Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (21): 4558-4568.doi: 10.3864/j.issn.0578-1752.2013.21.019

• HORTICULTURE • Previous Articles     Next Articles

Changes of Histological Structure and Water Potential of Huping Jujube Fruit Cracking

 WANG  Bao-Ming-1, DING  Gai-Xiu-1, WANG  Xiao-Yuan-1, FU  Chun-Bao-1, QIN  Guo-Jie-1, YANG  Jun-Qiang-1, CANG  Guo-Ying-1, 2 , WEN  Peng-Fei-2   

  1. 1.Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031;
    2.College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2013-01-23 Online:2013-11-01 Published:2013-07-24

Abstract: 【Objective】 The changes of histological structure and water potential during Huping jujube fruit development were studied in order to provide a reliable evidence for better understanding of the mechanism of fruit cracking. 【Method】 The changes in composition of cell wall and the histological structure, as well as the pericarp cell apoptosis were studied during the fruit development by paraffin slice, TUNEL detection and regular physiological and biochemical technology. 【Result】 The fruit cracking of Huping jujube occurred mainly at the part-red stage to the full-red stage, and no obvious cracking was observed at the young fruit and swelling stages. During the fruit development, the content of protopectin and cellulose in pericarp decreased gradually, while the water soluble pectin increased. Furthermore, the activity of SOD, POD, and CAT decreased, and the cell membrane relative permeability increased. The results of paraffin slice indicated that there was a significant change in the histological structure during fruit development, and the obviously shrinking was found in the epidermal and hypodermic layer cells at part-red stage. The TUNEL analysis showed that there was obvious cell apoptosis in the pericarp cells at the part-red and full-red stages. The water absorbing ability of pulp was significantly higher than the pericarp, and a water potential gradient was founded between different parts of pulp, which caused the formation of water permeation system between outside, pericarp, and pulp.【Conclusion】All the results suggested that the apoptosis or death of pericarp cells at part-red stage resulted in the increasing of cell membrane relative permeability, and the free water adhered on the fruit surface driven by the water potential gradient through the ‘outside-pericarp-pulp’ system, was absorbed largely by pulp, which resulted in the fruit cracking, finally.

Key words: Huping jujube , fruit cracking , pericarp , apoptosis , water permeation system

[1]Kasai S, Hayama H, Kashimura Y, Kudo S, Osanai Y. Relationship between fruit cracking and expression of the expansin gene MdEXPA3 in ‘Fuji’ apples (Malus domestica Borkh.). Scientia Horticulturae, 2008, 116:194-198.

[2]田玉命, 韩明玉, 张满让, 王安柱, 赵彩平, 王淑莉. 油桃裂果研究进展. 果树学报, 2008, 25(4):572-576.

Tian Y M, Han M Y, Zhang M R, Wang A Z, Zhao C P, Wang S L. Advance in research on nectarine fruit cracking. Journal of Fruit Science, 2008, 25(4):572-576. (in Chinese)

[3]吴振林. 李裂果病防治研究. 园艺学报, 2012, 39(12): 2361-2368.

Wu Z L. Studies on prevention of plum fruit cracking     disease. Acta Horticulturae Sinica, 2012, 39(12): 2361-2368. (in Chinese)

[4]张林静, 桂明珠. 李的裂果机制及防止措施. 园艺学报, 2006, 33(4): 699-704.

Zhang L J, Gui M Z. Cracking mechanism of Prunus salicina and related preventions. Acta Horticulturae Sinica, 2006, 33(4): 699-704. (in Chinese)

[5]杜巍, 李新岗, 王长柱, 高文海, 王月清. 枣裂果机制研究. 果树学报, 2012, 29(3): 374-381.

Du W, Li X G, Wang C Z, Gao W H, Wang Y Q. Mechanism of fruit cracking in Zizyphus jujuba. Journal of Fruit Science, 2012, 29(3): 374-381. (in Chinese)

[6]陈辉惶, 李建贵, 张俊, 杜妍. 新疆红枣裂果机理研究进展. 新疆农业科学, 2012, 49(6):1066-1072.

Cheng H H, Li J G, Zhang J, Du Y. Research progress in   mechanism of Chinese Jujube (Ziziphus jujuba Mill.) fruit cracking in Xinjiang. Xinjiang Agricultural Sciences, 2012, 49(6):1066-1072. (in Chinese)

[7]辛艳伟, 集贤, 刘和. 裂果性不同的枣品种果皮及果肉发育特点观察研究. 中国农学通报, 2006, 22(11): 253-257.

