Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (18): 3608-3617.doi: 10.3864/j.issn.0578-1752.2016.18.015

• HORTICULTURE • Previous Articles     Next Articles

Estimating the Number of Apple Tree Flowers Based on Hyperspectral Information of a Canopy

LIU Ying1, Wang Ke-jian1, XIE Rang-jin1,2, LÜ Qiang1,2, HE Shao-Lan1,2, YI Shi-lai1,2, ZHENG Yong-qiang1, DENG Lie1,2   

  1. 1Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712
    2National Engineering Technology Research Center for Citrus, Chongqing 400712
  • Received:2016-02-26 Online:2016-09-16 Published:2016-09-16

Abstract: 【Objective】To study a technology for estimating the number of apple flowers which is based on the hyperspectral image information of a canopy at full-bloom stage, in order to lay a foundation for the establishment of the technologies used for the management and the productivity prediction of the flowers and fruits of a plant. 【Method】 The 5-year-old Malus pumila ‘Mitch Gala’ trees with M9 clonal rootstocks in the shape of high spindles were studied. The visible and near infrared hyperspectral images of the canopy at full-bloom stage were collected, and the number of the flowers of the trees was selected and then counted manually. Finally, comparatively analyze the effects of the Partial Least Squares (PLS) models based on the original reflectance spectra (OS) and the spectra pretreated by five kinds of methods including savitzky–golay smoothing(SG), standardization of normal variables (SNV), Normalize, first derivation(lst Der), second derivation(2nd Der), the PLS, the back-propagation neural network (BPNN) and the least squares support vector machines (LS-SVM) based on characteristic wavelengths obtained by x-loading weight (x-LW) on the accuracy of the real-time estimation of the amount of flowers per unit area per tree. 【Result】 Both the number of flowers per tree and the number of flowers per unit area per tree have high correlation coefficients, which means using the number of flowers per unit area of the canopy as a substitute for the total number of flowers per tree to predict the number of flowers of all the trees is feasible. The number of flowers per unit area per tree had a very significant positive correlation with the reflectivity of the trees’ canopy in the ultraviolet and visible wavelength (308-700 nm), but the correlation between the two was not significant in the near-infrared wavelength (750-1 000 nm). Based on full wavelength, the PLS model based on spectra pretreated by Normalize predicts the number of flowers per unit area per tree most accurately, whose determination coefficients of the calibration sets (Rc2) and of the prediction sets (Rp2) were 0.794 and 0.804, the root-mean-square errors of the calibration sets (RMSEC) and of the prediction sets (RMSEP) were 0.084, 0.062, and whose relative error (RE%) of prediction sets was 3.940. Based on characteristic wavelengths, the stability of BPNN model is bad,the LS-SVM model has better modeling results, with the Rc2 and the Rp2 being 0.826 and 0.804, RMSEC and the RMSEP being 0.077 and 0.064, the RE% of prediction sets is 12.160. 【Conclusion】 The PLS prediction model based on Normalize pretreatment has the best prediction results of the number of flowers of apple trees in the shape of high spindles per unit area per tree’s canopy, at the same time, after obtaining the spectral data by hyperspectral imager, analysis and processing to extract feature information through simplification, which can provide a basis for the application of multispectral remote sensing data.

