Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1293-1302.doi: 10.3864/j.issn.0578-1752.2012.07.007

• PLANT PROTECTION • Previous Articles     Next Articles

Advances in Research on Cell Biology of Potyvirus

 CUI  Xiao-Yan, WEI  Tai-Yun, CHEN  Xin   

  1. 1.江苏省农业科学院蔬菜研究所,南京 210014
    2.福建农林大学植物保护学院,福州 350002
  • Received:2011-05-01 Online:2012-04-01 Published:2012-01-19

Abstract: Potyvirus, family Potyviridae, is the largest genus of plant virus, causing significant losses in a broad range of host plants. In recent years, researchers have contributed to the new advances of cell biology, so in this article the molecular biology involved in genome amplification, cell-to-cell and long-distance movement, symptom during potyviruses systemic infection were referred.

Key words: Potyvirus, cell biology, amplification

[1]Shukla D D, Ward C W, Brunt A A. The Potyviridae. UK: CAB International, 1994.

[2]Fauquet M C, Mayo M A. Abbreviations for plant virus names-1999. Archives of Virology, 1999, 144: 1249-1273.

[3]Browning K S. The plant translational apparatus. Plant Molecular Biology, 1996, 32(1/2): 107-144.

[4]Bailey-Serres J. Selective translation of cytoplasmic mRNAs in plants. Trends in Plant Science, 1999, 4(4): 142-148.

[5]Wittmann S, Chatel H, Fortin M G, Laliberte J F. Interaction of the viral protein genome linked of Turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 1997, 234: 84-92.

[6]Lellis A D, Kasschau K D, Whitham S A, Carrington J C. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for elF(iso)4E during potyvirus infection. Current Biology, 2002, 12(12): 1046-1051.

[7]Kang B C, Yeam I, Frantz J D, Murphy J F, Jahn M M. The pvr1 locus in Capsicum encodes a translation initiation factor elF4E that interacts with Tobacco etch virus VPg. The Plant Journal, 2005, 42: 392-405.

[8]Leonard S, Viel C, Beauchemin C, Daigneault N, Fortin M G, Laliberte J F. Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. Journal of General Virology, 2004, 85: 1055-1063.

[9]Schaad M C, Lellis A D, Carrington J C. VPg of Tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. Journal of Virology, 1997, 71(11): 8624-8631.

[10]Borgstrøm B, Johansen I E. Mutations in Pea seedborne mosaic virus genome-linked protein VPg alter pathotype-specific virulence in Pisum sativum. Molecular Plant-Microbe Interactions, 2001, 14(6): 707-714.

[11]Keller K E, Johansen I E, Martin R R, Hampton R O. Potyvirus genome-linked protein (VPg) determines Pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Molecular Plant-Microbe Interactions, 1998, 11(2): 124-130.

[12]Moury B, Morel C, Johansen E, Guilbaud L, Souche S, Ayme V, Caranta C, Palloix A, Jacquemond M. Mutations in Potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Molecular Plant-Microbe Interactions, 2004, 17(3): 322-329.

[13]Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988, 334(6180): 320-325.

[14]Simón-Buela L, Guo H S, Garcia J A. Long sequences in the 5' noncoding region of Plum pox virus are not necessary for viral infectivity but contribute to viral competitiveness and pathogenesis. Virology, 1997, 233: 157-162.

[15]Niepel M, Gallie D R. Identification and characterization of the functional elements within the Tobacco etch virus 5' leader required for cap-independent translation. Journal of Virology, 1999, 73: 9080-9088.

[16]Schaad M C, Jensen P E, Carrington J C. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. The EMBO Journal, 1997, 16(13): 4049-4059.

[17]Bienz K, Egger D, Pfister T, Troxler M. Structural and functional characterization of the poliovirus replication complex. Journal of Virology, 1992, 66(5): 2740-2747.

