Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3180-3186.doi: 10.3864/j.issn.0578-1752.2020.15.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Innate Immunomodulatory Effect of Pine Needle Polysaccharide on Chicken Macrophage HD11

CUI XiaoZhen1(),LUAN Yan2,LI TingTing3,YANG Yu1,GUAN WenChao1,ZHANG Kai1,WANG FuChuan1,SONG XianYi1()   

  1. 1Feed and Veterinary Medicine Research Institute of Shanxi Academy of Agricultural Sciences, Taiyuan 030036
    2Animal Husbandry Technology Promotion Station of Yiling, Yichang 443100, Hubei
    3Animal Husbandry and Veterinary Science Research Institute of Shanxi Academy of Agricultural Sciences, Taiyuan 030032
  • Received:2019-08-23 Accepted:2020-06-30 Online:2020-08-01 Published:2020-08-06
  • Contact: XianYi SONG E-mail:cuiyuchan.002@163.com;sxnysxy@163.com

Abstract:

【Objective】 The innate immunomodulatary effect of pine needle polysaccharide on chicken macrophage HD11 were examined to provide theoretical ground for broiler disease prevention and treatment.【Method】Different concentrations of pine needle polysaccharide were used to treat the macrophage HD11. The experiment was divided into blank control group, positive control group (1 μg·mL-1 was the final concentration of LPS), and pine needle polysaccharide group (25, 50, 100, 200 and 400 μg·mL-1 were the final concentration of pine needle polysaccharide). MTT method was used to evaluate the effect of pine needle polysaccharide on the proliferation of HD11 cells. the content of NO in the supernatant of HD11 cells was determined, phagocytic function was detected by neutral red, the release of IFN-α, iNOS, IL-10, IL-6 and TNF-α were detected by ELISA, the levels of iNOS mRNA in the HD11 cells were detected by PCR.【Result】The results of MTT show, there was no significant difference among all groups (25, 50, 100, 200, 400 μg·mL-1) in proliferation of HD11 cells. It indicated that there was no toxicity to macrophages in the range of 25-400 μg·mL-1, and the immunoregulation experiment could be carried out. The immunomodulatory test results showed that, the concentration of NO, phagocytic function were higher significantly (P<0.01) than control group. The release of cytokines IFN-α and iNOS were higher significantly (P<0.01 or P<0.05) than control group. The amount of cytokines IL-10 was lower significantly (P<0.01 or P<0.05) than control group. The content of cytokines IL-6 and TNF-α were higher significantly (P<0.01) than control group when the pine needle polysaccharide concentration were 50, 100, 200, 400 μg·mL-1. the concentration of NO was lower significantly (P<0.01) than positive control group. The release of cytokines IFN-α, iNOS and IL-10 were lower significantly (P<0.01 or P<0.05) than positive control group. The phagocytic function and the content of cytokines IL-6 was lower significantly (P<0.01) than positive control group when the pine needle polysaccharide concentration were 25, 50, 100 μg·mL-1. The content of cytokines TNF-α was lower significantly (P<0.01) than positive control group when the pine needle polysaccharide concentration were 25, 50, 100, 200 μg·mL-1.【Conclusion】 The results showed that pine needle polysaccharide can activate macrophages and enhance the innate immune function of macrophages HD11, and there was a dose-dependent effect.

Key words: needles polysaccharide, macrophage, immune regulation, cytokine

Table 1

qRT- PCR primer sequence"

基因名称
Primer name
引物名称
Primer name
引物序列
Primer sequence
退火温度
Annealing temperature (℃)
产物长度
Products size ( bp)
iNOS iNOS-F 5′-GCTATTGGGCAAGCGAGAA-3′ 58.9 150
iNOS-R 5′-ATGACTTTCCCCACAGCCTTA-3′
GAPDH GAPDH-F 5′- ATGCCATCACAGCCACACA -3′ 58.9 127
GAPDH-R 5′-TGACCATCAGGGAGTTCATAGC-3′

Table 2

The effect of pine needle polysaccharide on proliferation activity of chicken macrophage"

组别
Group
浓度
Concentration (μg·mL-1)
OD值
Value of OD
空白对照组
Control group
0 0.3984±0.02Bb
松针多糖组
Pine needles polysaccharide group
25 0.4318±0.01ABab
50 0.4382±0.02ABabc
100 0.4548±0.02ABbc
200 0.4708±0.02Bbc
400 0.4792±0.01Bbc

Table 3

The effect of pine needle polysaccharide on the level of NO in chicken macrophage"