Key words: apple tree, flowers per unit area, hyper-spectra, PLS, x-LW

[1]         孙佳佳. 中国苹果进口贸易研究[D]. 杨凌: 西北农林科技大学, 2014.
Sun J J. China apple import trade research [D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[2]         向阳. 浅谈苹果疏花疏果技术. 农业科技与信息, 2013, 19: 29-30.
Xiang Y. Introduction to apple thin flower thinning technology. Journal of Agricultural Science and Technology and Information Technology, 2013, 19: 29-30. (in Chinese)
[3]         Nicolaï B M, Theron K I, Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemometrics and Intelligent Laboratory Systems, 2007, 85(2): 243-252.
[4]    CAVALHO S, SCHLERF M, PUTTEN W H V D, SKIDMORE A K. Hyperspectral reflectance of leaves and flowers of an outbreak species discriminates season and successional stage of vegetation. International Journal of Applied Earth Observation and Geoinformation, 2013, 24: 32-41.
[5]         朱西存, 赵庚星, 王瑞燕, 董芳, 王凌, 雷彤. 苹果叶片的高光谱特征及其色素含量监测. 中国农业科学, 2010, 43(6): 1189-1197.
ZHU X C, ZHAO G X, WANG R Y, DONG F, WANG L, LEI T. Hyperspectral characteristics of apple leaves and their pigment contents monitoring. Scientia Agriculture Sinica, 2010, 43(6): 1189-1197. (in Chinese)
[6]         雷彤, 赵庚星, 朱西存, 董超, 孟岩, 战冰. 基于高光谱的苹果果期冠层光谱特征及其果量估测. 生态学报, 2010, 30(9): 2276-2285.
LEI T, ZHAO G X, ZHU X C, DONG C, MENG Y, ZHAN B. Canopy spectral features and fruit amount estimation of apple tree at fruit stage based on hyperspectral data. Acta Ecologica Sinica, 2010, 30(9): 2276-2285. (in Chinese)
[7]    GUTIERREZ M, NORTON R, THORP K R, WANG G. Association of spectral reflectance indices with plant growth and lint yield in upland cotton. Crop Science, 2012, 52(2): 849-857.
[8]         程洪, DAMEROW L, BLANKE M, 孙宇瑞, 程强. 基于树冠图像特征的苹果园神经网络估产模型. 农业机械学报, 2015(1): 4.
CHENG H, DAMEROW L, BLANKE M, SUN Y R, CHEN Q. ANN model for apple yield estimation based on feature of tree image . Transactions of the Chinese Society for Agricultural Machinery, 2015(1): 4. (in Chinese)
[9]         PRASAD B, BABAR M A, CARVER B F, RAUN W R, KLATT A R. Association of biomass production and canopy spectral reflectance indices in winter wheat. Canadian Journal of Plant Science, 2009, 89(3): 485-496.
[10]       朱西存, 赵庚星, 雷彤, 李希灿, 陈志强. 苹果花期的冠层高光谱特征研究. 光谱学与光谱分析, 2009, 29(10): 2708-2712.
ZHU X C, ZHAO G X, LEI T, LI X C, CHEN Z Q. Study on hyperspectral characteristics of apple florescence canopy. Spectroscopy and Spectral Analysis, 2009, 29(10): 2708-2712. (in Chinese)
[11]       潘蓓, 赵庚星, 朱西存, 刘海腾, 梁爽, 田大德. 利用高光谱植被指数估测苹果树冠层叶绿素含量. 光谱学与光谱分析, 2013, 33(8): 2203-2206.
PAN B, ZHAO G X, ZHU X C, LIU H T, LIANG S, TIAN D D. Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters. Spectroscopy and Spectral Analysis, 2013, 33(8): 2203-2206. (in Chinese)
[12]       BROGE N H, MORTENSEN J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote sensing of environment, 2002, 81(1): 45-57.
[13]       ROYO C, VILLEGAS D. Field measurements of canopy spectra for biomass assessment of small-grain cereals//MATOVIC D. Biomass-Detection, Production and Usage. In Tech, 2011: 87-92.