Xin Y W, Ji X, Liu H. Observation and studies on peel and       pulp growing characters of different crack in Jujube fruit varieties. Chinese Agricultural Science Bulletin, 2006, 22(11): 253-257. (in Chinese)

[8]温明霞, 石孝均. 锦橙裂果的钙素营养生理及施钙效果研究. 中国农业科学, 2012, 45(6): 1127-1134.

Wen M X, Shi X J. Influence of calcium on fruit cracking of jincheng orange and its physiological mechanism. Scientia Agricultura Sinica, 2012, 45(6): 1127-1134. (in Chinese)

[9]马小焕, 彭良志, 淳长品, 凌丽俐, 曹立, 江才伦, 解发, 张雯雯, 古祖亮, 唐焕庆. 脐橙果皮内裂发生的解剖结构和矿质营养元素变化. 园艺学报, 2011, 38(10):1857-1864.

Ma X H, Peng L Z, Chun C P, Cao L, Jiang C L, Xie F, Zhang W W, Gu Z L. Tang H Q. Changes in Albedo microstructures and macroelement content in peels of peel pitting ‘Navel’ oranges. Acta Horticulturae Sinica, 2011, 38(10):1857-1864. (in Chinese)

[10]Zoffoli J P, Latorre B A, Naranjo P. Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Biology and Technology, 2008, 47:90-97.

[11]Hahn F. Fuzzy controller decreases tomato cracking in greenhouses. Computers and Electronics in Agriculture, 2011, 77:21-27.

[12]Sekse L. Fruit cracking in sweet cherries (Prunus avium L.). Some physiological aspects-a mini review. Scientia Horticulturae, 1665, 63:135-141.

[13]杨磊, 傅连军, 席勇, 麦麦提明•阿拉拜地, 卢春生, 张平. 影响喀什石榴裂果相关因素的初步分析. 新疆农业科学, 2010, 47(7): 1310-1314.

Yang L, Fu L J, Xi Y, Alabaidi M, Lu C S, Zhang P. Primary report on correlation fractors affecting fruit cracking of pomegranate. Xinjiang Agricultural Sciences, 2010, 47(7):1310-1314. (in Chinese)

[14]Huang X M, Wang H C, Zhong W L, Yuan W Q, Lu J M, Li J G. Spraying calcium is not an effective way to increase structural calcium in litchi pericarp. Scientia Horticulturae, 2008, 117:39-44.

[15]Khanal B P, Grimm E, Knoche M. Fruit growth, cuticle deposition, water uptake, and fruit cracking in jostaberry, gooseberry, and black currant. Scientia Horticulturae, 2011, 128:289-296.

[16]冯美利, 李杰, 曾鹏, 孙程旭, 陈思婷. 香水椰子裂果率与气候因子的通径分析. 热带作物学报, 2010, 31(11):1922-1926.

Feng M L, Li J, Zeng P, Sun C X, Cheng S T. Path analysis   between climatic factors and fruit cracking of aromatic coconut. Chinese Journal of Tropical Crops, 2010, 31(11):1922-1926. (in Chinese)

[17]杨俊强, 王宝明, 王小原. 枣裂果研究进展. 山西农业科学, 2009, 37(3):86-89.

Yang J Q, Wang B M, Wang X Y. Research progress of fruit cracking in Chinese Jujube. Journal of Shanxi Agricultural Sciences, 2009, 37(3):86-89. (in Chinese)

[18]Christensen J V. Cracking in cherries VI: Cracking susceptibility in relation to the growth rhythm of the fruit. Acta Agriculturae Scandinvica, 1973, 23:52-54.

[19]Yang W H, Deng S C, Zhu X C, Wang H C, Wu H, Huang X M. Developmental problems in over-winter off-season longan fruit. II: Development of pericarp structure. Scientia Horticulturae, 2010, 126:359-365.

[20]王小纪, 李荣周, 郝剑. 喷施大生M45防止枣裂果研究. 西北林学院学报, 2011, 26(56):135-138.

Wang X J, Li R Z, Hao J. Prevention of fruit cracking of Chinese jujube by spraying Dasheng M45. Journal of Northwest A&F University, 2011, 26(56):135-138. (in Chinese)

[21]曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京:中国轻工业出版社, 2007.

Cao J K, Jiang W B, Zhao Y M. Experimental Guide for Physiology and Biochemistry of Post-Harvest Fruits and Vegetables. Beijing: China Light Industry Press, 2007.

[23]邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.

Zou Q. Experimental Guiding of Plant Physiology. Beijing: China Agriculture Press, 2000.

[23]王爱国, 罗广华, 邵丛本. 大豆种子超氧化物歧化酶的研究. 植物生理学报, 1983, 9(1):78-83.

