Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (9): 1881-1886.doi: 10.3864/j.issn.0578-1752.2012.09.025

• RESEARCH NOTES • Previous Articles    

Effects of Lactic Acid Bacteria on APRIL and IL-10 Secretion in Caco-2 Cells

 HUANG  Yi, HUANG  Qin, LI  Ya-Li, CUI  Zhi-Wen, LI  Wei-Fen, YU  Dong-You   

  1. 1.广西大学动物科学技术学院,南宁 530005
    2.浙江大学动物科学学院/教育部动物分子营养学重点实验室,杭州 310058
  • Received:2011-08-15 Online:2012-05-01 Published:2012-03-01

Abstract: 【Objective】 The study was designed to evaluate the immunological effects of probiotic strains Enterococcus faecium and Lactococcus lactis on production of pro-inflammatory cytokine of APRIL and anti-inflammatory cytokine interleukin-10 in intestinal epithelial cells. 【Method】Human colon adenocarcinoma cell line, Caco-2 cells were incubated with PBS (Group CT, negative control), Escherichia coli K88 (Group EC, positive control), and Enterococcus faecium (Group EF), and Lactococcus lactis (Group LL) for 2 h, respectively. Besides, Caco-2 cells were firstly treated with E. faecium and L. lactis for 1 h, respectively, and then followed by incubation with E. coli K88 for an additional 2 h (Group EF-EC and Group LL-EC). Culture supernatants were collected for analyzing the contents of APRIL and IL-10 by ELISA method. 【Result】 Results showed that E. faecium and L. lactis induced an increased release of APRIL and IL-10. Pre-culture of Caco-2 cells with E. faecium and L. lactis was capable of markedly up-regulating production of IL-10 while decreasing APRIL secretion following co-culture with E. coli K88. 【Conclusion】These findings demonstrated that E. faecium and L. lactis could activate immunity of intestinal epithelial cells by inducing APRIL and IL-10 secretion. Moreover, these two strains of lactic acid bacteria also exhibited anti-inflammatory properties via modulating the immune response in Caco-2 cells when they were infected with E. coli K88.

Key words: Caco-2 cell, Enterococcus faecium, Lactococcus lactis, Escherichia coli K88, APRIL, IL-10, ELISA

[1]Taras D, Vahjen W, Simon O. Probiotics in pigs-modulation of their intestinal distribution and of their impact on health and performance. Livestock Science, 2007, 108: 229-231.

[2]Taras D, Vahjen W, Macha M, Simon O. Performance, diarrhoea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. Journal of Animal Science, 2006, 84: 608-617.

[3]Guerra N P , Bern´ardez P F, M´endez J, Cachaldora P, Castro L P. Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Animal Feed Science and Technology, 2007, 134: 89-107.

[4]文 静, 孙建安, 周绪霞, 李卫芬. 屎肠球菌对仔猪生长性能、免疫和抗氧化功能的影响. 浙江农业学报, 2011, 23(1):1-6.

Wen J, Sun J A, Zhou X X, Li W F. Effects of Enterococcus faecium on grow performances, immunity and anti-oxidant functions of piglets. Journal of Zhejiang Agriculture, 2011, 23(1):1-6. (in Chinese)

[5]Scharek L, Guth J, Reiter K, Weyrauch K D, Taras D, Schwerk P, Schierack P, Schmidt M F G, Wieler L H, Tedin K. In?uence of      a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Veterinary Immunology and Immunopathology, 2005, 105: 151-161.

[6]Scharek L, Guth J, Filter M, Schmidt M F G. Impact of the probiotic bacteria Enterococcus faecium NCIMB 10415 (SF68) and Bacillus cereus var. toyoi NCIMB 40112 on the development of serum IgG and faecal IgA of sows and their piglets. Archives of Animal Nutrition, 2007, 61: 223- 234.

[7]Nissen L, Chingwaru W, Sgorbati B, Biavati B, Cencic A. Gut health promoting activity of new putative probiotic/protective Lactobacillus spp. strains: A functional study in the small intestinal cell model. International Journal of Food Microbiology, 2009, 135: 288-294.

[8]Tarasova E, Yermolenko E, Donets V, Sundukova Z, Bochkareva A, Borsсhev I, Suvorova M, Ilyasov I, Simanenkov V, Suvorov A N. The influence of probiotic Enterococcus faecium strain L5 on the microbiota and cytokines expression in rats with dysbiosis induced by antibiotics. Beneficial Microbes, 2010, 1(3): 265-270.

[9]Huang Y, Li Y L, Huang Q, Cui Z W, Yu D Y, Rajput I R, Hu C H and Li W F. Effect of orally administered Enterococcus faecium EF1 on intestinal cytokines and chemokines production of sucking piglets. Pakistan Veterinary Journal, 2012, 32(1): 81-84.

[10]Kimoto-Nira H, Mizumachi K, Nomura M, Kobayashi M, Fujita Y, Okamoto T, Suzuki I, Tsuji N M, Kurisaki J, Ohmomo S. Lactococcus sp. as potential probiotic lactic acid bacteria. Japan Agricultural Research Quarterly, 2007, 41(3): 181 - 189.

