Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (14): 2909-2917 .doi: 10.3864/j.issn.0578-1752.2011.14.007

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of an RNA Silencing Suppressor Encoded by Southern rice black-streaked dwarf virus S6

LU Yan-hong; ZHANG Jin-feng; XIONG Ru-yi; XU Qiu-fang; ZHOU Yi-jun   

  1. 南京农业大学植物保护学院
  • Received:2011-01-21 Revised:2011-04-07 Online:2011-07-15 Published:2011-07-15

Abstract: 【Objective】The objective of this study is to analyze the RNA silencing suppressor activity of SP6 protein encoded by SRBSDV segment 6 (S6) and to clear whether SRBSDV encodes RNA silencing suppressor to interfere with RNA silencing pathway. 【Method】To investigate the suppress activity of SP6 on local and systemic silencing induced by sense RNA, SP6 was coinfiltrated with the reporter green fluorescent protein (GFP) in transgenic Nicotiana benthamiana line 16c carrying GFP. SP6 was also coinfiltrated with GFP and dsGFP to determine whether it interfered with local and systemic silencing induced by dsRNA. GFP and SP6 were infiltrated in different parts of leaves in a same plant, respectively, to characterize whether SP6 can block the spread of RNA silencing signal. SP6 was over-expressed in the PVX heterogenous system to find out whether it was a pathogenicity determinant. 【Result】The local and systemic silencing can be delayed, but not inhibited, in N. benthamiana leaves agroinfiltrated with SP6 and GFP. SP6 can block the spread of the silencing signal and reverse the GFP silencing, but can not inhibit the silence induced by dsRNA. Expression of SP6 enhanced Potato virus X pathogenicity in N. benthamiana. 【Conclusion】SP6 is an RNA silencing suppressor encoded by Southern rice black-streaked dwarf virus. It may target the initiate step and prevent the spread of RNA silencing signal in the RNA silencing pathway.

Key words: Southern rice black-streaked dwarf virus, SP6, gene silencing, suppressor

[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[3] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[4] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[5] QU XiaoLing,JIAO YuBing,LUO JianDa,SONG LiYun,LI Ying,SHEN LilLi,YANG JinGuang,WANG FengLong. Cloning of Nicotiana benthamiana NAC062 and Its Inhibitory Effect on Potato Virus Y Infection [J]. Scientia Agricultura Sinica, 2021, 54(19): 4110-4120.
[6] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
[7] LI Jie,LUO JiangHong,YANG Ping. Research Advances of Applying Virus-Induced Gene Silencing in Vegetables [J]. Scientia Agricultura Sinica, 2021, 54(10): 2154-2166.
[8] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
[9] MingYue GONG,XiaoTian DUAN,TingTing YU,Jie WANG,LiLi SHEN,Ying LI,MingHong LIU,YongLiang LI,HongKun LÜ,SongBai ZHANG,JinGuang YANG. Cloning of Hsc70-2 and Its Promoting Effect on Potato virus Y Infection in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2020, 53(4): 771-781.
[10] DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384.
[11] WANG QiuYing,WANG WeiQiao,ZHANG Yan,WANG GuoNing,WU LiQiang,ZHANG GuiYin,MA ZhiYing,YANG Jun,WANG XingFen. Cloning and Functional Characterization of Gene CRVW Involved in Cotton Resistance to Verticillium Wilt [J]. Scientia Agricultura Sinica, 2019, 52(11): 1858-1869.
[12] DU Jiao, WANG YaBo, LI XueHua, HUANG ZhiQiang, YANG YuHeng, BI ChaoWei, YU Yang. Function analysis ofγ-glutamyl phosphate reductase-encoded gene SsGPR1 in Sclerotinia sclerotiorum [J]. Scientia Agricultura Sinica, 2018, 51(19): 3694-3703.
[13] ZHAO Yu-lan, SU Xiao-feng, CHENG Hong-mei. Verification of Verticillium dahliae Pathogenicity of Glycometabolism Related Genes by Using Host-Induced Gene Silencing Method [J]. Scientia Agricultura Sinica, 2015, 48(7): 1321-1329.
[14] DING Zhen-qian, CHEN Tian-zi, LIU Ting-li, LIU Xiao-shuang, ZHANG Bao-long, ZHOU Xing-gen. Function Analysis of a Drought Stress Induced MYB Transcription Factor GhRAX3 in Cotton [J]. Scientia Agricultura Sinica, 2015, 48(18): 3569-3579.
[15] LIU Xiao-bin, LIU Na, LI Fu-kuan, WU Li-zhu, ZHANG Jie, WANG Dong-mei. Establishment of TRV-mediated Transient Gene-Silencing System in Soybean [J]. Scientia Agricultura Sinica, 2015, 48(12): 2479-2486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!