[1] |
SHIFERAW B, SMALE M, BRAUN H J, DUVEILLER E, REYNOLDS M, MURICHO G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317.
|
[2] |
LESK C, ROWHANI P, RAMANKUTTY N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529(7584): 84-87.
|
[3] |
DREHER K, CALLIS J. Ubiquitin, hormones and biotic stress in plants. Annals of Botany, 2007, 99(5): 787-822.
|
[4] |
KO J H, YANG S H, HAN K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. The Plant Journal, 2006, 47(3): 343-355.
|
[5] |
LOHMAN K, MEYERHOF O. Enzymatic transformation of phosphoglyceric acid into pyruvic and phosphoric acid. Biochemische Zeitschft, 2023, 273: 60-72.
|
[6] |
SUBRAMANIAN A, MILLER D M. Structural analysis of alpha- enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. The Journal of Biological Chemistry, 2000, 275(8): 5958-5965.
|
[7] |
FEO S, ARCURI D, PIDDINI E, PASSANTINO R, GIALLONGO A. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: Relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Letters, 2000, 473(1): 47-52.
|
[8] |
RAY R, MILLER D M. Cloning and characterization of a human c-myc promoter-binding protein. Molecular and Cellular Biology, 1991, 11(4): 2154-2161.
doi: 10.1128/mcb.11.4.2154-2161.1991
pmid: 2005901
|
[9] |
VAN DER STRAETEN D, RODRIGUES-POUSADA R A, GOODMAN H M, VAN MONTAGU M. Plant enolase: gene structure, expression, and evolution. The Plant Cell, 1991, 3(7): 719-735.
|
[10] |
ANDRIOTIS V M E, KRUGER N J, PIKE M J, SMITH A M. Plastidial glycolysis in developing Arabidopsis embryos. The New Phytologist, 2010, 185(3): 649-662.
|
[11] |
EREMINA M, ROZHON W, YANG S Q, POPPENBERGER B. ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. The Plant Journal, 2015, 81(6): 895-906.
doi: 10.1111/tpj.12775
pmid: 25620024
|
[12] |
KANG M, ABDELMAGEED H, LEE S, REICHERT A, MYSORE K S, ALLEN R D. AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. The Plant Journal, 2013, 76(3): 481-493.
|
[13] |
YUSTE-LISBONA F J, FERNÁNDEZ-LOZANO A, PINEDA B, BRETONES S, ORTÍZ-ATIENZA A, GARCÍA-SOGO B, MÜLLER N A, ANGOSTO T, CAPEL J, MORENO V, JIMÉNEZ-GÓMEZ J M, LOZANO R. ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(14): 8187-8195.
|
[14] |
SEKI M, NARUSAKA M, ABE H, KASUGA M, YAMAGUCHI- SHINOZAKI K, CARNINCI P, HAYASHIZAKI Y, SHINOZAKI K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell, 2001, 13(1): 61-72.
|
[15] |
HASHEMI A, GHARECHAHI J, NEMATZADEH G, SHEKARI F, HOSSEINI S A, SALEKDEH G H. Two-dimensional blue native/sds-page analysis of whole cell lysate protein complexes of rice in response to salt stress. Journal of Plant Physiology, 2016, 200: 90-101.
doi: 10.1016/j.jplph.2016.05.023
pmid: 27362847
|
[16] |
JIANG Y Q, YANG B, HARRIS N S, DEYHOLOS M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007, 58(13): 3591-3607.
doi: 10.1093/jxb/erm207
pmid: 17916636
|
[17] |
LAL S K. Transcriptional and translational regulation of enolase under anaerobic stress in maize. Molecular and Cellular Biology, 1992, 17(7): 3955-3965.
|
[18] |
SHARMA P, GANESHAN S, FOWLER D B, CHIBBAR R N. Characterisation of two wheat enolase cDNA showing distinct patterns of expression in leaf and crown tissues of plants exposed to low temperature. Annals of Applied Biology, 2013, 162(2): 271-283.
|
[19] |
曹丽茹, 庞芸芸, 王振云, 郭书磊, 张前进, 王振华, 鲁晓民. 玉米烯醇化酶基因ZmENO1响应干旱和高温胁迫的功能分析. 植物生理学报, 2023, 59(1): 127-137.