[14]   尼珍, 胡昌勤, 冯芳. 近红外光谱分析中光谱预处理方法的作用及其发展. 药物分析杂志, 2008, 28(5): 824-829.
NI Z, HU C Q, FENG F. Progress and effect of spectral data pretreatment in NIR analytical technique. Chinese Journal of Pharmaceutical Analysis, 2008, 28(5): 824-829. (in Chinese)
[15]   RASMUSSEN J, AAMAND J, ROSENBERG P, JACOBSEN O S, SORENSEN S R. Spatial variability in the mineralisation of the phenylurea herbicide linuron within a danish agricultural field: multivariate correlation to simple soil parameters. Pest Management Science, 2005, 61(9): 829-837.
[16]   学军, 全东平, 洪添胜, 王健, 瞿祥明, 甘海明. 柑橘叶片叶绿素含量高光谱无损检测模型. 农业工程学报, 2015, 31(1): 294-302.
YUE X J, QUAN D P, HONG T S, WANG J, QU X M, GAN H M. Non-destructive hyperspectral measurement model of chlorophyll content for citrus leaves. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 294-302. (in Chinese)
[17]   BARKER M, RAYENS W. Partial least squares for discrimination. Journal of Chemometrics, 2003, 17: 166-173.
[18]   ElMASRY G, WANG N, VIGNEAUL C. Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 2009, 52(1): 1-8.
[19]   BALABIN R M, SAFIEVA R Z, LOMAKINA E I. Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction. Chemometrics and Intelligent Laboratory Systems, 2007, 88(2): 183-188.
[20]   李永亮. 杉木红边参数估算叶绿素含量模型研究[D]. 长沙: 中南林业科技大学, 2011.
LI Y L. The Study of estimation models of chinese fir chlorophyll content based on red edge parameters [D]. Changsha: Central South University of F&T, 2011. (in Chinese)
[21]      GIOVANELLI G, SINELLI N, BEGHI R, GUIDETTI R, CASIRAGHI E. NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biology & Technology, 2014, 87(1): 13-20.
[22]   CLEVERS J G P W, KOOISTRA L, SCHAEPMAN M E. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(3): 388-397.
[23]   BAUMGARTNER R, SOMORJAI R, BOWMAN C, SORRELL T C, MOUNTFORD C E, HIMMELREICH U. Unsupervised feature dimension reduction for classification of MR spectra. Magnetic Resonance Imaging, 2004, 22(2): 251-256.
[24]   雷彤, 赵庚星, 朱西存, 战冰, 张洋洋. 基于高光谱和数码照相技术的苹果花期光谱特征研究. 中国农业科学, 2009, 42(7): 2481-2490.
LEI T, ZHAO G X, ZHU X C, ZHAN B, ZHANG Y Y. Research of apple florescence spectral features based on hyperspectral data and digital photos. Scientia Agricultura Sinica, 2009, 42(7): 2481-2490. (in Chinese)
[25]   HANSEN P M, SCHJOERRING J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote sensing of environment, 2003, 86(4): 542-553.
[26]   张瑶, 郑立华, 李民赞, 邓小蕾, 王诗丛, 张锋, 冀荣华. 基于光谱特征分析的苹果树叶片营养素预测模型构建. 农业工程学报, 2013, 29(8): 171-178.
ZHANG Y, ZHEN L H, LI M Z, DENG X L, WANG S C, ZHANG F, JI R H. Construction of apple tree leaves nutrients prediction model based on spectral analysis. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(8): 171-178. (in Chinese)
[27]   房贤一, 朱西存, 王凌, 赵庚星. 基于高光谱的苹果盛果期冠层叶绿素含量监测研究. 中国农业科学, 2013, 46(16): 3504-3513.
FANG X Y, ZHU X C, WANG L, ZHAO G X. Hyperspectral monitoring of the canopy chlorophyll content at apple tree prosperous fruit stage. Scientia Agricultura Sinica, 2013, 46(16): 3504-3513. (in Chinese)
