Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (7): 1219-1229.doi: 10.3864/j.issn.0578-1752.2016.07.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

The Development of CRISPR/Cas9 System and Its Application in Crop Genome Editing

JING Run-chun, LU Hong   

  1. China Golden Marker (Beijing) Biotechnology Limited Company, Beijing 102206
  • Received:2015-11-13 Online:2016-04-01 Published:2016-04-01

Abstract: In this review, the steps of development of the CRISPR/Cas9 genome editing system and its applications in various plant genomes were highlighted. The CRISPR/Cas9 genome editing technology originates from the prokaryotic adaptive immune systems that confer resistance to foreign genetic elements such as plasmids and phages. The natural CRISPR/Cas systems show extensive structural and functional diversity. Based on the Cas protein contents and amino acid sequences, the natural CRISPR/Cas systems have been classified into three major classes, Type I, TypeⅡ and Type III. The TypeⅡCRISPR/Cas system is the engineered one for targeted genome editing purpose in most of cases so far, as it needs optimization of the Cas expression and design of the sgRNA only. In 2013, the first applications of CRISPR/Cas9 genome editing technology in plants were published. Since then, the CRISPR/Cas9 system has been used in various plant species for targeted genome editing. Like ZFNs and TALENs, CRISPR/Cas9 system uses engineered nuclease to generate double-strand breaks (DSBs) on the targeted DNA site, and subsequently to stimulate cellular DNA repair mechanisms by exploiting either NHEJ pathway or HDR pathway to generate small insertions/deletions/genome modifications. CRISPR/Cas9 technology allows researchers to perform targeted mutagenesis on target genes of different crops, precisely and easily changing the sequences and functions of particular genes at exact chromosomal locations in different plant genomes. Compared with ZFNs and TALENs technologies, CRISPR/Cas9 genome editing system is based on RNA-guided engineered nucleases, and is easier to manipulate. Furthermore, CRISPR/Cas9 is capable of introducing DSBs at multiple sites. The potential of multiplexing provides practical advantages over ZFNs and TALENs technologies, to edit multiple target genes in the same pathway simultaneously. Due to the practical advantages of CRISPR/Cas9 over the other genome editing technologies, it establishes a prosperous outlook in gene discovery and trait development in crop genetic improvement and breeding studies. In this review, the possible applications of CRISPR/Cas9 genome editing technique in various aspects of plant genetics and breeding were also discussed, except the targeted genome editing. CRISPR/Cas9 genome editing technology is another stepping stone in utilizing genetic manipulation in genetic studies and breeding, after genetic modification. Unlike genetic modification, CRISPR/Cas9 genome editing technique generates phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis. This ambiguity challenges the current GMO regulatory definitions, and provides a potential barrier for further use of CRISPR/Cas9 genome editing technique in crop genetics and breeding.

Key words: CRISPR/Cas9 system, genome targeted editing, plant genomes, gene function, crop genetics and breeding