|
|
CAO L R, PANG Y Y, WANG Z Y, GUO S L, ZHANG Q J, WANG Z H, LU X M. Functional analysis of a maize enolase gene ZmENO1 in response to drought and high-temperature stress. China Industrial Economics, 2023, 59(1): 127-137. (in Chinese)
|
[20] |
ZHANG Y F, WANG J Y, LI Y Y, ZHANG Z H, YANG L L, WANG M, ZHANG Y N, ZHANG J, LI C N, LI L, REYNOLDS M P, JING R L, WANG C Y, MAO X G. Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice. Plant Physiology, 2023, 191(2): 1344-1364.
|
[21] |
LI L, PENG Z, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Annals of Botany, 2019, 124(6): 993-1006.
doi: 10.1093/aob/mcz041
pmid: 31329816
|
[22] |
HAO C Y, WANG L F, GE H M, DONG Y C, ZHANG X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE, 2011, 6(2): e17279.
|
[23] |
LI L, MAO X G, WANG J Y, CHANG X P, REYNOLDS M, JING R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant, Cell & Environment, 2019, 42(9): 2540-2553.
|
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[25] |
UCKER D S. Exploiting death: apoptotic immunity in microbial pathogenesis. Cell Death and Differentiation, 2016, 23(6): 990-996.
doi: 10.1038/cdd.2016.17
pmid: 26943319
|
[26] |
LEBIODA L, STEC B. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Nature, 1988, 333(6174): 683-686.
|
[27] |
RIUS S P, CASATI P, IGLESIAS A A, GOMEZ-CASATI D F. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiology, 2008, 148(3): 1655-1667.
|
[28] |
PRABHAKAR V, LÖTTGERT T, GEIMER S, DÖRMANN P, KRÜGER S, VIJAYAKUMAR V, SCHREIBER L, GÖBEL C, FEUSSNER K, FEUSSNER I, MARIN K, STAEHR P, BELL K, FLÜGGE U I, HÄUSLER R E. Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. The Plant Cell, 2010, 22(8): 2594-2617.
|
[29] |
ZHAO Z X, ASSMANN S M. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62(14): 5179-5189.
|
[30] |
马小凤, 刘子金, 郑超星, 王星, 武宇, 李洪杰, 张根发. 植物烯醇化酶基因ENO2的功能研究进展. 植物遗传资源学报, 2018, 19(6): 1030-1037.
doi: 10.13430/j.cnki.jpgr.20180402001
|
|
MA X F, LIU Z J, ZHENG C X, WANG X, WU Y, LI H J, ZHANG G F. Status and progress on function of plant enolase gene ENO2. Journal of Plant Genetic Resources, 2018, 19(6): 1030-1037. (in Chinese)
|
[31] |
PANDEY A K, JAIN P, PODILA G K, TUDZYNSKI B, DAVIS M R. Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP. Molecular Genetics and Genomics, 2009, 281(2): 135-146.
doi: 10.1007/s00438-008-0397-3
pmid: 19011901
|
[32] |
YIN F Q, LIU M, GAO J, ZHANG W Y, QIN C, YANG A G, LUO C G, LIU H B, SHEN Y O, LIN H J, ZHANG Z M, PAN G T. Analysis of global gene expression profiles in tobacco roots under drought stress. Open Life Sciences, 2015, 10(1): 361-380.
|
[33] |
WU Y, LIU H M, BING J, ZHANG G F. Integrative transcriptomic and TMT-based proteomic analysis reveals the mechanism by which AtENO2 affects seed germination under salt stress. Frontiers in Plant Science, 2022, 13: 1035750.
|
[34] |
LIU Y N, HE Z H, APPELS R, XIA X C. Functional markers in wheat: Current status and future prospects. Theoretical and Applied Genetics, 2012, 125(1): 1-10.
doi: 10.1007/s00122-012-1829-3
pmid: 22366867
|
[35] |
HAMMOND-KOSACK M C U, KING R, KANYUKA K, HAMMOND- KOSACK K E. Exploring the diversity of promoter and 5'UTR sequences in ancestral, historic and modern wheat. Plant Biotechnology Journal, 2021, 19(12): 2469-2487.
|
[36] |
XUE Y H, WANG J Y, MAO X G, LI C N, LI L, YANG X, HAO C Y, CHANG X P, LI R Z, JING R L. Association analysis revealed that TaPYL4genes are linked to plant growth related traits in multiple environment. Frontiers in Plant Science, 2021, 12: 641087.
|
[37] |
WANG J Y, WANG R T, MAO X G, ZHANG J L, LIU Y N, XIE Q, YANG X Y, CHANG X, P LI C N, ZHANG X Y, JING R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. Journal of Experimental Botany, 2020, 71(18): 5377-5388.
|