Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (1): 123-130.doi: 10.3864/j.issn.0578-1752.2017.01.011

• HORTICULTURE • Previous Articles     Next Articles

Crossability and Sclerotinia Resistance among Hybrids between Hexaploid (AnAnCnCnCoCo) and Brassica rapa

LI QinFei1,2, CHEN ZhiFu2, LIU Yao2, MEI JiaQin2, QIAN Wei2   

  1. 1College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715; 2College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2016-04-28 Online:2017-01-01 Published:2017-01-01

Abstract: 【Objective】 Utilization of parental species is helpful to broaden and improve genetic basis of Brassica napus. A strategy of using hexaploid derived from hybrid between B. napus and B. oleracea as bridge was evaluated to improve B. napus by crossing with B. rapa. 【Method】 Hexaploid derived from interspecific hybrid between B. napus (Zhongshuang 9) and B. oleracea (C01, high resistant to Sclerotinia sclerotiorum) was developed to cross with B. rapa by evaluating its fertility, meiotic chromosome segregation and resistance to S. sclerotiorum. Hybrids between hexaploid and 110 B. rapa were developed to evaluate crossability, seed setting percentage and resistance to S. sclerotiorum. 【Result】Hexaploid had higher resistance to S. sclerotiorum than Zhongshuang 9. Its pollen fertility was 90.6%-92.7%, seed setting was 3-7 seeds/pod. The 68.80% pollen mother cells at anaphase I was 28﹕28. The hybrids between 110 B. rapa and hexaploid could be obtained when hexaploid was used as either female or male parent, with an average seed setting rate of (4.25±3.91) seeds/pod (hexaploid used as female parent: 4.27 seeds/pod, male: 3.95 seeds/pod on average, P=0.69). Embryos 15 d after pollination grew well when crossing hexaploid with B. rapa. Although crossability among genotypes of B. rapa with hexaploid was different, no significant difference was detected in crossability among ecotypes of B. rapa (semi-winter: (4.35±3.77) seeds/pod, spring: (4.34±4.51) seeds/pod, winter: (4.01±3.43) seeds/pod,P=0.44). Hybrids owned kinds of morphology at the seedling stage, but were similar with B. napus. Seed setting rate of hybrids was (7.72± 4.45) seeds/pod on an average, without significant difference among hybrids derived from spring, winter and semi-winter ecotypes of B. rapa (seed setting rate of hybrids derived from winter: (8.07±3.43) seeds/pod, semi-winter: (7.88±4.64) seeds/pod, spring: (6.41±3.00) seeds/pod, P=0.95). Compared with Zhongshuang 9, 6 hybrids had higher resistance to S. sclerotiorum via two years identification (P<0.05). 【Conclusion】It was concluded that it is an efficient way to improve B. napus by transferring elite traits from parental species via hexaploid strategy.

Key words: hexaploid, Brassica napus, B. rapa, crossability, Sclerotinia sclerotiorum