[18]Restrepo-Hartwig M A, Carrington J C. Regulation of nuclear transport of a plant potyvirus protein by autoproteolysis. Journal of Virology, 1992, 66(9): 5662-5666.

[19]Restrepo-Hartwig M A, Carrington J C. The Tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. Journal of Virology, 1994, 68(4): 2388-2397.

[20]Li X H, Valdez P, Olvera R E, Carrington J C. Functions of the Tobacco etch virus RNA polymerase (NIb): Subcellular transport and protein-protein interaction with VPg/proteinase (NIa). Journal of Virology, 1997, 71: 1598-1607.

[21]Hong Y, Hunt A G. RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology, 1996, 226: 146-151.

[22]Murphy J F, Klein P G, Hunt A G, Shaw J G. Replacement of the tyrosine residue that links a potyviral VPg to the viral RNA is lethal. Virology, 1996, 220: 535-538.

[23]Schaad M C, Haldeman-Cahill R, Cronin S, Carrington J C. Analysis of the VPg-proteinase (NIa) encoded by Tobacco etch potyvirus: Effects of mutations on subcellular transport, proteolytic processing, and genome amplification. Journal of Virology, 1996, 70(10): 7039-7048.

[24]Fellers J, Wan J, Hong Y, Collins G B, Hunt A G. In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. Journal of General Virology, 1998, 79: 2043-2049.

[25]Hong Y, Levay K, Murphy J F, Klein P G, Shaw J G, Hunt A G. A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology, 1995, 214: 159-166.

[26]Daros J A, Schaad M C, Carrington J C. Functional analysis of the interaction between VPg-proteinase (NIa) and RNA polymerase (NIb) of Tobacco etch potyvirus, using conditional and suppressor mutants. Journal of Virology, 1999, 73(10): 8732-8740.

[27]Thivierge K, Cotton S, Dufresne P J, Mathieu I, Beauchemin C, Ide C, Fortin M G, Laliberte J F. Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. Virology, 2008, 377: 216-225.

[28]Beauchemin C, Boutet N, Laliberte J F. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. Journal of Virology, 2007, 81(2): 775-782.

[29]Beauchemin C, Laliberte J F. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during Turnip mosaic virus infection. Journal of Virology, 2007, 81(20): 10905-10913.

[30]Dufresne P J, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, Laliberte J F, Fortin M G. Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology, 2008, 374: 217-227.

[31]Urcuqui-Inchima S, Haenni A L, Bernardi F. Potyvirus proteins: A wealth of functions. Virus Research, 2001, 74: 157-175.

[32]Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T, Wang A, Laliberté J F. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments and are each derived from a single viral genome. Journal of Virology, 2009, 83(20): 10460-10471.

[33]Wei T, Wang A M. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. Journal of Virology, 2008, 82(24): 12252-12264.

[34]Cui X Y, Wei T Y, Chowda-Reddy R V, Sun G Y, Wang A M. The Tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology, 2010, 397(1): 56-63.

[35]Wei T Y, Huang T S, McNeil J, Laliberté J F, Hong J, Nelson R S, Wang A M. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. Journal of Virology, 2010, 84(2): 799-809.

[36]郑  瑛, 洪  健, 祝  建, 陈集双. 应用高压冷冻-冷冻置换技术研究受Potyvirus侵染的寄主细胞超微结构. 电子显微学报, 2010, 29(2): 146-151.

Zheng Y, Hong J, Zhu J, Chen J S. Ultrastructure of Potyvirus-infected plant prepared by high pressure freezing and freeze substitution. Journal of Chinese Electron Microscopy Society, 2010, 29(2): 146-151. (in Chinese)

[37]Miller S, Krijnse-Locker J. Modification of intracellular membrane structures for virus replication. Nature Reviews Microbiology, 2008, 6: 363-374.

[38]Carette J E, Van Lent J, MacFarlane S A, Wellink J, Van Kammen A. Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. Journal of Virology, 2002, 76(12): 6293-6301.

