.1007/s13313-020-00679-8
[5] PRABHAKARAN N, PRAMEELADEVI T, SATHIYABAMA M, KAMIL D . Screening of different Trichoderma species against agriculturally important foliar plant pathogens. Journal of Environmental Biology, 2015,36(1):191-198.
pmid: 26536792
[6] 邹佳迅, 范晓旭, 宋福强 . 木霉 ( Trichoderma spp.) 对植物土传病害生防机制的研究进展. 大豆科学, 2017,36(6):146-153. DOI: 10.11861/j.issn.1000-9841.2017.06.0970.
ZOU J X, FAN X X, SONG F Q . Biocontrol mechanism of Trichoderma spp. against soilborn plant disease. Soybean Sciences, 2017,36(6):146-153. DOI: 10.11861/j.issn.1000-9841.2017.06.0970. (in Chinese)
[7] LI N, ALFIKY A, VAUGHAN M M, KANG S . Stop and smell the fungi: Fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biology Reviews, 2016,30(3):134-144. DOI: 10.1016/j.fbr.2016.06.004.
doi: 10.1016/j.fbr.2016.06.004
[8] KHALIL S, ALSANIUS B W . Utilisation of carbon sources by Pythium. Phytophthora an. Fusarium species as determined by Biolog® microplate assay. The Open Microbiology Journal, 2009,3(1):9-14. DOI: 10.2174/1874285800903010009.
doi: 10.2174/1874285800903010009
[9] 汪汉成, 王茂胜, 黄艳飞, 王进, 商胜华, 张长青 . 烟草青枯病拮抗菌株X-60的分离鉴定及其表型组学分析. 植物病理学报, 2016,46(3):409-419. DOI: 10.13926/j.cnki.apps.2016.03.015.
WANG H C, WANG M S, HUANG Y F, WANG J, SHANG S H, ZHANG C Q . Isolation, identification and phenotype microarrays analysis of an antagonistic bacterial strain X-60 against tobacco bacterial wilt. Acta Phytopathologica Sinica, 2016,46(3):409-419. DOI: 10.13926/j.cnki.apps.2016.03.015. (in Chinese)
[10] YONG F M, LIM G . Effect of carbon source on aroma production by Trichoderma viride. MIRCEN Journal of Applied Microbiology and Biotechnology, 1986,2(4):483-487. DOI: 10.1007/bf00933371.
doi: 10.1007/BF00933371
[11] EFFMERT U, KALDERÁS J, WARNKE R, PIECHULLA B. Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 2012,38(6):665-703. DOI: 10.1007/s10886- 012-0135-5.
doi: 10.1007/s10886-012-0135-5
[12] LI M F, LI G H, ZHANG K Q . Non-volatile metabolites from Trichoderma spp. Metabolites, 2019,9(3):E58. DOI: 10.3390/ metabo9030058.
doi: 10.3390/metabo9030058 pmid: 30909487
[13] GHISALBERTI E L, SIVASITHAMPARAM K . Antifungal antibiotics produced by Trichoderma spp. Soil Biology and Biochemistry, 1991,23(11):1011-1020. DOI: 10.1016/0038-07179(91)90036-J.
doi: 10.1016/0038-0717(91)90036-J
[14] NIELSEN K F, GRÄFENHAN T, ZAFARI D, THRANE U. Trichothecene production by Trichoderma brevicompactum. Journal of Agricultural and Food Chemistry, 2005,53(21):8190-8196. DOI: 10.1021/jf051279b.
doi: 10.1021/jf051279b pmid: 16218663
[15] RUIZ N, WIELGOSZ-COLLIN G, POIRIER L, GROVEL O, PETIT K E, MOHAMED-BENKADA M, PONT T R, BISSETT J, VÉRITÉ P, BARNATHAN G, POUCHUSA Y F. New trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides, 2007,28(7):1351-1358. DOI: 10.1016/j.peptides.2007.05.012.
doi: 10.1016/j.peptides.2007.05.012
[16] PAZ Z, GERSON U, SZTEJNBERG A . Assaying three new fungi against citrus mites in the laboratory, and a field trial. BioControl, 2007,52(6):855-862. DOI: 10.1007/s10526-006-9060-2.