[11]Kimoto H, Mizumachi K, Okamoto T, Kurisaki J. New Lactococcus strain with immunomodulatory activity: enhancement of Th1-type immune response. Microbiology and Immunology, 2004, 48(2): 75-82.

[12]Suzuki C, Kimoto-Nira H, Kobayashi M, Nomura M, Sasaki K, Mizumachi K. Immunomodulatory and cytotoxic effects of various Lactococcus strains on the murine macrophage cell line J774.1. International Journal of Food Microbiology, 2008, 123: 159-165.

[13]Foligne B, Nutten S, Grangette C, Dennin V, Goudercourt D, Poiret S, Dewulf J, Brassart D, Mercenier A, Pot B. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World Journal Gastroenterol, 2007, 13(2): 236-243.

[14]He B, Xu W F, Santini P A, Polydorides A D, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A, Knowles D M, Rescigno M and Cerutti A. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity, 2007, 26: 812-826.

[15]Moore K W, de Waal Malefyt R, Coffman R L, O'Garra A. Interleukin-10 and the interleukin-10 receptor (J). Annual Review of Immunology, 2001, 19: 683-765.

[16]Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nature Reviews Immunology, 2010, 10: 170-181.

[17]Niers L E M, Timmerman H M, Rijkers G T, van Bleek G M, van Uden N O P, Knol E F, Kapsenberg M L, Kimpen J L L, Hoekstra M O. Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clinical & Experimental Allergy, 2005:1481-1489.

[18]Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P. Interaction of probiotic Lactobacillus and Bi?dobacterium strains with human intestinal epithelial cells: Adhesion properties, competition against enteropathogens and modulation of IL-8 production. International Journal of Food Microbiology, 2008, 125: 286-292.

[19]Vinderola G, Matar C, Perdigon G. Role of Intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: Involvement of toll-like receptors. Clinical and Diagnostic Laboratory Immunology, 2005, 12(9): 1075-1084.

[20]DogiC A, Galdeano C M, Perdigo´n G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria. Comparison with a probiotic strain. Cytokine, 2008, 41: 223-231.

[21]Nemeth E, Fajdiga S, Malago J, Koninkx J, Tooten P, van Dijk J. Inhibition of Salmonella-induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli. International Journal of Food Microbiology, 2006, 112: 266-274.

[22]张健锋, 毛振彪. APRIL及其受体在消化系统肿瘤中的作用研究进展. 国际消化病杂志, 2007, 27(5): 336-338.

Zhang J F, Mao Z B. Research progress of APRIL and its recepters in the digestive system carcinoma. Journal of Digestive Diseases, 2007, 27(5): 336-338. (in Chinese)

[23]Macpherson A J, McCoy K. APRIL in the intestine: A good destination for immunoglobulin A2. Immunity, 2007, 26:755-757.

[24]O’Hara A M, O’Regan P, Fanning A, O’Mahony C, MacSharry J, Lyons A, Bienenstock J, O’Mahony L, Shanahan F. Functional modulation of human intestinal epithelial cell responses by Bi?dobacterium infantis and Lactobacillus salivarius. Immunology, 2006, 118: 202-215.

[25]Lee H S, Han S Y, Bae E A, Huh C S, Ahn Y T, Lee J H, Kim D H. Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice. International Immunopharmacology, 2008, 8: 574-580.

[26]Clavel T, Haller D. Molecular interactions between Bacteria, the Epithelium, and the mucosal immune system in the intestinal tract: implications for chronic inflammatio. Current Issues in Intestinal Microbiology, 2007, 8: 25-43.

[27]杜 兴, 孙映辉. 细菌感染肠上皮细胞时的细胞因子表达水平与坏死性肠炎的关系. 中国现代医学杂志, 2002, 12(23):23-25.

Du X, Sun Y H. Correlation between cytokine of intestinal epithelial cells with bacterial infection and necrotizing entercolitis. China Journal of Modern Medicine, 2002, 12(23): 23-25. (in Chinese)

[28]Cammarota M, De Rosa M, Stellavato A, Lamberti M, Marzaioli I, Giuliano M. In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic: Emphasis on innate immunity. International Journal of Food Microbiology, 2009, 135: 90-98.

[29]Lammers K M, Brigidi P, Vitali B, Gionchetti P, Rizzello F, Caramell E, Matteuzzi D, Campieri M. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunology and Medical Microbiology, 2003, 38: 165-172.

[30]Hart A L, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, Campieri M, Kamm M A, Knight S C, Stagg A J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut, 2004, 53:1602-1609.

[31]Chon H, Choi B, Lee E, Lee S, Jeong G. Immunomodulatory effects of speci?c bacterial components of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264?7. Journal of Applied Microbiology, 2009, 107: 1588-1597.