[39]Torrance L, Cowan G H, Gillespie T, Ziegler A, Lacomme C. Barley stripe mosaic virus-encoded proteins triple-gene block 2 and γb localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication. Journal of General Virology, 2006, 87: 2403-2411.

[40]Haupt S, Cowan G H, Ziegler A, Roberts A G, Oparka K J, Torrance  L. Two plant-viral movement proteins traffic in the endocytic recycling pathway. The Plant Cell, 2005, 17: 164-181.

[41]Dolja V V, Haldeman R, Robertson N L, Dougherty W G, Carrington J C. Distinct functions of capsid protein in assembly and movement of Tobacco etch potyvirus in plants. The EMBO Journal, 1994, 13(6): 1482-1491.

[42]Dolja V V, Haldeman-Cahill R, Montgomery A E, Vandenbosch K A, Carrington J C. Capsid protein determinants involved in cell-to-cell and long distance movement of Tobacco etch potyvirus. Virology, 1995, 206: 1007-1016.

[43]Nicolas O, Dunnington S W, Gotow L F, Pirone T P, Hellmann G M. Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology, 1997, 237: 452-459.

[44]Rojas M R, Zerbini F M, Allison R F, Gilbertson R L, Lucas W J. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology, 1997, 237: 283-295.

[45]Carrington J C, Jensen P E, Schaad M C. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. The Plant Journal, 1998, 14(4): 393-400.

[46]Wei T Y, Zhang C W, Hong J, Xiong R Y, Kasschau K D, Zhou X P, Carrington J C, Wang A M. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathogens, 2010, 6(6): e1000962.

[47]Wen R H, Hajimorad M R. Mutational analysis of the putative pipo of Soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology, 2010, 400: 1-7.

[48]Jagadish M N, Huang D, Ward C W. Site-directed mutagenesis of a potyvirus coat protein and its assembly in Escherichia coli. Journal of General Virology, 1993, 74: 893-896.

[49]Roudet-Tavert G, German-Rerana S, Delaunay T, Delecolle B, Candresse T, Le Gall O. Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. Journal of General Virology, 2002, 83: 1765-1770.

[50]Lain S, Riechmann J L, Garcia J A. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Research, 1990, 18(23): 7003-7006.

[51]Eagles R M, Balmori-Melian E, Beck D L, Gardner R C, Forster R L S. Characterization of NTPase, RNA-binding and RNA-helicase activities of the cytoplasmic inclusion protein of tamarillo mosaic potyvirus. European Journal of Biochemistry, 1994, 224: 677-684.

[52]Klein P G, Klein R R, Rodriguez-Cerezo E, Hunt A G, Shaw J G. Mutational analysis of the Tobacco vein mottling virus genome. Virology, 1994, 204(2): 759-769.

[53]Roberts I M, Wang D, Findlay K, Maule A J. Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology, 1998, 245: 173-181.

[54]Lee J Y, Lucas W J. Phosphorylation of viral movement proteins-regulation of cell-to-cell trafficking. TRENDS in Microbiology, 2001, 9(1): 5-7.

[55]Puustinen P, Rajamäki M L, Ivanov K I, Valkonen J P T, Mäkinen K. Detection of the potyviral genome-linked protein VPg in virions and its phosphorylation by host kinases. Journal of Virology, 2002, 76(24): 12703-12711.

[56]Rajamäki M L, Valkonen J P T. Viral genome-linked protein (VPg) controls accumulation and phloem loading of a Potyvirus in inoculated potato leaves. Molecular Plant-Microbe Interactions, 2002, 15(2): 138-149.

[57]Carrington J C, Kasschau K D, Mahajan S K, Schaad M C. Cell-to-cell and long-distance transport of viruses in plants. The Plant Cell, 1996, 8: 1669-1681.

[58]Maia I G, Haenni A L, Bernardi F. Potyviral HC-Pro: a multifunctional protein. Journal of General Virology, 1996, 77: 1335-1341.