doi: 10.1007/s10526-006-9060-2
[17] HARMAN G E, HOWELL C R, VITERBO A, CHET I, LORITO M . Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2004,2(1):43-56. DOI: 10.1038/nrmicro797.
doi: 10.1038/nrmicro797 pmid: 15035008
[18] LORITO M, WOO S L, HARMAN G E, MONTE E . Translational research on Trichoderma: From omics to the field. Annual Review of Phytopathology, 2010,48:395-417. DOI: 10.1146/annurev-phyto-073009-114314.
doi: 10.1146/annurev-phyto-073009-114314 pmid: 20455700
[19] RAUT I, BADEA-DONI M, CALIN M, OANCEA F, VASILESCU G, SESAN T E, JECU L . Effect of volatile and non-volatile metabolites from Trichoderma spp. against important phytopathogens. Revista de Chimie-Bucharest-Original Edition, 2014,65(11):1285-1288.
[20] BELÉN RUBIO M, PARDAL A J, CARDOZA R E, GUTIÉRREZ S, MONTE E, HERMOSA R . Involvement of the transcriptional coactivator ThMBF1 in the biocontrol activity of Trichoderma harzianum. Frontiers in Microbiology, 2017,8:2273. DOI: 10.3389/ fmicb.2017.02273.
doi: 10.3389/fmicb.2017.02273 pmid: 29201024
[21] PACHAURI S, CHATTERJEE S, KUMAR V, MUKHERJEE P K . A dedicated glyceraldehyde-3-phosphate dehydrogenase is involved in the biosynthesis of volatile sesquiterpenes in Trichoderma virens— evidence for the role of a fungal GAPDH in secondary metabolism. Current Genetics, 2018,65(1):243-252. DOI: 10.1007/s00294-018- 0868-y.
doi: 10.1007/s00294-018-0868-y pmid: 30046843
[22] QIN W T, ZHUANG W Y . Seven new species of Trichoderma(Hypocreales) in the Harzianum and Strictipile clades. Phytotaxa, 2017,305(3):121-139. DOI: 10.11646/phytotaxa.305.3.1.
doi: 10.11646/phytotaxa.305.3
[23] 吕天晓, 徐凤花, 李世贵, 顾金刚, 姜瑞波, 牛永春 . 生防木霉菌原生质体的制备及再生研究. 生物技术通报, 2009(4):130-134. DOI: CNKI:SUN:SWJT.0.2009-04-032.
LÜ T X, XU F H, LI S G, GU J G, JIANG R B, NIU Y C . The research on protoplast preparation and regeneration of biocontrolTrichoderma spp. strain. Biotechnology Bulletin, 2009(4):130-134. DOI: CNKI:SUN:SWJT.0.2009-04-032. (in Chinese)
[24] 李书强, 李林会, 沈江浩, 景焕, 张明珠, 杜晓端, 芦国嫣 . 生防菌对黄瓜枯萎病防效及其对黄瓜诱导抗性测定. 河北科师范学院学报, 2017,31(1):53-58. DOI: 10.3969/J.ISSN.1672-7983.2017.01.011.
LI S Q, LI L H, SHEN J H, JING H, ZHANG M Z, DU X D, LU G Y . Efficacy of biocontrol agents to cucumber fusarium wilt and their induced resistance. Journal of Hebei Normal University of Science and Technology, 2017,31(1):53-58. DOI: 10.3969/J.ISSN.1672-7983.2017.01.011. (in Chinese)
[25] 袁成凌, 姚建铭, 王纪, 余增亮 . 低能离子注入在花生四烯酸(aa)高产菌株选育中的研究. 辐射研究与辐射工艺学报, 2003,21(4):237-242. DOI: 10.3969/j.issn.1000-3436.2003.04.004.
YUAN C L, YAO J M, WANG J, YU Z L . Breeding of arachidonic acid-producing strain by low-energy ion implantation. Journal of Radiation Research and Radiation Processing, 2003,21(4):237-242. DOI: 10.3969/j.issn.1000-3436.2003.04.004. (in Chinese)
[26] CHEN J L, SUN S Z, MIAO C P, WU K, CHEN Y W, XU L H, GUAN H L, ZHAO L X . Endophytic Trichoderma gamsii YIM PH30019: A promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi o. Panax notoginseng. Journal of Ginseng Research, 2016,40(4):315-324. DOI: 10.1016/j.jgr.2015.09.006.
doi: 10.1016/j.jgr.2015.09.006 pmid: 27746683
[27] 张雯雯, 国振宇, 赵晓迪, 龚明波, 李世贵, 顾金刚, 杨礼富 . 木霉菌株挥发性物质拮抗尖孢镰刀菌的效果及其鉴定. 热带作物学报, 2017,38(4):704-715. DOI: 10.3969/j.issn.1000-2561.2017.04.019.