[1]    Li Q, Mei J, Zhang Y, Li J, Ge X, Li Z, Qian W. A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea. Theoretical and Applied Genetics, 2013, 126(8): 2073-2080.
[2]    NAGAHARU U. Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertility. Japanese Journal of Botany, 1935, 7: 389-452.
[3]    Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus to oilseed genome. Science, 2014, 345: 950-953.
[4]    刘后利. 油菜遗传育种学. 北京: 中国农业大学出版社, 2000.
Liu H L. Genetics and Breeding in Rapeseed. Beijing: Chinese Agriculral Universitatis Press, 2000. (in Chinese)
[5]    BECKER H C, ENGQVIST G M, KARLSSON B. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics, 1995, 91: 62-67.
[6]    QIAN W, MENG J, LI M, FRAUEN M, SASS O, NOACK J, JUNG C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theoretical and Applied Genetics, 2006, 113: 49-54.
[7]    GIRKE A, SCHIERHOLT A, BECKER H C. Extending the rapeseed gene pool with resynthesized Brassica napus I: Genetic diversity. Genetic Resources and Crop Evolution, 2012, 59: 1441-1447.
[8]    GIRKE A, SCHIERHOLT A, BECKER H C. Extending the rapeseed gene pool with resynthesized Brassica napus II: Heterosis. Theoretical and Applied Genetics, 2012, 124: 1017-1026.
[9]    EICKERMANN M, ULBER B, VIDAL S. Resynthesized lines and cultivars of Brassica napus L. provide sources of resistance to the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)). Bulletin of Entomological Research, 2011, 101: 287-294.
[10]   FU D, QIAN W, ZOU J, MENG J. Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica, 2012, 184:151-164.
[11]   FUJII K, OHMIDO N. Stable progeny production of the amphidiploid resynthesized Brassica napus cv. Hanakkori, a newly bred vegetable. Theoretical and Applied Genetics, 2011, 123: 1433-1443.
[12]   MALEK M A, ISMAIL M R, RAFII M Y, RAHMAN M. Synthetic Brassica napus L.: development and studies on morphological characters, yield attributes, and yield. The Scientific World Journal, 2012, 2012: 416901.
[13]   QIAN W, CHEN X, FU D, ZOU J, MENG J. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theoretical and Applied Genetics, 2005, 110: 1187-1194.
[14]   LI Q, ZHOU Q, MEI J, ZHANG Y, LI J, LI Z, GE X, XIONG Z, HUANG Y, QIAN W. Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Molecular Breeding, 2014, 34: 1955-1963.
[15]   RAHMAN M H, BENNETT R A, YANG R C, KEBEDE B, THIAGARAJAH M R. Exploitation of the later flowering species Brassica oleracea L. for the improvement of earliness in B. napus L.: an untraditional approach. Euphytica, 2011, 177: 365-374.
[16]   钱伟, 李勤菲, 梅家琴, 付东辉, 李加纳. 一种利用白菜型油菜拓宽甘蓝型油菜遗传变异的方法. 中国, ZL. 201010607185.4. 2013.
Qian W, Li Q F, Mei J Q, Fu D H, Li J N. A strategy of using Brassica rapa to widen genetic variance of B. napus: China, Zl. 201010607185.4. 2013. (in Chinese)
[17]   MEI J, LIU Y, WEI D, WITTKOP B, DING Y, LI Q, LI J, WAN H, LI Z, GE X, FRAUEN M, SNOWDON R J, QIAN W, FRIEDT W. Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theoretical and Applied Genetics, 2015, 128: 639-644.
[18]   LI Z, LIU H L, LUO P. Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theoretical and Applied Genetics, 1995, 91:131-136.
[19]   MEI J, QIAN L, DISI J O, YANG X, LI Q, LI J, FRAUEN M, CAI D, QIAN W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2015, 177: 393-400.
[20]   TALEBI R, HAGHNAZARI A, TABATABAEI I. Assessment of genetic variation within international collection of Brassica rapa genotypes using inter simple sequence repeat DNA markers. Biharean Biologist, 2010, 4: 145-151.
[21]   ZHAO J, WANG X, DENG B, LOU P, WU J, SUN R, XU Z, VROMANS J, KOORNNEEF M, BONNEMA G. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theoretical and Applied Genetics, 2005, 110: 1301-1314.
[22]   XIAO Y, CHEN L, ZOU J, TIAN E, XIA W, MENG J. Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical and Applied Genetics, 2010, 121: 1141-1150.
[23]   MEI J, LI Q, YANG X, QIAN L, LIU L, YIN J, FRAUEN M, LI J, QIAN W. Genomic relationships between wild and cultivated Brassica oleracea L. with emphasis on the origination of cultivated crops. Genetic Resources and Crop Evolution, 2010, 57: 687-692.
[24]   XIONG Z, GAETA R T, PIRES J C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proceedings of the National Academy of Science of the United States of America, 2011, 108: 7908-7913.
[25]   王汉中, 刘贵华, 郑元本, 王新发, 杨庆. 抗菌核病双低油菜新品种中双9号选育及其重要防御酶活性变化规律的研究. 中国农业科学, 2004, 37(1): 23-28.
WANG H Z, LIU G H, ZHENG Y B, WANG X F, YANG Q. Breeding of the Brassica napus cultivar Zhongshuang 9 with high-resistance to Sclerotinia sclerotiorum and dynamics of its important defense enzyme activity. Scientia Agricultural Sinica, 2004, 37(1): 23-28. (in Chinese)