[59]Mahajan S, Dolja V V, Carrington J C. Roles of the sequence encoding Tobacco etch virus capsid protein in genome amplification: Requirements for the translation process and a cis-active element. Journal of Virology, 1996, 70: 4370-4379.

[60]Cronin S, Verchot J, Haldeman-Cahill R, Schaad M C, Carrington J C. Long-distance movement factor: A transport function of the potyvirus helper component proteinase. The Plant Cell, 1995, 7: 549-559.

[61]Kasschau K D, Cronin S, Carrington J C. Genome amplification and long-distance movement functions associated with the central domain of Tobacco etch potyvirus helper component-proteinase. Virology, 1997, 228: 251-262.

[62]Kimalov B, Gal-On A, Stav R, Belausov E, Arazi T. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for Zucchini yellow mosaic virus systemic infectivity. Journal of General Virology, 2004, 85: 3421-3430.

[63]Rajamäki M L, Valkonen J P T. The 6K2 protein and the VPg of Potato virus A are determinants of systemic infection in Nicandra physaloides. Molecular Plant-Microbe Interactions, 1999, 12(12): 1074-1081.

[64]Spetz C, Valkonen J P T. Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Molecular Plant-Microbe Interactions, 2004, 17(5): 502-510.

[65]Whitham S A, Yamamoto M L, Carrington J C. Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 772-777.

[66]Mahajan S K, Chisholm S T, Whitham S A, Carrington J C. Identification and characterization of a locus (RTM1) that restricts long-distance movement of Tobacco etch virus in Arabidopsis thaliana. The Plant Journal, 1998, 14(2): 177-186.

[67]Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, García J A, Candresse T. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Molecular Plant-Microbe Interactions, 2009, 22(10): 1302-1311.

[68]Riechmann J L, Cervera M T, Garcia J A. Processing of the Plum pox virus polyprotein at the P3-6K1 junction is not required for virus viability. Journal of General Virology, 1995, 76: 951-956.

[69]Sáenz P, Cervera M T, Dallot S, Quiot L, Quiot J B, Riechmann J L, García J A. Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. Journal of General Virology, 2000, 81: 557-566.

[70]Chu M, Lopez-Moya J J, Llave-Correas C, Pirone T P. Two separate regions in the genome of the Tobacco etch virus contain determinants of the wilting response of tabasco pepper. Molecular Plant-Microbe Interactions, 1997, 10(4): 472-480.

[71]Johansen I E, Dougherty W G, Keller K E, Wang D, Hampton R O. Multiple viral determinants affect seed transmission of Pea seedborne mosaic virus in Pisum sativum. Journal of General Virology, 1996, 77: 3149-3154.

[72]Atreya C D, Atreya P L, Thornbury D W, Pirone T P. Site-directed mutations in the potyvirus HC-PRO gene affect helper component activity, virus accumulation, and symptom expression in infected tobacco plants. Virology, 1992, 191(1): 106-111.

[73]Suehiro N, Natsuaki T, Watanabe T, Okuda S. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 2004, 85: 2087-2098.

[74]Rodriguez-Cerezo E, Shaw J G. Two newly detected nonstructural viral proteins in potyvirus-infected cells. Virology, 1991, 185(2): 572-579.

[75]Gunasinghe U B, Berger P H. Association of potato virus Y gene products with chloroplasts in tobacco. Molecular Plant-Microbe Interactions, 1991, 4(5): 452-457.

[76]Naderi M, Berger P H. Effects of chloroplast targeted Potato virus Y coat protein on transgenic plants. Physiological and Molecular Plant Pathology, 1997, 50: 67-83.

[77]Reinero A, Beachy R N. Reduced photosystem II activity and accumulation of viral coat protein in chloroplasts of leaves infected with Tobacco mosaic virus. Plant Physiology, 1989, 89: 111-116.

