中国农业科学 ›› 2007, Vol. 40 ›› Issue (9): 1898-1906 .

• 耕作栽培·生理生态 • 上一篇    下一篇

产量15 000 kgha-1以上夏玉米灌浆期间的光合特性

黄振喜,王永军,王空军,李登海,赵 明,柳京国,董树亭,王洪军,王军海,杨今胜   

  1. 山东农业大学农学院/作物生物学国家重点实验室
  • 收稿日期:2006-06-15 修回日期:1900-01-01 出版日期:2007-09-10 发布日期:2007-09-10
  • 通讯作者: 王空军

Photosynthetic Traits of over-15000 kgha-1 Summer Maize Hybrids during Grain Filling

  1. 山东农业大学农学院/作物生物学国家重点实验室
  • Received:2006-06-15 Revised:1900-01-01 Online:2007-09-10 Published:2007-09-10

摘要: 【目的】探讨产量15 000 kgha-1以上夏玉米籽粒灌浆期的光合特性及其与产量形成的关系。【方法】在多年高产试验基础上,选用3个具有高产潜力的玉米杂交种,采用78 000株/ha的密度大田种植。以地上生物量及其分配、果穗叶的光合特征参数来评价产量15 000 kgha-1以上的夏玉米光合生理活性;以Richards模型拟合籽粒灌浆过程。【结果】3个玉米杂交种均可实现15 000 kgha-1以上的高产,以先玉335(XY335)产量最高。对籽粒产量形成的Richards解析表明,籽粒灌浆启动快且高灌浆速率持续时间和生长活跃期(50 d以上)长的杂交种更容易实现高产。产量15 000 kgha-1以上3个杂交种表现出灌浆前期净光合速率、PEPCase活性和RuBPCase活性较高,后期净光合速率、叶面积指数和可溶性蛋白含量下降缓慢的特点,整个灌浆期间叶绿素a/b比值始终较高。3个杂交种中XY 335叶片光合生理活性最高,净光合速率和叶面积的高值持续期分别达50 d和60 d以上。【结论】在玉米高产高密度栽培条件下,重视叶片的光合生理活性的改善可提高光能利用效率,维持较高灌浆速率和较长活跃生长期,实现15 000 kgha-1以上的高产目标。

关键词: 夏玉米, 超高产, 籽粒灌浆, 光合特性

Abstract: 【Objective】It is very important to study photosynthesis of super high-yielding maize hybrids, so a field trail was conducted to research the relation to photosynthetic traits and yield of over-15000 kg ha-1 summer maize hybrids during grain filling period. 【Method】Three summer maize hybrids (XY335, DH3632 and DH3806) were planted at 78000 plants ha-1 in National Corn Project Technology Research Center (Shandong) randomly. Above-ground biomass partitioning and photosynthetic characteristics of ear leaves were investigated to evaluate yield formation of three super high-yielding maize hybrids during grain filling period.【Result】Yields of three-type maize hybrids were over 15000 kg ha-1, and yield of XY335 was higher than that of DH3632 and DH3806 significantly (P<0.05). Characteristic of grain filling analyzed by Richards equation showed XY335 had the higher grain-filling rate, the longer active growing period, and it reached the maximum grain-filling rate earlier than DH3632 and DH3806. The result indicated grain-filling traits like XY335 was favorable to high yield in the experiment. The leaves’ photosynthetic physiology quantity of XY335 was highest of the three-type hybrids. XY335 had high net photosynthetic rate (Pn), PEPCase activity, RuBPCase activity and chlorophyll a/b value after anthesis, and the leaf area index (LAI) and soluble protein content decreased slowly from 20d and 30d after flowering, respectively. 【Conclusion】To obtain 15000 kg ha-1 of super high-yielding breeding and cultivation in practice, we need to improve the leaves photosynthetic physiology quantity to maintain high grain-filling rate and long active growing period after anthesis, enhance the solar energy use efficiency.

Key words: Summer maize, Super high-yielding, Grain filling, Photosynthetic traits