[28]   JONES C L, WEEKLER P R, MANESS N O, JAYASEKARA R, ATONE M L, CHRZ D. Remote sensing to estimate chlorophyll concentration in spinach using multi-spectral plant reflectance. Transactions of the Asabe, 2007, 50(6): 2267-2273.
[29]   LEVASSEUR-GARCIA C. Infrared spectroscopy applied to identification and detection of microorganisms and their metabolites on cereals (corn, wheat, and barley)//Agricultural Science. Scientific pesearch, 2012.
[30]   BRISCO B, BROWN R J, HIROSE T, MCNAIRN H, STAENZS K. Precision agriculture and the role of remote sensing: a review. Canadian Journal of Remote Sensing, 1998, 24(3): 315-327.
[31]   杨进. 矮砧苹果的发展前景. 中国农业科学, 1983, 16(6): 26-31.
YANG J. Prospect in development of apple trees of dwarf stocks. Scientia Agricultura Sinica, 1983, 16(6): 26-31. (in Chinese)
[32]   刘万亮, 迟乃峰, 徐建波, 宋立龙, 孙兵杰. 苹果的花期管理. 烟台果树, 2008(2): 44.
LIU W L, CHI N F, XU J B, SONG L L, SUN B J. The management of apple in blooming. Yantai Fruits, 2008(2): 44. (in Chinese)
[33]   SOLOMAKHIN A A, BLANKE M M. Mechanical flower thinning improves the fruit quality of apples. Journal of the Science of Food and Agriculture, 2010, 90(5): 735-741.
[34]   田喜, 何绍兰, 吕强, 易时来, 谢让金, 郑永强, 廖秋红, 邓烈. 高光谱图像信息的柑橘叶片光合色素含量分析技术研究. 光谱学与光谱分析, 2014(9): 2506-2512.
TIAN X, HE S L, LV Q, YI S L, XIE R J, ZHENG Y Q, LIAO Q H, DENG L. Determination of photosynthetic pigments in citrus leaves based on hyperspectral images datas. Spectroscopy and Spectral Analysis, 2014, (9): 2506-2512. (in Chinese)
[35]   易时来, 邓烈, 何绍兰, 郑永强, 毛莎莎. 锦橙叶片钾含量光谱监测模型研究. 中国农业科学, 2010, 43(4): 780-786.
YI S L, DENG L, HE S L, ZHENG Y Q, MAO S S. A spectrum based models for monitoring leaf potassium content of Citrus sinensis (L) cv. Jincheng orange. Scientia Agricultura Sinica, 2010, 43(4): 780-786. (in Chinese)
[36]   卢艳丽, 白由路, 杨俐苹, 王红娟. 基于高光谱的土壤有机质含量预测模型的建立与评价. 中国农业科学, 2007, 40(9): 1989-1995.
LU Y L, BAI Y L, YANG L P, WANG H J. Prediction and validation of soil organic matter content based on hyperspectrum. Scientia Agricultura Sinica, 2007, 40(9): 1989-1995. (in Chinese)
[37]   汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述. 计算机应用研究, 2014, 31(5): 1281-1286.
WANG H Y, LI J H, YANG F L. Overview of support vector machine analysis and algorithm. Application Research of Computers, 2014, 31(5): 1281-1286. (in Chinese)
[38]   BASAK D, PAL S, Patranabis D C. Support vector regression.  Neural Information Processing-Letters and Reviews, 2007, 11(10): 203-224.
[1] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[2] LIN Xiao,SUN ChuanRu,WANG CaiXia,LIAN Sen,DONG XiangLi,LI BaoHua. Epidemic Factors Affecting the Infection and Occurrence of Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(11): 2333-2342.
[3] HUANG Ping, CAO Hui, ZHANG RuiXue, JI Tuo, LI YanGe, YANG HongQiang. Different Response of Apple Root Physiology and Leaf Photosynthesis to Mulching of Different Materials [J]. Scientia Agricultura Sinica, 2018, 51(1): 160-169.
