Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (18): 3764-3772.doi: 10.3864/j.issn.0578-1752.2012.18.009

• PLANT PROTECTION • Previous Articles     Next Articles

The Antifungal Activity and Action Mechanism of Metabolite Produced by Streptomyces lydicus Strain A01 Against Fusarium oxysporum f. sp. conglutinans

 LU  Cai-Ge, LIU  Wei-Cheng-?, LIU  Ting, DONG  Dan, ZHANG  Tao-Tao, LIU  De-Wen   

  1. 北京市农林科学院植物保护环境保护研究所,北京 100097
  • Received:2012-01-04 Online:2012-09-15 Published:2012-03-22

Abstract: 【Objective】The objective of this study is to understand the antifungal activity and action mechanism of natamycin produced by Streptomyces lydicus strain A01 against Fusarium oxysporum f. sp. conglutinans, and to provide a scientific basis for product development and application of strain A01.【Method】Mycelial radial growth assay and microscope concave slide method were used to test suppression of mycelia growth and inhibition of spore germination. Electrical conductivity method and methylene blue stain were used to test permeability of pathogen plasma membrane and cell viability of this pathogen. SEM and TEM observations were used to observe morphology and ultrastructure of mycelia.【Result】The MICs of natamycin against the mycelia growth and the conidial germination of F. oxysporum f. sp. conglutinans were less than or equal to 31.92 and 41.04 μg•mL-1, respectively, and the IC50 and EC50 were 8.69 and 3.06 μg•mL-1, respectively. After being treated by natamycin at concentration above 30 μg•mL-1 for more than 90 min, the electrical conductivity of the mycelial suspension was significantly increased. The action intensity was correlated positively with natamycin concentration and the action time. The changes in morphology and cell ultrastructure of the treated mycelia were observed under SEM and TEM, such as abnormal growth or malformation, disintegration of organelles, cell vacuolization and so on. The mycelia treated with natamycin over 10 μg•mL-1 for 120 min could be stained with methylene blue.【Conclusion】The active metabolite of strain A01, natamycin, has obvious inhibitory activities against F. oxysporum f. sp. conglutinans. The bioactivity was based on that natamycin could increase the permeability of plasma membrane, destroy the mycelial morphology and cell ultrastructure, thus resulted in the disappearance of cell viability of the pathogen mycelium.

Key words: Streptomyces lydicus, natamycin, Fusarium oxysporum f. sp. conglutinans, inhibitory activity, action mechanism

[1]Smith E F. The fungous infection of agricultural soils in the United States. Scientific American Supplement, 1899, 48: 19981-19982.

[2]Nomum Y, Kato K, Takeuchi S. Studies on the method of early selection of the resistance of cabbage to the yellows disease. Journal of the Central Agricultural Experiment Station, 1976, 24: 141-l82.

[3]李明远, 张涛涛, 李兴红, 严  红. 十字花科蔬菜枯萎病及其病原鉴定. 植物保护, 2003, 29(3): 44-45.

Li M Y, Zhang T T, Li X H, Yan H. Crucifer vegetable wilt disease and its pathogen identification. Plant Protection, 2003, 29(3): 44-45. (in Chinese)

[4]张  扬, 郑建秋, 吴学宏, 师迎春, 谷培云, 李健强. 北京延庆甘蓝枯萎病发生和危害调查. 中国农学通报, 2007, 23(5): 315-320.

Zhang Y, Zheng J Q, Wu X H, Shi Y C, Gu P Y, Li J Q. Investigation of occurrence and damage of cabbage wilt disease in Yanqing county of Beijing. Chinese Agricultural Science Bulletin, 2007, 23(5): 315-320. (in Chinese)

[5]田仁鹏, 康俊根, 耿丽华, 颉建明, 简元才, 丁云花. 甘蓝枯萎病抗性鉴定方法研究. 中国农学通报, 2009, 25(4): 39-42.

Tian R P, Kang J G, Geng L H, Xie J M, Jian Y C, Ding Y H. Study on the method of Fusarium wilts resistance in cabbage. Chinese Agricultural Science Bulletin, 2009, 25(4): 39-42. (in Chinese)

[6]Subramanian C V. Fusarium oxysporum f. sp. conglutinans. IMI Description of Fungi and Bacteria, l970, 22: 213-222.

[7]Thanassoulopoulos C C, Kitsos G T, Bonatsos D C. Cabbage yellows and new hosts of the pathogen in Greece. Plant Disease Reporter, 1978, 62(12): 1051-1053.