[78]Culver J N. Tobacco mosaic virus assembly and disassembly: Determinants in pathogenicity and resistance. Annual Review of Phytopathology, 2002, 40: 287-308.

[79]Jimenez I, Lopez L, Alamillo J M, Valli A, Garcia J A. Identification of a Plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Molecular Plant-Microbe Interactions, 2006, 19(3): 350-358.

[80]McClintock K, Lamarre A, Parsons V, Laliberte J F, Fortin M G. Identification of a 37 kDa plant protein that interacts with the Turnip mosaic potyvirus capsid protein using anti-idiotypic-antibodies. Plant Molecular Biology, 1998, 37: 197-204.

[81]Shi Y, Chen J, Hong X, Chen J, Adams M J. A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Molecular Plant Pathology, 2007, 8(6): 785-790.

[82]Lin L, Luo Z P, Yan F, Lu Y W, Zheng H Y, Chen J P. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 2011, 43(1): 90-92.

[83]Jin Y, Ma D, Dong J, Li D, Deng C, Jin J, Wang T. The HC-Pro protein of Potato virus Y interacts with NtMinD of tobacco. Molecular Plant-Microbe Interactions, 2007, 20(12): 1505-1511.

[84]Cheng Y Q, Liu Z M, Xu J, Zhou T, Wang M, Chen Y T, Li H F, Fan Z F. HC-Pro protein of Sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. Journal of General Virology, 2008, 89: 2046-2054.

[85]Feki S, Loukili M J, Triki-Marrakchi R, Karimova G, Old I, Ounouna H, Nato A, Nato F, Guesdon J L, Lafaye P, Ben Ammar Elgaaied A. Interaction between tobacco ribulose-l,5-biphosphate carboxylase/ oxygenase large subunit (RubisCO-LSU) and the PVY coat    protein (PVY-CP). European Journal of Plant Pathology, 2005, 112: 221-234.

[86]Jenner C E, Tomimura K, Ohshima K, Hughes S L, Walsh J A. Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology, 2002, 300(1): 50-59.

[87]Jenner C E, Wang X, Tomimura K, Ohshima K, Ponz F, Walsh J A. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Molecular Plant-Microbe Interactions, 2003, 16(9): 777-784.

[88]Jenner C E, Sánchez F, Nettleship S B, Foster G D, Ponz F, Walsh J A. The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Molecular Plant-Microbe Interactions, 2000, 13: 1102-1108.

[89]Seo J K, Ohshima K, Lee H G, Son M, Choi H S, Lee S H, Sohn S H, Kim K H. Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology, 2009, 393: 91-103.

[90]Zhang C, Hajimorad M R, Eggenberger A L, Tsang S, Whitham S A, Hill J H. Cytoplasmic inclusion cistron of Soybean mosaic virus serves as a virulence determinant on Rsv3-genotype soybean and a symptom determinant. Virology, 2009, 391(2): 240-248.

[91]Johansen I E, Lund O S, Hjulsager C K, Laursen J. Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. Journal of Virology, 2001, 75(14): 6609-6614.

[92]Hajimorad M R, Eggenberger A L, Hill J H. Loss and gain of elicitor function of Soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hypersensitive response maps to P3. Journal of Virology, 2005, 79(2): 1215-1222.

[93]Hajimorad M R, Eggenberger A L, Hill J H. Strain-specific P3 of Soybean mosaic virus elicits Rsv1-mediated extreme resistance, but absence of P3 elicitor function alone is insufficient for virulence on Rsv1-genotype soybean. Virology, 2006, 345: 156-166.

[94]Chowda-Reddy R V, Sun H, Chen H, Poysa V, Ling H, Gijzen M, Wang A. Mutations in the P3 protein of Soybean mosaic virus G2 isolates determine virulence on Rsv4-genotype soybean. Molecular Plant-Microbe Interactions, 2011, 24(1): 37-43.