组别
Group
浓度
Concentration (μg·mL-1)
OD值
Value of OD
空白对照组
Control group
0 21.36±0.59Aa
脂多糖组
LPS group
1 54.67±1.72Ff
松针多糖组
Pine needles polysaccharide group
25 28.37±1.06Bb
50 31.07±0.28BCbc
100 34.63±1.61CDcd
200 37.84±1.77DEde
400 41.48±1.77Ee

Table 4

The effect of pine needle polysaccharide on the phagocytosis of neutral red in chicken macrophage"

组别
Group
浓度
Concentration
(μg·mL-1)
中性红吞噬率
Neutral red phagocytosis
(%)
空白对照组
Control group
0 100.00±2.31Aa
脂多糖组
LPS Group
1 151.72±3.18Dc
松针多糖组
Pine needles polysaccharide group
25 132.28±2.08Bb
50 135.81±1.73Bb
100 136.89±3.35BCb
200 146.41±2.49CDc
400 146.81±2.10CDc

Table 5

The effect of pine needle polysaccharide on the level of cytokines (IFN-α,IL-6,IL-10,iNOS and TNF-α) in chicken macrophage"

组别
Group
浓度
Concentration (μg·mL-1)
干扰素-α
IFN-α
(ng·L-1)
白细胞介素-6
IL-6
(ng·L-1)
白细胞介素-10
IL-10
(ng·L-1)
一氧化氮合酶
INOS
(ng·mL-1)
肿瘤坏死因子-α
TNF-α
(ng·L-1)
空白对照组
Control group
0 27.18±0.50Aa 22.68±0.88Aa 37.14±1.05Bd 0.63±0.01Aa 12.46±0.63Aa
脂多糖组
LPS group
1 67.93±1.28Df 38.53±1.20Cd 41.55±1.41Ce 1.60±0.04Ee 24.80±0.57Dd
松针多糖组
Pine needles polysaccharide group
25 31.61±0.88Ab 24.68±0.81Aa 33.28±0.98Bc 0.86±0.02Bb 12.90±0.53Aa
50 41.47±1.20Bc 31.70±1.27Bb 26.54±1.30Ab 0.93±0.04BCbc 17.16±0.41Bb
100 58.50±1.95Cd 32.14±1.22Bbc 25.89±1.03Aab 1.01±0.03CDc 18.08±0.53Bb
200 59.60±1.90Cd 35.20±1.28BCbcd 25.51±0.97Aab 1.03±0.04CDc 21.61±0.75Cc
400 63.63±1.15CDe 35.58±1.46BCcd 22.67±0.76Aa 1.14±0.03Dd 24.47±0.66Dd

Table 6

The effect of pine needle polysaccharide on the level of iNOS mRNA in chicken macrophages"