Wang A G, Luo G H, Shao C B. Research on superoxide dismutase of soybean seed. Acta Phytophysiologia Sinica, 1983, 9(1):78-83. (in Chinese)

[24]陈贻竹, 帕特森 B D. 低温对植物超氧物歧化酶、过氧化物酶和过氧化氢水平的影响. 植物生理学报, 1988, 14: 323-328.

Chen Y Z, Patterson B D. The effect of chilling temperature on thelevel of superoxide dismutase, catalase and hydrogen peroxide insome plant leaves. Acta Phytophysiologica Sinica, 1988, 14: 323-328. (in Chinese)

[25]曾韶西, 王以柔, 刘鸿先. 低温光照下与黄瓜子叶叶绿素降低有关的酶促反应. 植物生理学报, 1991, 17(2):177-182.

Zeng S X, Wang Y R, Liu H X. Some enzymatic reactions related to chlorophyll degradation in cucumber cotyledons under chilling in the light. Acta Phytophysiologica Sinica, 1991, 17(2):177-182. (in Chinese)

[26]Rustérucci C, Aviv D H, Hot III B F, Dangl J L, Parker J E. The disease resistance signaling components EDS1 and PAD4 are essential regulatiors of the cell death pathway controlled by LSD1 in Arabidopsis. The Plant Cell, 2001, 13:2211-2224.

[27]Faoro F, Maffi D, Cantu D, Iriti M. Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl, 2008, 53:387-401.

[28]Almeida D P F, Huber D J. Transient increase in locular pressure and occlusion of endocarpic apertures in ripening tomato fruit. Journal of Plant Physiology, 2001, 158:199-203.

[29]Maguire K M, Lang A, Banks N H, Hall A, Hopcroft D, Bennett R. Relationship between water vapour permeance of apples and micro-cracking of the cuticle. Postharvest Biology and Technology, 1999, 17:89-96.

[30]Lichter A, Dvir O, Fallik E, Cohen S, Golan R, Shemer Z, Sagi M. Cracking of cherry tomatoes in solution. Postharvest Biology and Technology, 2002, 26:305-312.

[31]李建国, 黄旭明, 黄辉白. 裂果易发性不同的荔枝品种果皮细胞壁代谢酶活性的比较. 植物生理与分子生物学学报, 2003, 29(2): 141-146.

Li J G, Huang X M, Huang H B. Comparison of the activities of enzymes related to cell-wall metabolism in pericarp between    Litchi cultivars susceptible and resistant to fruit cracking. Journal of Plant Physiology and Molecular Biology, 2003, 29(2):141-146. (in Chinese)

[32]刘铁铮. 红富士苹果果实裂纹与果皮结构及其生理指标变化研究[D]. 河北保定: 河北农业大学, 2004.

Liu T Z. Study on the peel anatomy and physiological index of fruit cracking in Red Fuji Apple[D]. Baoding, Hebei: Agricultural University of Hebei, 2004. (in Chinese)

[33]李克志, 高中山. 枣裂果机理的初步研究. 果树科学, 1990, 7(4):221-226.

Li K Z, Gao Z S. preliminary study on the mechanism of fruit cracking in Chinese jujube. Journal of Fruit Science, 1990, 7(4):221-226. (in Chinese)
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[3] LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252.
[4] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[5] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[6] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[7] MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007.
[8] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[9] HUANG Feng,WEI QiChao,LI Xia,LIU ChunMei,ZHANG ChunHui. Research Progress on Mechanisms of Apoptosis to Postmortem Tenderization in Muscle [J]. Scientia Agricultura Sinica, 2021, 54(10): 2192-2202.
[10] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[11] PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296.
[12] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[13] DU LongGang, WANG MeiXing. SLAF-marker Development and Its Application in BSA Analysis of Cellulose Content in Pericarp of Maize Kernel [J]. Scientia Agricultura Sinica, 2018, 51(8): 1421-1430.
[14] ShaoFeng DENG,ZuoDong YE,ShuangQi FAN,JinDing CHEN,JingYuan ZHANG,MengJiao ZHU,MingQiu ZHAO. Screen of MicroRNAs in Classical Swine Fever Virus-Infected PK-15 Cells and the Regulation of Virus Replication by miR-214 [J]. Scientia Agricultura Sinica, 2018, 51(21): 4157-4168.
[15] CHEN Lin-lin, HOU Ying, DING Sheng-li, SHI Yan, LI Hong-lian. Cloning and Expression Analysis of Apoptosis-Related Gene FpTatD in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2016, 49(12): 2301-2309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!