中国农业科学 ›› 2023, Vol. 56 ›› Issue (2): 300-313.doi: 10.3864/j.issn.0578-1752.2023.02.008
徐久凯(),袁亮,温延臣,张水勤,李燕婷,李海燕,赵秉强(
)
收稿日期:
2021-12-20
接受日期:
2022-03-10
出版日期:
2023-01-16
发布日期:
2023-02-07
通讯作者:
赵秉强,Tel:010-82108658;E-mail:作者简介:
徐久凯,E-mail:基金资助:
XU JiuKai(),YUAN Liang,WEN YanChen,ZHANG ShuiQin,LI YanTing,LI HaiYan,ZHAO BingQiang(
)
Received:
2021-12-20
Accepted:
2022-03-10
Online:
2023-01-16
Published:
2023-02-07
摘要:
【目的】不同类型畜禽有机肥氮素在组分和有效性方面存在明显差异,以化肥氮为参考标准,明晰不同畜禽有机肥氮素相对化肥氮的有效性,可为有机肥合理施用及有机无机科学配施提供理论依据。【方法】选取腐熟风干基猪粪、鸡粪、牛粪及化肥为材料,施氮(N)量均设置6个水平(0、40、80、120、160、200 mg·kg-1干土),采用田间土柱栽培试验,分析不同肥料处理对冬小麦产量和氮素吸收量的影响,利用作物吸氮量或产量与化肥施氮量之间的响应关系,研究估算3种畜禽有机肥氮素对化肥氮的相对替代当量。【结果】(1)化肥处理和有机肥处理的小麦籽粒和地上部生物量均随施氮水平的提高而增加。在40—120 mg·kg-1干土施氮水平下,化肥和猪粪处理对籽粒和生物产量的提升幅度高于鸡粪和牛粪;在160—200 mg·kg-1干土施氮水平下,化肥、猪粪和鸡粪的籽粒产量无显著差异,但均显著高于牛粪处理。(2)等氮条件下,化肥处理对小麦籽粒/地上部氮吸收量的提升幅度高于有机肥处理;3种有机肥相比,小麦地上部氮吸收量由大到小的顺序为猪粪、鸡粪、牛粪;有机肥处理的氮素回收率随施氮水平增加呈先升高后降低趋势,而化肥处理呈逐渐降低的趋势。(3)不同氮水平下,猪粪、鸡粪和牛粪氮的相对替代当量分别为37.7%—84.2%、23.1%—71.0%、11.3%—34.2%(以小麦籽粒产量为参考指标);49.2%—91.3%、23.3%—78.3%、7.4%—42.2%(地上部生物产量);31.1%—76.3%、19.8%—67.1%、6.0%—35.7%(籽粒吸氮量);以及30.8%—97.1%、19.8%—75.6%、7.8%—43.8%(地上部吸氮量)。畜禽有机肥氮的相对替代当量与施氮量之间呈正相关关系(P<0.01)。【结论】有机肥类型和施氮水平均影响有机肥氮的相对替代当量,在一定施氮量范围内,畜禽有机肥氮素替代当量随施氮量的增加而提高;基于小麦籽粒产量/地上部生物量和籽粒氮吸收量/地上部氮吸收量4项参考指标,猪粪、鸡粪和牛粪3种畜禽有机肥氮素的平均相对替代当量分别为59.6%、46.2%和23.6%。
徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313.
XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season[J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
表1
化肥处理和有机肥处理肥料总用量"
施氮量 N rate (mg·kg-1dry soil) | 猪粪 Pig manure (mg·kg-1 dry soil) | 鸡粪 Chicken manure (mg·kg-1 dry soil) | 牛粪 Cattle manure (mg·kg-1 dry soil) | 化肥 Chemical fertilizer (mg·kg-1 dry soil) | ||||
---|---|---|---|---|---|---|---|---|
P2O5 | K2O | P2O5 | K2O | P2O5 | K2O | P2O5 | K2O | |
0 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
40 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
80 | 251 | 200 | 211 | 200 | 200 | 200 | 200 | 200 |
120 | 377 | 200 | 317 | 200 | 200 | 200 | 200 | 200 |
160 | 503 | 200 | 422 | 200 | 200 | 200 | 200 | 200 |
200 | 628 | 200 | 528 | 216 | 200 | 200 | 200 | 200 |
表2
牛粪、鸡粪、猪粪化学组成(风干基)"
有机肥 Organic manure | 养分含量 Nutrient content (g·kg-1) | 有机碳 Organic C (g·kg-1) | C/N | 半纤维素含量 Cellulose content (g·kg-1) | 中性洗涤纤维素含量 Neutral detergent fiber content (g·kg-1) | 木质素含量 Lignin content (g·kg-1) | |||
---|---|---|---|---|---|---|---|---|---|
全氮 Total N (N) | 矿质氮 Mineral N | 全磷 Total P (P) | 全钾 Total K (K) | ||||||
猪粪 Pig manure | 22.32 | 1.82 | 31.31 | 15.12 | 235.03 | 10.54 | 94.01 | 358.11 | 93.61 |
鸡粪 Chicken manure | 19.53 | 0.63 | 23.02 | 17.41 | 181.13 | 9.28 | 83.32 | 330.23 | 69.22 |