组别
Group
浓度
Concentration
(μg·mL-1)
mRNA相对表达量
The relative expression of mRNA
空白对照组
Control group
0 1.00±0.11Aa
脂多糖组
LPS Group
1 5.40±0.06De
松针多糖组
Pine needles polysaccharide group
25 1.22±0.01ABb
50 1.29±0.03Bbc
100 1.43±0.04Bc
200 2.10±0.02Cd
400 2.15±0.02Cd
[1] LERIO J M, CASTRO R, ARRANZ J A, LAMAS J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Inter- national Immunopharmacology, 2007, 7(7):879-888.
[2] KIHO T, MORIMOTO H, KOBAYASHI T, USUI S, UKAI S, AIZAWA K, INAKUMA T. Effect of a polysaccharide(TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Bioscience, Biotechnology, and Biochemistry, 2000, 64(2):417-419.
pmid: 10737203
[3] HONG Y K, WU H T, MA T, LIU W J, HE X J. Effects of Glycyrrhiza glabra polysaccharides on immune and antioxidant activities in high-fat mice. International Journal of Biological Macromolecules, 2009, 45(1):61-64.
pmid: 19447260
[4] 王湘婵, 夏永军, 王光强, 艾连中, 赖凤羲, 熊智强. 细虫草胞外多糖对小鼠腹腔巨噬细胞免疫功能研究. 工业微生物, 2019,49(3):7-12.
WANG X C, XIA Y J, WANG G Q, AI L Z, LAI F X, XIONG Z Q. Immunomodulatory effect of polysaccharide from Cordyceps gracilis Montag on murine peritoneal macrophages. Industrial Microbiology, 2019,49(3):7-12. (in Chinese)
[5] 王蓉, 李胜男, 陈春, 刘振康, 原永芳. 沙棘多糖对巨噬细胞和免疫抑制小鼠的免疫调节研究. 中南药学, 2020,3(18):384-388.
WANG R, LI S N, CHEN C, LIU Z K, YUAN Y F. Immunomodulatory effect of hippophae rhamnoides polysaccharide on the macrophages and cyclophosphamide-induced immuno- compromised mice. Central South Pharmacy, 2020,3(18):384-388. (in Chinese)
[6] 吕梦云, 胡耀, 陈伟, 欧阳克蕙, 黎雄, 熊小文, 温庆琪. 松针多糖对肉鸡生产性能和免疫功能的影响. 草业科学, 2016,33(8):1633-1639.
LV M Y, HU Y, CHEN W, OUYANG K H, LI X, XIONG X W, WEN Q Q. Effects of pine polysacharide on growth performance and immune functions of broilers. Pratacultural Science, 2016,33(8):1633-1639. (in Chinese)
[7] 戴艺, 徐明生, 上官新晨, 蒋艳, 郑国栋, 王文君. 松针多糖对小鼠腹腔巨噬细胞免疫调节作用的研究. 动物营养学报, 2017,29(2):670-677.
DAI Y, XU M S, SHANGGUAN X C, JIANG Y, ZHENG G D, WANG W J. Immunomodulatory effect of pine polysacharide on mice peritoneal macrophages. Chinese Journal of Animal Nutrition, 2017, 29(2):670-677. (in Chinese)
[8] KENNETH J L, THOMAS D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[9] OOI VEC, LIU F. A review of pharmacological activities of mushroom polysaccharides. International Journal of Medicinal Mushrooms, 1999, 1(3):195-206.
doi: 10.1615/IntJMedMushrooms.v1.i3
[10] 王晶, 史琪, 随晶晶, 常世民, 杜娟, 闫训友. 鳞柄小奥德蘑多糖对巨噬细胞免疫功能的调节作用. 天然产物研究与开发: 1-9 [2020-05-25]. http://kns.cnki.net/kcms/detail/51.1335.Q.20200427.1558.004.html.
WANG J, SHI Q, SUI J J, CHANG S M, DU J, YAN X Y. Immunomodulatory effect of polysaccharide from Oudemansiella furfuracea on murine macrophages. Natural Product Research and Development: 1-9 [2020-05-25]. http://kns.cnki.net/kcms/detail/51.1335.Q.20200427.1558.004.html.(in Chinese)
[11] TAYLOR P R, MARTINEZ-POMARES L, STACEY M, LIN H H, BROWN G D, GORDON S. Macrophage receptors and immune recognition. Annual Review of Immunology, 2005,23(1):901-944.
[12] TWIGG III H. Macrophages in innate and acquired immunity. Seminars in Respiratory and Critical Care Medicine, 2004, 25(1):21-31.
doi: 10.1055/s-2004-822302 pmid: 16088446
[13] ARIAANS M P, MATTHIJS G R M, HAARLEM D V, HAAR P V D, HENSEN E J, VERVELDE L. The role of phagocytic cells in enhanced susceptibility of broilers to colibacillosis after Infectious Bronchitis Virus infection. Veterinary Immunology and Immunopathology, 2008, 123(3/4):240-250.
[14] LI D, XUE M, GENG Z, CHEN P. The suppressive effects of bursopentine (BP5) on oxidative stress and NF-κB activation in lipopolysaccharide-activated murine peritoneal macrophages. Cellular Physiology and Biochemistry, 2012,29(1/2):9-20.
[15] OKAMURA M, LILLEHOJ H S, RAYBOURME R B, BABU U S, HECKERT R A, TANI H, SASAI K, BABA E, LILLEHOJ E P. Differential responses of macrophages to Salmonell-a enterica serovars Enteritidis and Typhimurium. Veterinary Immunology & Immunopathology, 2005,107(3/4):327-335.