[1]    Doudna J A, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): 1258096.
[2]    Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN and CRISPR/Cas- based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397-405.
[3]    Barrangou R. Cas9 targeting and CRISPR revolution. Science, 2014, 344(6185): 707-708.
[4]    Petolino J F. Genome editing in plants via designed zinc finger nucleases. In Vitro Cellular & Developmental Biology, 2015, 51(1): 1-8.
[5]    Bogdanove A J, Voytas D F. TAL effectors: Customizable proteins for DNA targeting. Science, 2011, 333(6051): 1843-1846.
[6]    Vestergaard G, Garrett R A, Shah S A. CRISPR adaptive immune systems of Archaea. RNA Biology, 2014, 11(2): 156-167.
[7]    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169: 5429-5433.
[8]    Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962): 167-170.
[9]    Makarova K S, Grishin N V, Shabalina S A, Wolf Y I, Koonin E V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 2006, 1: 7.
[10]   Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes.Science, 2007, 315(5819): 1709-1712.
[11]   Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier  E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.
[12]   Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[13]   Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
[14]   Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Science of the USA, 2014, 111(31): 11461-11466.
[15]   Duan J, Lu G, Xie Z, Lou M, Luo J, Guo L, Zhang Y. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Research, 2014, 24(8): 1009-1012.
[16]   Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826.
[17]   Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 2015, 33: 41-52.
[18]   Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant, 2013, 6: 2008-2011.
[19]   Feng Z, Zhang B, Ding W, Liu X, Yang D L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013, 23(10): 1229-1232.
[20]   Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D L, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu J K. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas- induced gene modifications in Arabidopsis. Proceedings of the National Academy of Science of the USA, 2014, 111(12): 4632-4637.
[21]   Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L J. Targeted mutagenesis in rice using CRISPR-Cassystem. Cell Research, 2013, 23: 1233-1236.
[22]   Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 2014, 12(6): 797-807.
[23]   Masafumi M, Toki S, Endo M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Reports, 2015, 34(10): 1807-1815.
[24]   Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR. Journal of Genetics and Genomics, 2014, 41: 63-68.
[25]   Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947-951.
[26]   Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 2013, 6: 1975-1983.
[27]   Xing H L, Dong L, Wang Z P, Zhang H Y, Han C Y. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014, 14: 327. , Liu B, Wang X C, Chen Q J
[28]   Wang Z P, Xing H L, Dong L, Zhang H Y, HanChen Q J. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 2015, 16: 144. C Y, Wang X C
[29]   Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li  H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 2015, 8(8): 1274-1284.
[30]   Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Science of the USA, 2015,112(11): 3570-3575.
[31]   Zhang L L, Zhou Q. CRISPR/Cas technology: A revolutionary approach for genome engineering. Science China Life Sciences, 2014, 57(6): 639-640.
[32]   D'Halluin K, Ruiter R.Directed genome engineering for genome optimization. The International Journal of Developmental Biology, 2013, 57(6/8): 621-627.
[33]   Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 2013, 9(1): 39.
[34]   Qiu P, Shandilya H, D'Alessio J M, O'Connor K, Durocher J, Gerard G F. Mutation detection using Surveyor nuclease. BioTechniques, 2004, 36: 702-707.
[35]   Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases  and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal, 2014, 79(2): 348-359.
[36]   Bell C C, Magor G W, Gillinder K R, Perkins A C. A high-throughput screening strategy for detecting CRISPR/Cas9 induced mutations using next-generation sequencing. BMC Genomics, 2014, 15: 1002.
[37]   Mali P, Esvelt K M, Church G M. Cas9 as a versatile tool for engineering biology. Nature Methods, 2013, 10(10): 957-963.
[38]   Gilbert L A, Larson M H, Morsut L, Liu Z, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S. Cell, 2013, 154(2): 442-451.CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
[39] Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida  M, Mahfouz M M. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnology Journal, 2015, 13(4): 578-589.
[40]   Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B. Cell, 2013, 155(7): 1479-1491. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system.
[41]   Maeder M L, Angstman J F, Richardson M E, Linder S J, Cascio V M, Tsai S Q, Ho Q H, Sander J D, Reyon D, Bernstein B E, Costello J F, Wilkinson M F, Joung J K. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature Biotechnology, 2013, 31(12): 1137-1142.
[42]   Hale C R, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch A M, Glover C V, Graveley B R, Terns R M, Terns M P. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Molecular Cell, 2012, 45(3): 292-302.
[43]   Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proceedings of the National Academy of Science of the USA, 2015, 112(7): 2275-2280.
[44]   Liu C M. AUXIN BINDING PROTEIN 1 (ABP1): A matter of fact. Journal of Integrative Plant Biology, 2015, 57(3): 234-235.
[45]   Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686-688.
[46]   Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports, 2015, 5: 10342.
[47]   Brooks C, Nekrasov V, Lippman Z B, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 2014, 166(3): 1292-1297.
[48]   Li J F, Zhang D, Sheen J. Cas9-based genome editing in Arabidopsis and tobacco. Methods in Enzymology, 2014, 546: 459-472.
[49]   Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691.
[50]   Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 2014, 7(1): 5.
[51]   Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V.Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 2015, 32: 76-84.
[52]   Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K. Efficient CRISPR/ Cas9-mediated targeted mutagenesis in populus in the first generation. Scientific Reports, 2015, 5: 12217.
[53]   Nagamangala K C, Sargent D J, Velasco R, Maffei M E, Malnoy M. Looking forward to genetically edited fruit crops. Trends in Biotechnology, 2015, 33(2): 62-64.
[54]   Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S.  Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease.Nature Biotechnology, 2013, 31(8): 691-693.
[55]   Zhou H, Liu B, Weeks D P, Spalding M H, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 2014, 42(17): 10903-10914.
[56]   Svitashev S, Young J K, Schwartz C, Gao H, Falco S C, Cigan A M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 2015, 169: 931-945.
[57]   Chiu H, Schwartz H T, Antoshechkin I, Sternberg P W.Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics, 2013, 195(3): 1167-1171.
[58]   Xu R F, Li H, Qin R Y, Li J, Qiu C H, Yang Y C, Ma H, Li L, Wei P C, Yang J B. Generation of inheritable and “transgene cleantargeted genome-modified rice in later generations using the CRISPR/Cas9 system. Scientific Reports, 2015, 5: 11491.
[59]   Huang S, Weigel D, Beachy R N, Li J. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109-111.
[1] LI Jie,LUO JiangHong,YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables [J]. Scientia Agricultura Sinica, 2021, 54(10): 2154-2166.
[2] YAN QingDi, ZHAO YaLin, ZHANG Hao, GAO Jing, GAO MengZhu, WANG Qian, WANG Rui, WANG FengRu, DONG JinGao. Analysis on Gene Feature and Function of the Subfamily Members Containing START Domain Only in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2017, 50(17): 3274-3285.
[3] WANG CongCong, ZHANG XiaoHong, WANG XiaoYan, ZHANG Pan, FAN ShuLi, PANG ChaoYou, MA QiFeng, WEI HengLing, WANG HanTao, SU JunJi, YU ShuXun . The Expression Patterns and Function Analysis of GhFLP5, a Gene Related to Flowering in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2017, 50(12): 2220-2231.
[4] XU Dong-bei, YU Yue-hua, HAN Qiao-ling, MA Ya-nan, GAO Shi-qing, TIAN Ye, XU Zhao-shi, LI Lian-cheng, QU Yan-ying, MA You-zhi, CHEN Ming, CHEN Yao-feng. Characteristics and Function of a GmDREB5-Interacting Protein GmUBC13 in Soybean [J]. Scientia Agricultura Sinica, 2014, 47(18): 3534-3544.
[5] . Characterization, Function and Expression Analysis of Ammonium TransporterGene OsAMT1;4 and OsAMT5 in Rice (Oryza sativa) [J]. Scientia Agricultura Sinica, 2007, 40(11): 2395-2402 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!