牛粪 Cattle manure | 16.11 | 0.54 | 5.74 | 12.92 | 210.21 | 13.06 | 122.11 | 459.43 | 202.81 |
表3
不同畜禽有机肥中有机氮组分含量(风干基)"
有机肥 Organic manure | 氨基酸氮 Amino acid N | 铵态氮 Ammonium N | 氨基糖氮 Amino sugar N | 酸解未知态 Hydrolysable unidentified N | 酸解总氮 Total hydrolysable N | 非酸解氮 Non hydrolysable N | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
含量 Content (g·kg-1) | 占总氮比例 Proportion (%) | 含量 Content (g·kg-1) | 占总氮比例 Proportion (%) | 含量 Content (g·kg-1) | 占总氮比例 Proportion (%) | 含量 Content (g·kg-1) | 占总氮比例 Proportion (%) | 含量 Content (g·kg-1) | 占总氮比例 Proportion (%) | 含量 Content (g·kg-1) | 占总氮比例 Proportion (%) | |
猪粪 Pig manure | 6.96 | 31.21 | 1.75 | 7.85 | 2.07 | 9.28 | 6.08 | 27.26 | 16.86 | 75.60 | 5.44 | 24.40 |
鸡粪 Chicken manure | 6.68 | 34.34 | 0.39 | 2.01 | 3.05 | 15.68 | 5.26 | 27.04 | 15.38 | 79.07 | 4.07 | 20.93 |
牛粪 Cattle manure | 3.26 | 20.24 | 0.35 | 2.17 | 5.39 | 33.46 | 3.12 | 19.37 | 12.12 | 75.23 | 3.99 | 24.77 |
表4
不同来源氮素对小麦籽粒产量和生物量的影响"
项目 Items | 施氮量N rate (mg·kg-1 dry soil) | 猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer |
---|---|---|---|---|---|
籽粒产量 Grain yield (g/pot) | 0 | 72.3±6.7 d A | 72.3±6.7 e A | 72.3±6.7 c A | 72.3±6.7 d A |
40 | 78.7±4.9 cd B | 76.6±7.5 de BC | 75.0±4.9 c C | 89.2±7.1 c A | |
80 | 86.7±6.8 bc AB | 84.3±6.8 cd BC | 76.9±5.7 bc C | 95.3±5.2 bc A | |
120 | 93.9±9.3b AB | 91.7±5.1 bc B | 84.8±5.0 ab B | 104.2±6.4 b A | |
160 | 106.7±9.3 a A | 103.6±13.1 a AB | 90.8±17.4 a B | 109.4±5.5 a A | |
200 | 107.6±9.8 a A | 98.5±8.7 ab A | 88.1±5.1 a B | 102.4±1.8 bc A | |
生物产量 Wheat biomass (g/pot) | 0 | 142.5±11.6 c A | 142.5±11.6 d A | 142.5±11.6 c A | 142.5±11.6 d A |
40 | 158.4±12.5 b B | 151.7±16.6 cd B | 147.4±12.8 bc B | 174.2±15.7 c A | |
80 | 173.0±16.0 b AB | 173.6±10.5 bc AB | 154.3±16.0abc B | 183.6±10.7 bc A | |
120 | 186.0±19.2 b AB | 189.6±11.4 ab AB | 170.4±7.9 ab B | 193.3±9.8 ab A | |
160 | 204.2±12.0 a A | 201.3±11.7 a AB | 183.6±32.4 a B | 207.4±11.1 a A | |
200 | 205.5±18.5 a A | 193.5±18.1abc AB | 175.1±13.6 a B | 196.5±4.4 bc AB |
表5
不同来源氮素对小麦产量构成因素的影响"
项目 Items | 施氮量 N rate (mg·kg-1 dry soil) | 猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer |
---|---|---|---|---|---|
穗数 Number of ears (No./pot) | 0 | 42±2 d A | 42±2 e A | 42±2 c A | 42±2 c A |
40 | 49±3 c AB | 45±7 de BC | 42±4 bc C | 51±3 b A | |
80 | 51±6 bc A | 47±3 cd AB | 44±5 bc B | 51±4 ab A | |
120 | 53±5 bc A | 52±5 bc A | 46±4 ab B | 53±6 ab A | |
160 | 60±9 a A | 59±9 a A | 51±7 a B | 57±6 a A | |
200 | 57±4 ab A | 55±6 ab A | 50±3 a B | 53±3 ab A | |
穗粒数 Grain No.per ear (No./ear) | 0 | 35±2 ab A | 35±2 a A | 35±2 ab A | 35±2 a A |
40 | 31±2 b B | 33±1 a AB | 35±3 ab AB | 37±3 a A | |