[4] HONG YongSheng, YU Lei, ZHU YaXing, LI SiDi, GUO Li, LIU JiaSheng, NIE Yan, ZHOU Yong. Using Orthogonal Signal Correction Algorithm Removing the Effects of Soil Moisture on Hyperspectral Reflectance to Estimate Soil Organic Matter [J]. Scientia Agricultura Sinica, 2017, 50(19): 3766-3777.
[5] NAN Feng, ZHU Hong-fen, BI Ru-tian. Hyperspectral Prediction of Soil Organic Matter Content in the Reclamation Cropland of Coal Mining Areas in the Loess Plateau [J]. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135.
[6] TAN Chang-wei, LUO Ming, YANG Xin, MA Chang, YAN Xiang, ZHOU Jian, DU Ying, WANG Ya-nan. Remote Sensing Estimation of Winter Wheat Theoretical Yield on Regional Scale Using Partial Least Squares Regression Algorithm Based on HJ-1A/1B Images [J]. Scientia Agricultura Sinica, 2015, 48(20): 4033-4041.
[7] XUE Shan, HE Zhi-fei, XIAO Xia, LI Hong-jun . Effect of Heat Treatment on the Intramuscular Lipid of Ira Rabbit During Cold Storage [J]. Scientia Agricultura Sinica, 2015, 48(11): 2241-2250.
[8] YIN Cheng-Miao, ZHANG Xian-Fu, HU Yan-Li, SHEN Xiang, CHEN Xue-Sen, WU Shu-Jing, MAO Zhi-Quan. Effect of Different Concentrations of Organic Matter Fermentation Fluid on the Young Apple Tree Leaf Photosynthesis Fluorescent Parameters and Root Antioxidant Activity Under Replant Conditions [J]. Scientia Agricultura Sinica, 2014, 47(9): 1847-1857.
[9] YANG Mei-Hua-1, 2 , ZHAO Xiao-Min-1, 2 , 3 , FANG Qian-1, 2 , XIE Bi-Yu-1, 2 . Study on Soil Total N Estimation by Vis-NIR Spectra with Variable Selection [J]. Scientia Agricultura Sinica, 2014, 47(12): 2374-2383.
[10] BI Run-Xia, YANG Hong-Qiang, YANG Ping-Ping, FAN Wei-Guo, CHEN Jin-Pu, FAN Shu-Lei, WU Rui-Gang. Effect of Cavity Irrigation Underground on the Distribution of Soil Water Under the Canopy and Leaf Water Use Efficiency of Apple [J]. Scientia Agricultura Sinica, 2013, 46(17): 3651-3658.
[11] GAO Deng-Tao, GUO Jing-Nan, WEI Zhi-Feng, FAN Qing-Jin, YANG Chao-Xuan. Evaluation of Productivity and Light Quality in Two High Density Dwarf Rootstock Apple Orchards in Central China [J]. Scientia Agricultura Sinica, 2012, 45(5): 909-916.
[12] LI Xiao-Meng, QI Ya-Ping, WANG Rong-Juan, YAO Yun-Cong, JI Qian-Long. Effects on the Iron Content and Photosynthetic Characteristics of the Leaves of Iron Chlorosis Apple Trees with Apple  Fermentation Broth [J]. Scientia Agricultura Sinica, 2012, 45(3): 489-495.
[13] ZHAO Hai-yan, GUO Bo-li, WEI Yi-min, ZHANG Bo, SUN Shu-min, YAN Jun-hui, ZHANG Lei. Identification of Geographical Origins of Wheat with Discriminant Analysis by Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2011, 44(7): 1451-1456.
[14] YI Shi-lai,DENG Lie,HE Shao-lan,ZHENG Yong-qiang,MAO Sha-sha
.

A Spectrum Based Models for Monitoring Leaf Potassium Content of Citrus sinensis (L)cv. Jincheng Orange

[J]. Scientia Agricultura Sinica, 2010, 43(4): 780-786 .
[15] WANG Yan-an,YAN Zhi-gang,ZHANG Yuan-zhen,LI De-quan,SHU Huai-rui,ZHANG Fu-suo.

Annual Dynamics of Zinc Contents in Apple Trees Under Different Zinc Levels of Apple Orchard

[J]. Scientia Agricultura Sinica, 2010, 43(10): 2098-2104 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!