[32]黄 怡, 黄 琴, 李卫芬, 余东游, 周绪霞. 鼠李糖乳杆菌对Caco-2细胞抗氧化功能和细胞因子分泌的影响. 畜牧兽医学报, 2012, 43(2): 250-254.

Huang Y, Huang Q, Li W F, Yu D Y.Huang Y, Huang Q, Li W F, Yu D Y, Zhou X X. Effects of Lactobacillus rhamnosus on anti-oxidative functions and cytokines secretion in Caco-2 cells. Acta Veterinaria et Zootechnica Sinica, 2012, 43(2): 250-254. (in Chinese)
[1] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[2] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[3] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[4] Xiao WEI,Qi ZHANG,Wen ZHANG,Hui LI,PeiWu LI. Improving the Sensitivity of ELISA by Large-Capacity Reaction System of Aflatoxigenic Fungi-Biomarker in Agro-products [J]. Scientia Agricultura Sinica, 2020, 53(7): 1473-1481.
[5] HuiMin HU,XueFeng PAN,Heng YANG,Chen CHEN,YinJi CHEN. Wheat Gluten, Gliadins and Glutenin Content Changes During Germination Based on the Methods of R5 ELISA and RP-HPLC [J]. Scientia Agricultura Sinica, 2020, 53(6): 1247-1255.
[6] WANG Fang, FENG Yu, ZHANG Ge, JIANG Hui, ZHU Liang-quan, DING Jia-bo. Development of Indirect ELISA for Antibody of Brucella abortus [J]. Scientia Agricultura Sinica, 2016, 49(9): 1818-1825.
[7] SHEN Lin-lin, ZOU Wen-chao, GAO Fang-luan, ZHAN Jia-sui. Strain Composition of Potato virus Y in Fujian Province Detected with the Concatenated Sequence Approach [J]. Scientia Agricultura Sinica, 2016, 49(20): 3918-3926.
[8] CHEN Zhe, SONG Ge, ZHOU Xue-ping, WU Jian-xiang. Preparation and Application of Monoclonal Antibodies Against Watermelon mosaic virus (WMV) [J]. Scientia Agricultura Sinica, 2016, 49(14): 2711-2724.
[9] CHEN Rui, FAN Xue-zheng, ZHU Yuan-yuan, ZOU Xing-qi, XU Lu, ZHANG Qian-yi, WANG Qin, ZHAO Qi-zu. Prevalence Study and Phylogenetic Analysis of Bovine Viral Diarrhea Virus in Free-Roaming Beef Cattle in Western China [J]. Scientia Agricultura Sinica, 2016, 49(13): 2635-2641.
[10] LU Hui-xiang, Lü Chang-wen, WU Zheng-dan, LUO Kai, YIN Wang, YANG Hang, WANG Ji-chun, ZHANG Kai. Development of Detection Method for Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) Through Fluorescence Quantitative RT-PCR [J]. Scientia Agricultura Sinica, 2016, 49(1): 90-102.
[11] JIN Xin, ZHANG Man, FAN Yan-ru, WANG Pei, YANG Yin-feng. Effects of Saccharomyces cerevisiae on the Expression of SBD-1 in Cultured Ruminal Epithelial Cells of Sheep [J]. Scientia Agricultura Sinica, 2015, 48(19): 3910-3918.
[12] MOU Hui-1, GAO Mei-Xu-1, PAN Jia-Rong-2, ZHI Yu-Xiang-3, ZHAO Jie-1, LIU Chao-Chao-1, LI Shu-Jin-1, ZHAO Xin-1. Selection and Identification of Critical Amino Acids in Epitope 187-202 of Pen a1 [J]. Scientia Agricultura Sinica, 2014, 47(9): 1793-1801.
[13] ZHANG Liu-Quan-1, 2 , ZHANG Xiao-1, LIU Yuan-1, XU Zhong-Xin-1, ZHANG Cun-Zheng-1, XIE Ya-Jing-1, KOU Li-Ping-2, LIU Xian-Jin-1. Selection and Identification of Anti-Cry1Ac scFv from a Phage Display Antibody Library by Magnetic Beads and Sandwich ELISA Immunoassay [J]. Scientia Agricultura Sinica, 2014, 47(9): 1802-1810.
[14] LI Xin-peng, JIANG Jin-qing, QIAN Ai-dong, WANG Zi-liang, FAN Guo-ying, SHAN Xiao-feng, KANG Yuan-huan, LI Yi. Development of an ELISA Method for Multi-Residue Detecting of Fluoroquinolones [J]. Scientia Agricultura Sinica, 2014, 47(23): 4726-2735.
[15] JIA Guo-Chao-1, 2 , ZHI Ai-Min-1, LI Meng-Qin-2, SONG Chun-Mei-1, WANG Ling-Ling-1, LIU Ru-Biao-1, HU Xiao-Fei-1, WANG Fang-Yu-1, ZHANG Gai-Ping-1. Study on Rapid Detection Kit of Fleroxacin by icELISA [J]. Scientia Agricultura Sinica, 2014, 47(11): 2251-2261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!