[26]   FALAK I, MCNABB W, HACAULT K, PATEL J. Field performance of Brassica napus L. spring canola hybrids with improved resistance to Sclerotinia stem rot. 13th International Rapeseed Congress, Prague, Czech, 2011: 622-626.
[27]   刘瑶, 丁一娟, 汪雷, 万华方, 梅家琴, 钱伟. 甘蓝型油菜与AnAnCnCnCoCo六倍体的可交配性及杂种菌核病抗性. 中国农业科学, 2015, 48(24): 4885-4891.
LIU Y, DING Y J, WANG L, WAN H F, MEI J Q, QIAN W. Crossability between Brassica napus with hexaploid AnAnCnCnCoCo and Sclerotinia resistance in the hybrids. Scientia Agricultura Sinica, 2015, 48(24): 4885-4891. (in Chinese)
[28]   DING Y, MEI J, LI Q, LIU Y, WAN H, WANG L, BECKER H C, QIAN W. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genetic Resources and Crop Evolution, 2013, 60: 1615-1619.
[29]   CHEUNG F, TRICK M, DROU N, LIM Y P, PARK J Y, KWON S J, KIM J A, SCOTT R, PIRES J C, PATERSON A H, TOWN C, BANCROFT I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell, 2009, 21: 1912-1928.
[30]   LIU S, LIU Y, YANG X, TONG C, EDWARDS D, PARKIN I A, ZHAO M, MA J, YU J, HUANG S, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5: 3930.
[31]   WANG X, WANG H, WANG J, SUN R, WU J, LIU S, BAI Y, MUN J H, BANCROFT I, CHENG F, et al. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43: 1035-1039.
[1] REN YiYing, CUI Cui, WANG Qian, TANG ZhangLin, XU XinFu, LIN Na, YIN JiaMing, LI JiaNa, ZHOU QingYuan. Genome-Wide Association Analysis of Silique Density on Racemes and Its Component Traits in Brassica napus L. [J]. Scientia Agricultura Sinica, 2018, 51(6): 1020-1033.
[2] CHEN XuePing, LIU ShiYao, YIN NengWen, JING LingYun, WEI LiJuan, LIN Na, XIAO Yang, XU XinFu, LI JiaNa, LIU LieZhao. Construction of a Near Infrared Model for Detecting Stem Fiber Component Content and Lignin Monomer G/S in Rapeseed [J]. Scientia Agricultura Sinica, 2018, 51(4): 688-696.
[3] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[4] DU Jiao, WANG YaBo, LI XueHua, HUANG ZhiQiang, YANG YuHeng, BI ChaoWei, YU Yang. Function analysis ofγ-glutamyl phosphate reductase-encoded gene SsGPR1 in Sclerotinia sclerotiorum [J]. Scientia Agricultura Sinica, 2018, 51(19): 3694-3703.
[5] ZHANG YaoFeng, ZHANG DongQing, YU HuaSheng, LIN BaoGang, HUA ShuiJin, DING HouDong, FU Ying. Location and Mapping of the Determinate Growth Habit of Brassica napus by Bulked Segregant Analysis (BSA) Using Whole Genome Re-Sequencing [J]. Scientia Agricultura Sinica, 2018, 51(16): 3029-3039.
[6] YAN Jing, WANG XiaoLei, ZHANG YuChi, ZHANG QingLing, WANG Jian, QIANG Sheng, SONG XiaoLing . Fitness of Herbicide-Resistant BC3F4 between two herbicide-resistant transgenic Brassica napus and wild Brassica juncea [J]. Scientia Agricultura Sinica, 2018, 51(1): 105-118.
[7] HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei. Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction [J]. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201.
[8] WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei. Genome-Wide Association Study of the Fertility Restorer Loci for pol CMS in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(5): 802-810.
[9] ZHOU QingHong, ZHOU Can, ZHENG Wei, FU DongHui. Genome Wide Association Analysis of Silique Length in Brassica napus L. [J]. Scientia Agricultura Sinica, 2017, 50(2): 228-239.
[10] ZHANG JiangJiang, ZHAN JiePeng, LIU QingYun, SHI JiaQin, WANG XinFa, LIU GuiHua, WANG HanZhong. QTL Mapping and Integration as well as Candidate Genes Identification for Plant Height in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(17): 3247-3258.
[11] ZHANG Rui, DENG WenYa, YANG Liu, WANG YaPing, XIAO FangZhi, HE Jian, LU Kun. Genome-Wide Association Study of Root Length and Hypocotyl Length at Germination Stage Under Saline Conditions in Brassica napus [J]. Scientia Agricultura Sinica, 2017, 50(1): 15-27.
[12] ZHANG Xiao-long, ZHANG Zhen-hua, SONG Hai-xing, YU Jia-ling, GUAN Chun-yun. Differences in Carbon Accumulation and Transport in Brassica napus with Different Nitrogen Use Efficiency and Its Effects on Oil Formation [J]. Scientia Agricultura Sinica, 2016, 49(18): 3542-3550.
[13] HUANG Ji-xiang, XIONG Hua-xin, PAN Bing, NI Xi-yuan, ZHANG Xiao-yu, ZHAO Jian-yi. Mapping QTL of Flowering Time and Their Genetic Relationships with Seed Weight in Brassica napus [J]. Scientia Agricultura Sinica, 2016, 49(16): 3073-3083.
[14] LI Ke-qi, ZENG Xin-hua, YUAN Rong, YAN Xiao-hong, WU Gang. Cytological Researches on the Anther Development of a Thermo-Sensitive Genic Male Sterile Line TE5A in Brassica napus [J]. Scientia Agricultura Sinica, 2016, 49(12): 2408-2417.
[15] LU Kun, ZHANG Lin, QU Cun-ming, LIANG Ying, TANG Zhang-lin, LI Jia-na. Identification of Drought Stress-Responsive Genes in Leaves of Brassica napus by RNA Sequencing [J]. Scientia Agricultura Sinica, 2015, 48(4): 630-645.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!