[16] WITHANAGE G S K, MASTROENI P, BROOKS H J, MASKELL D G, MCCONNELL I. Oxidative and nitrosative responses of the chicken macrophage cell line MQ-NCSU to experimental Salmonella infection. British Poultry Science, 2005,46(3):261-267.
doi: 10.1080/00071660500098608
[17] PENG L, MATTHIJS M G R, HAAGSMAN H P, VELDHUIZEN E J A. Avian pathogenic,Escherichia coli-induced activation of chicken macrophage HD11 cells. Developmental & Comparative Immunology, 2018,87:75-83.
doi: 10.1016/j.dci.2018.05.019 pmid: 29890365
[18] JOSE M L, CASTRO R, ARRANZ J A, LAMAS J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. International Immunopharmacology, 2007, 7(7):879-888.
pmid: 17499190
[19] DUNN D L, BARKE R A, EWALD D C, SIMMONS R L. Macrophages and translymphatic absorption represent the first line of host defense of the peritoneal cavity. Archives of Surgery, 1987, 122(1):105-110.
doi: 10.1001/archsurg.1987.01400130111017 pmid: 3541849
[20] PEI C Z, ZHANG Y, WANG P, ZHANG B J, FANG L, LIU B, MENG S. Berberine alleviates oxidized low-density lipoprotein- induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways. Phytotherapy Research, 2019,33(2):294-308.
pmid: 30402951
[21] KRZYSZCYZK P, SCHLOSS R, PALMER A, BERTHIAUME F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Frontiers Physiology, 2018,9:419.
[22] LEE K Y, JEON Y J. Macrophage activation by polysaccharide isolated from Astragalus membranaceus. International Immunopharmacology, 2005,5(7):1225-1233.
[23] 叶莎莎, 曾耀英, 尹乐乐. 红景天苷对小鼠腹腔巨噬细胞体外增殖、凋亡、吞噬、ROS和NO产生的影响. 细胞与分子免疫学杂志, 2011,27(3):237-241.
pmid: 21419037
YE S S, ZENG Y Y, YIN L L. Effects of salidroside on proliferration apoptosis, phagocytosis, ROS and NO production of murine peritonealm acrophages in vitro. Journal of Cellular and Molecular Immunology, 2011,27(3):237-241. (in Chinese)
pmid: 21419037
[24] ANIL KUMAR C, REKHA J, SOUREN P, SUN C K. Potentiation of macrophage activity by thymol through augmenting phagocytosis. International Immunopharmacology, 2014,18(2):340-346.
doi: 10.1016/j.intimp.2013.11.025 pmid: 24316253
[25] 吴怡亮, 仲磊, 马宁, 裴斐, 马高兴, 胡秋辉. 大豆蛋白-杏鲍菇多糖共价结合物对RAW264.7细胞的免疫调节作用. 食品科学, 2019,40(17):202-207.
WU Y L, ZHONG L, MA N, PEI F, MA G X, HU Q H. Immunoregulatory effect of soybean protein isolate-pleurotus eryngii polysaccharide conjugate on RAW264.7 cells. Food Science, 2019,40(17):202-207.(in Chinese)
[26] 张永红, 官佳懿, 崔德凤, 谷崇高, 徐双, 李洋, 沈红. 绿原酸对小鼠不同组织巨噬细胞增殖、分泌及吞噬功能的影响. 动物医学进展. 2014,35(9):46-51.
ZHANG Y H, GUAN J Y, CUI D F, GU C G, XU S, LI Y, SHEN H. Effects of chlorogenic acid on proliferation, secretion and phagoeytosis functions of different tissue phagocytes in mice. Progress in Veterinary Medicine, 2014,35(9):46-51. (in Chinese)
[27] QI X F, LIU C H, LI R Q, ZHANG H Z, XU X G, WANG J Y. Modulation of the innate immune-related genes expression in H9N2 avian inflfluenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation. Research in Veterinary Science, 2017,111:36-42.
pmid: 27914220
[28] HADDAD J J. Cytokines and related receptor-mediated signaling pathways. Biochemical and Biophysical Research Communications, 2002,297(4):700-713.
pmid: 12359210
[29] SCLAVONS C, BURTEA C, BOUTRY S, LAURENT S, ELST V, MULLER R N. Phage display screening for tumor necrosis factor-α- binding peptides: Detection of inflammation in a mouse model of hepatitis. International Journal Peptides, 2013, 2013: 1-9.
pmid: 7343957
[30] DAVID B, ROBERT E, IGOR E, LINO B, JON L. Pain and analgesia: the value of salience circuits. Progress in Neurobiology, 2013,104:93-105.
doi: 10.1016/j.pneurobio.2013.02.003 pmid: 23499729
[31] HUNTER C A, JONES S A. IL-6 as a keystone cytokine in health and disease. Nature Immunology, 2015,16(5):448-457.