[8]Ramirez-Villupadua J, Endo R M, Bosland P, Williams P H. A new race of Fusarium oxysporum f. sp. conglutinans that attacks cabbage with type A resistance. Plant Disease, 1985, 69(7): 612-613.

[9]Morrison R H, Mengistu A, Williams P H. First report of race 2 of cabbage yellows caused by Fusarium oxysporum f. sp. conglutinans in Texas. Plant Disease, 1994, 78: 641.

[10]张  扬, 郑建秋, 谢丙炎, 李健强, 吴学宏, 师迎春, 马永军. 甘蓝枯萎病病原菌的鉴定. 植物病理学报, 2008, 38(4): 337-345.

Zhang Y , Zheng J Q, Xie B Y, Li J Q, Wu X H, Shi Y C, Ma Y J. Identification on pathogen of cabbage wilt disease. Acta Phytopathologica Sinica, 2008, 38(4): 337-345. (in Chinese)

[11]耿丽华, 迟胜起, 焦晓辉, 康俊根, 田仁鹏. 北京延庆县甘蓝枯萎病病原菌的分离及其生物学特性的研究. 中国蔬菜, 2009(2): 34-37.

Geng L H, Chi S Q, Jiao X H, Kang J G, Tian R P. Isolation of the pathogen of cabbage wilt and its biological characteristics in Yanqing County of Beijing. China Vegetable, 2009(2): 34-37. (in Chinese)

[12]殷晓敏, 陈  弟, 郑服丛. 尖镰孢枯萎病生物防治研究进展. 广西农业科学, 2008, 39(2): 172-178.

Yin X M, Chen D, Zheng F C. Advance in biological control of Fusarium oxysporum. Guangxi Agricultural Sciences, 2008, 39(2): 172-178. (in Chinese)

[13]郝晓娟, 刘  波, 谢关林. 植物枯萎病生物防治研究进展. 中国农学通报, 2005, 21(7): 319-322.

Hao X J, Liu B, Xie G L. Research progress in biological control of Fusarium wilt disease. Chinese Agricultural Science Bulletin, 2005, 21(7): 319-322. (in Chinese)

[14]刘伟成, 卢彩鸽, 刘  霆, 裘季燕, 刘德文, 花玉鹏. 甘蓝枯萎病菌拮抗菌筛选及其潜能评价. 植物病理学报, 2011, 41(增刊): 50-57.

Liu W C, Lu C G, Liu T, Qiu J Y, Liu D W, Hua Y P. Screening and assessment of bio-control strains against Fusarium oxysporum f. sp. conglutinans. Acta Phytopathologica Sinica, 2011, 41(Suppl.): 50-57. (in Chinese)

[15]Lu C G, Liu W C, Qiu J Y, Wang H M, Liu T, Liu D W. Identification of an antifungal metabolite produced by a potential biocontrol actinomyces strain A01. Brazilian Journal of Microbiology, 2008, 39(4): 701-707.

[16]李  东, 杜连祥, 路福平, 亓  珊, 陈  捷, 李颖辉. 纳他霉素的抑菌谱及最小抑菌浓度. 食品工业科技, 2004, 25(7): 143-144.

Li D, Du L X, Lu F P, Qi S, Chen J, Li Y H. The inhibitory range and minimal inhibitory concentration of natamycin. Science and Technology of Food Industry, 2004, 25(7): 143-144. (in Chinese)

[17]张  鹏, 姜兴印, 房  锋, 纪春涛, 张培正, 李大鹏. 纳他霉素对灰葡萄孢不同生育阶段菌体的毒力及其生物学性状的影响. 农药学学报, 2008, 10(2): 205-210.

Zhang P, Jiang X Y, Fang F, Ji C T, Zhang P Z, Li D P. Toxicity of natamycin to Botrytis cinerea at different growth stages and its effect on biological characteristics. Chinese Journal of Pesticide Science, 2008, 10(2): 205-210. (in Chinese)

[18]孙远功, 呼玉侠, 冯  昕. 纳他霉素在柑桔防腐保鲜中的应用. 食品研究与开发, 2006, 27(7): 190-192.

Sun Y G, Hu Y X, Feng X. The application of natamycin in the antiseptic and freshness of orange. Food Research and Development, 2006, 27(7):190-192. (in Chinese)

[19]白  鹤. 纳他霉素抗真菌效果及在葡萄保鲜上的应用研究[D]. 天津: 天津大学, 2007.