[95]Eggenberger A L, Hajimorad M R, Hill J H. Gain of virulence on Rsv1-genotype soybean by an avirulent Soybean mosaic virus requires concurrent mutations in both P3 and HC-Pro. Molecular Plant-Microbe Interactions, 2008, 21: 931-936.

[96]Revers F, Le Gall O, Candresse T, Maule A J. New advances in understanding the molecular biology of plant/potyvirus interactions. Molecular Plant-Microbe Interactions, 1999, 12(5): 367-376.

[97]Riechmann J L, Lain S, Garcia J A. Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 1992, 73: 1-16.
[1] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[2] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[3] XI Wei-jun, LI Jiang-hong, CHEN Da-fu, LIANG Qin. Diagnosis of the Ascosphaera apis by the Loop-Mediated  Isothermal Amplification [J]. Scientia Agricultura Sinica, 2016, 49(4): 765-774.
[4] WEI Shuang, WANG Tian-jie, LONG Yang, ZHOU Guang-biao, LIN Chun-gui, HUANG Shuai, WU Xi-yang. Multiplex Enrichment Quantitative PCR Assays for the Detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae [J]. Scientia Agricultura Sinica, 2016, 49(23): 4619-4627.
[5] WU Tong, LIU Xu, LI Jia-he, YAN Xin-bo, ZHANG Ning, WU Wen-xue. Development of a Freeze-Dried Kit for Isothermal Amplification Assay of Mycoplasma bovis [J]. Scientia Agricultura Sinica, 2016, 49(16): 3251-3260.
[6] WANG Nian-Wu-1, 2 , WANG Ting-1, SHEN Jian-Guo-2, HU Fang-Ping-1. Rapid Detection for Clavibacter michiganensis subsp. michiganensis Using Real-Time PCR Based on Padlock Probe [J]. Scientia Agricultura Sinica, 2014, 47(5): 903-911.
[7] XU Hong-Wei, BAI Jia-Lin, FENG Yu-Lan, CAO Xin, CAI Yong, JIN Fang-Yuan, DA Xiao-Qiang, YANG Ju-Tian, ZANG Rong-Xin. Cloning and Sequence Analysis of the Full-Length cDNA of H-FABP Gene in Lanzhou Fat-Tailed Sheep [J]. Scientia Agricultura Sinica, 2013, 46(3): 639-646.
[8] HE Wei-Ling-1, HU Xu-Jian-2, CHENG Xin-1, HUANG Ming-1, ZHOU Guang-Hong-1. Establishment of a Taqman Real-time PCR with Internal Amplification Control for the Detection of Chicken and Pork Ingredient in Food Products [J]. Scientia Agricultura Sinica, 2013, 46(21): 4578-4585.
[9] XU Yi-gang,LI Su-long,LI Dan-dan,JIANG Yan-chun,XIE Xiao-feng
. Establishment of Rapid Method for Detecting Staphylococcus aureus in Food by Loop-Mediated Isothermal Amplification #br# [J]. Scientia Agricultura Sinica, 2010, 43(8): 1655-1663 .
[10] LIU Jia,HUANG Cong-lin,WU Zhong-yi,ZHANG Xiu-hai,WANG Yong-qin
. Detection of Tomato Aspermy Virus Infecting Chrysanthemums by LAMP #br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1288-1294 .
[11]

. Natural Infection of Bidens pilosa L. by Bidens mottle virus in Yunnan
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1849-1853 .
[12] . Development and Application of Loop-Mediated Isothermal Amplification for Detection of Genetically Modified Crops
[J]. Scientia Agricultura Sinica, 2009, 42(4): 1473-1477 .
[13] CAI Jun,YIN You-ping,GE Jian-jun,CHEN Hong-jun,HUANG Guan-jun,ZHANG Wen-di,WANG Zhong-kang
. Detection of Tilletia controversa with HRCA Approach
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3493-3500 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!