ZHANG W W, GUO Z Y, ZHAO X D, GONG M B, LI S G, GU J G, YANG L F . Effect and identification of volatile compounds from Trichoderma against Fusarium oxysporum. Chinese Journal of Tropical Crops, 2017,38(4):704-715. DOI: 10.3969/j.issn.1000-2561.2017.04.019. (in Chinese)
[28] LI N X, ALFIKY A, WANG W Z, ISLAM M, NOUROLLAHI K, LIU X, KANG S . Volatile compound-mediated recognition and inhibition between Trichoderma biocontrol agents an. Fusarium oxysporum. Frontiers in Microbiology, 2018,9:2614. DOI: 10.3389/fmicb.2018. 02614.
doi: 10.3389/fmicb.2018.02614 pmid: 30455673
[29] 詹艺舒, 李婕, 褚秀丹, 蔡志英, 纪鹏伟, 陈炳智, 江玉姬 . 一株真菌拮抗细菌Z21的筛选与鉴定及其发酵条件优化. 微生物学通报, 2020,47(5):1503-1514. DOI: 10.13344/j.microbiol.china.190622.
ZHAN Y S, LI J, CHU X D, CAI Z Y, JI P W, CHEN B Z, JIANG Y J. Screen, identification and fermentation optimization of an antifungal bacterium Z21. Microbiology China, 2020, 47(5): 1503-1514. 10.13344/j.microbiol.china.190622. (in Chinese)
[30] 蔡昭宁 . 不同碳源对蛹虫草液体发酵代谢组的影响及发酵液抑菌能力探究[D]. 重庆: 西南大学, 2016.
CAI Z N . Effects of different carbon sources on metabolome of Cordyceps militaris fermentation and preliminary study on the antibacterial ability of the zymotic fluid[D]. Chongqing: Southwest University, 2016. (in Chinese)
[31] 吴惠贞, 夏枫耿, 陈中, 黄魁英, 林伟峰 . 碳源与罗伊氏乳杆菌LYS-1发酵上清液抑菌效果的关系. 现代食品科技, 2020,36(4):125-131. DOI: 10.13982 /j.mfst.1673-9078.2020.4.016.
WU H Z, XIA F G, CHEN Z, HUANG K Y, LIN W F . The relation between carbon source and the antimicrobial effect of Lactobacillus reuteri fermentation supernatant. Modern Food Science and Technology, 2020,36(4):125-131. DOI: 10.13982/j.mfst.1673-9078.2020.4.016. (in Chinese)
[32] MUKHERJEE P K, MEHETRE S T, SHERKHANE P D, MUTHUKATHAN G, GHOSH A, KOTASTHANE A S, KHARE N, RATHOD P, SHARMA K K, NATH R, TEWARI A K, BHATTACHARYYA S, ARYA M, PATHAK D, WASNIKAR A R, TIWARI R K S, SAXENA D R,. A novel seed-dressing formulation based on an improved mutant strain of Trichoderma virens, and its field evaluation. Frontiers in Microbiology, 2019,10:1910. DOI: 10.3389/fmicb.2019.01910.
doi: 10.3389/fmicb.2019.01910 pmid: 31543866
[1] WANG EnZhao,FAN FenLiang,LI YanLing,LIU XiongDuo,LU YuQiu,SONG ALin. Noncontact Inhibitory of Volatile Organic Compounds from Rice Root Bacteria on Rhizopus microsporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 1986-1996.
[2] XUE HongLi, YANG JunJun, TANG Sha, ZHI Hui, WANG Rui, JIA GuanQing, QIAO ZhiJun, DIAO XianMin. Morphological Characterization and Gene Mapping of a Panicle Apical Abortion Mutant (sipaa1) in Foxtail Millet [J]. Scientia Agricultura Sinica, 2018, 51(9): 1627-1640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!