Bai H. Effect of natamycin on the antifungi and the application to grape storage[D]. Tianjin: Tianjin University, 2007. (in Chinese)

[20]Gill J A, Martin J F. Polyeneantibiotics. Biotechnology of Antibiotics. 2nd ed. New York: Marcel Dekker, 1997: 551-576.

[21]卢彩鸽, 刘伟成, 杨剑芳, 刘  霆, 张涛涛, 董  丹. 利迪链霉菌A01活性产物对甘蓝枯萎病菌麦角甾醇含量的影响. 植物病理学报, 2011, 41(增刊): 43-49.

Lu C G, Liu W C, Yang J F, Liu T, Zhang T T, Dong D. Effect of bioactive metabolite of Streptomyces lydicus A01 on the content of ergosterol of Fusarium oxysporum f. sp. conglutinans. Acta Phytopathologica Sinica, 2011, 41(Suppl.): 43-49. (in Chinese)

[22]方中达. 植病研究方法. 北京: 中国农业出版社, 1998.

Fang Z D. Study Method of Phytopathology. Beijing: China Agriculture Press, 1998. (in Chinese)

[23]Laroche C, Gervais P. Achievement of rapid osmotic dehydration at specific temperatures could maintain high Saccharomyces cerevisiae viability. Applied Microbiology and Biotechnology, 2003, 60(6): 743-747.

[24]张致平, 姚天爵. 抗生素与微生物产生的生物活性物质. 北京: 化学工业出版社, 2005: 302, 418.

Zhang Z P, Yao T J. Antibiotics and Bioactive Substance Produced by Microorganism. Beijing: Chemistry and Technology Press, 2005: 302, 418. (in Chinese)

[25]Takeuchi M, Inukai M, Enokita R, Iwado S, Takahashi S, Arai M. Malioxamycin, a new antibiotic with spheroplast-forming activity. I. Producing organism, fermentation, isolation and characterization. The Journal of Antibiotics, 1980, 33(11): 1213-1219.

[26]Hayakawa Y, Kanamaru N, Shimazu A, Seto H. Lydicamycin, a new antibiotic of a novel skeletal type I. Taxonomy, fermentation, isolation and biological activity. The Journal of Antibiotics, 1991, 44(3): 282-287.

[27]Singh S K, Gurusiddaiah S. Production, purification, and characterization of chandramycin, a polypeptide antibiotic from Streptomyces lydicus. Antimicrobial Agents and Chemotherapy, 1984, 26(3): 394-400.

[28]Zhang L, Zhang Y, Zhou Y M, Shuang A, Zhou Y X, Cheng J. Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. Journal of Antimicrobial Chemotherapy, 2002, 49(6): 905-915.

[29]董贤惠, 钱  涛, 高维娟. 纳他霉素等多烯类抗生素作用机制及研究方法. 中国现代应用药学, 2010, 27(10): 878-882.

Dong X H, Qian T, Gao W J. The mechanism of action and research methods of natamycin and polyene antimycotics. Chinese Journal of Modern Applied Pharmacy, 2010, 27(10): 878-882. (in Chinese)
[1] GAO YangYang, HE LiFei, LI BeiXing, LIN Jin, MU Wei, LIU Feng. Identification of the Pathogen Causing Pepper Anthracnose in Shandong Province and Screening of Highly Effective Fungicides [J]. Scientia Agricultura Sinica, 2017, 50(8): 1452-1464.
[2] ZHONG Shou-qin, LIU Bo, WEI Chao-fu, HU Fei-nan. The Rock Fragments (<2 mm) and Their Action Mechanism on the Shear Strength of Purple Mudstone-Developed Soils [J]. Scientia Agricultura Sinica, 2015, 48(23): 4846-4858.
[3] GAO Fen-12, WU Yuan-Hua-2, WANG Meng-Liang-1. Action of the Metabolite Produced by Streptomyces cacaoi Strain 182-2 on Alternaria alternata [J]. Scientia Agricultura Sinica, 2013, 46(23): 4933-4940.
[4] DING Chuan-Yu, QIAO Huan-Ying, SHEN Qi-Rong, RAN Wei, CHEN Wei. Control Effect and Action Mechanism Research of Bio-Organic Fertilizer on Eggplant Bacterial Wilt [J]. Scientia Agricultura Sinica, 2012, 45(2): 239-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!