doi: 10.1038/ni.3153 pmid: 25898198
[32] TANIGUCHI K, KARIN M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Seminars in Immunology, 2014,26(1):54-74.
doi: 10.1016/j.smim.2014.01.001 pmid: 24552665
[33] PENG L, MATTHIJS M G R, HAAGSMAN H P, VELDHUIZEN . Avian pathogenic Escherichia coli-induced activation of chicken macrophage HD11 cells. Developmental and Comparative Immunology, 2018, 87:75-83.
doi: 10.1016/j.dci.2018.05.019 pmid: 29890365
[1] FU ChaoRan, LI YaZi, WU Han, ZHAO Dan, GUO Wei, GUO XiaoChang. Cloning, Expression and Functional Analysis of SeDuox from Spodoptera exigua [J]. Scientia Agricultura Sinica, 2021, 54(18): 3881-3891.
[2] WANG Fei, LI XianYang, HUA XiaoTing, XIA QingYou. Screening and Analysis of Anti-BmNPV Cytokines in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(4): 789-799.
[3] SUN YongBo,WANG Ya,SA RenNa,ZHANG HongFu. Effects of Different Relative Humidities on Growth Performance, Antioxidant Capacity and Immune Function of Broilers [J]. Scientia Agricultura Sinica, 2018, 51(24): 4720-4728.
[4] MA Hui, HAN Hong-bing, NING Zhong-hua, LIAN Zheng-xing. Breeding of Disease Resistant Dwarf Chickens by Phagocytic Ability [J]. Scientia Agricultura Sinica, 2016, 49(23): 4628-4637.
[5] WANG Ji-ying, WANG Yan-ping, GUO Jian-feng, WANG Huai-zhong, LIN Song, ZHANG Yin, WU Ying. Selection of Reference Genes and Determination of Cytokines and Receptor mRNA Expression in Peripheral Blood of Piglets [J]. Scientia Agricultura Sinica, 2015, 48(7): 1437-1444.
[6] LUO Jin, YUAN Xiao-song, HAO Jia-wei, TIAN Zhan-cheng, XIE Jun-ren, CHEN Ze, REN Qiao-yun, YIN Hong, LUO Jian-xun, LIU Guang-yuan . Dynamic Analysis of Expression Level of miR-451 and MIF Gene in Different Developmental Stages of Adult Hyalomma asiaticum [J]. Scientia Agricultura Sinica, 2015, 48(21): 4366-4373.
[7] GUO Fan-Xi, LIU Teng-Fei, GENG Zhi-Xia, JIANG Fan, YU Zu-Gong. Immunoregulatory Effects of Compound Ammonium Glycyrrhizin Soluble Powder on Liver Injury Induced by Enrofloxacin and LPS in Chickens [J]. Scientia Agricultura Sinica, 2013, 46(12): 2576-2583.
[8] HUANG Qin, HUANG Yi, CUI Zhi-Wen, LI Ya-Li, LI Wei-Fen, YU Dong-You. Modulation of Lactobacillus rhamnosus on Innate Immune Responses in Macrophages [J]. Scientia Agricultura Sinica, 2012, 45(8): 1621-1626.
[9] CHEN Rui-Hua, ZHANG Hui, TANG Li-Yan, MENG Ru, ZHANG Yu, WANG Zhen, LI Zhi-Qiang, ZHANG Jun-Bo, CHEN Chuang-Fu. Study on Cytotoxicity of Outer Membrane Protein BP26 of Brucella [J]. Scientia Agricultura Sinica, 2012, 45(16): 3406-3413.
[10] GAO Jin-Bo, NIU Zhong-Xiang. Effects of Microbial Fermentation of Corn Straw Mattress Material on Immunological Function of Mice [J]. Scientia Agricultura Sinica, 2011, 44(16): 3463-3468.
[11] SU Dong-xiao,ZHANG Ming-wei,LIAO Sen-tai,HOU Fang-li,ZHANG Rui-fen,TANG Xiao-jun,WEI Zhen-cheng,ZHANG Yan,CHI Jian-wei,DENG Yuan-yuan
. Effects of Water Soluble Extracts from Longan on Immune Regulation in Normal Mice
[J]. Scientia Agricultura Sinica, 2010, 43(9): 1919-1925 .
[12] ZHANG Li-wu,SUN Yan-ming,XU Li-xin,YAN Ruo-feng,LI Xiang-rui
. Localization of Cytokines in Abomasum of Goats Immunized with Recombinant Galectins of Haemonchus Contortus
[J]. Scientia Agricultura Sinica, 2010, 43(4): 842-849 .
[13] Lü Qiong-xia,ZHANG Shu-xia,ZHAO Ru-qian. Effects of Transportation Stress on Immune Function and Regulation of Cytokines in Pigs#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2579-2585 .
[14] . Effect of fucoidan and fraction isolated from Laminaria japonica on immunity of broiler macrophages under oxidation stress condition [J]. Scientia Agricultura Sinica, 2008, 41(5): 1482-1488 .
[15] ,,,,,. Immunization in Pigs Vaccined with DNA Encoding PRRSV GP5 [J]. Scientia Agricultura Sinica, 2006, 39(8): 1651-1658 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!