80 | 33±1 ab C | 35±1 aAB | 34±3 b BC | 37±1 a A | |
120 | 35±2 ab A | 35±1 a A | 36±6 a A | 37±2 a A | |
160 | 35±5 ab A | 35±2 a A | 35±3 ab A | 38±2 a A | |
200 | 37±1 a A | 35±3 a A | 35±2 a A | 38±2 a A | |
千粒重 Thousand seed weight (g) | 0 | 50.02±2.38 a A | 50.02±2.38 a A | 50.02±2.38 a A | 50.02±2.38 a A |
40 | 51.19±0.86 a A | 51.37±1.24 a A | 51.03±2.02 a A | 50.98±1.20 a A | |
80 | 51.17±1.90 a A | 51.05±0.95 a A | 51.38±1.59 a A | 50.62±1.09 a A | |
120 | 51.07±1.43 a A | 51.45±1.25 a A | 50.72±1.04 a A | 50.86±0.99 a A | |
160 | 51.36±1.31 a A | 50.79±1.11 a A | 51.19±1.14 a A | 50.82±1.79 a A | |
200 | 51.66±2.10 a A | 50.52±0.48 a A | 50.29±1.38 a A | 50.94±1.37 a A |
表6
不同来源氮素对小麦各部位氮吸收量的影响"
项目 Items | 施氮量 N rate (mg·kg-1 dry soil) | 猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer | |
---|---|---|---|---|---|---|
氮素吸收量 N uptake (g/pot) | 秸秆 Straw | 0 | 0.23±0.02 d A | 0.23±0.02 b A | 0.23±0.02 b A | 0.23±0.02 d A |
40 | 0.23±0.03 d AB | 0.23±0.03 b B | 0.24±0.03 ab AB | 0.25±0.05 cd A | ||
80 | 0.26±0.03 cd A | 0.24±0.04 b A | 0.26±0.01 ab A | 0.27±0.06 bc A | ||
120 | 0.33±0.05 bc A | 0.31±0.04 a A | 0.27±0.06 ab A | 0.30±0.01 bc A | ||
160 | 0.43±0.04 ab AB | 0.35±0.03 a B | 0.32±0.11 a B | 0.43±0.04 a A | ||
200 | 0.45±0.09 a A | 0.33±0.08 a BC | 0.30±0.04 ab C | 0.38±0.04 b AB | ||
籽粒 Grain | 0 | 1.27±0.12 c A | 1.27±0.12 e A | 1.27±0.12 c A | 1.27±0.12 d A | |
40 | 1.40±0.09 b A | 1.36±0.12 de B | 1.31±0.09 c B | 1.64±0.09 c A | ||
80 | 1.59±0.08 b B | 1.49±0.12 cd BC | 1.43±0.19 bc C | 1.86±0.10 bc A | ||
120 | 1.80±0.20 b B | 1.65±0.11 bc B | 1.53±0.10 a B | 1.98±0.11 b A | ||
160 | 1.97±0.25 a B | 1.93±0.30 a BC | 1.72±0.30 a C | 2.12±0.22 a A | ||
200 | 1.96±0.09 a A | 1.72±0.14 ab B | 1.57±0.08 ab C | 1.94±0.08 b AB | ||
地上部 Aboveground | 0 | 1.50±0.13 c A | 1.50±0.08 d A | 1.50±0.08 d A | 1.50±0.08 d A | |
40 | 1.63±0.01 b B | 1.59±0.14 cd C | 1.55±0.09 d C | 1.89±0.08 c A | ||
80 | 1.84±0.10 b B | 1.72±0.12 c BC | 1.68±0.30 cd C | 2.11±0.13 bc A | ||
120 | 2.13±0.25 b B | 1.96±0.25 b B | 1.80±0.11 b B | 2.28±0.12 b A | ||
160 | 2.39±0.12 a B | 2.28±0.13 a C | 2.03±0.34 a C | 2.55±0.tidia 23 a A | ||
200 | 2.41±0.32 a A | 2.05±0.23 ab B | 1.87±0.02 bc C | 2.32±0.07 ab A | ||
氮素收获指数 NHI (%) | 0 | 84.1±1.2 ab A | 84.1±1.2 ab A | 84.1±1.2 ab A | 84.1±1.2ab A | |
40 | 85.9±1.9 ab A | 87.5±0.7 a A | 84.6±1.8 ab A | 86.9±2.6 a A | ||
80 | 86.1±1.2 a A | 86.3±2.3 a A | 85.0±2.2 ab A | 87.2±6.2 a A | ||
120 | 84.4±1.5 b A | 84.0±0.8 ab A | 85.3±2.8 a A | 86.9±0.6 a A | ||
160 | 82.2±2.7 b A | 84.6±1.4 ab A | 84.4±4.1 b A | 83.0±1.9 b A | ||
200 | 81.5±2.5 b A | 83.8±0.8 b A | 84.0±1.9 ab A | 83.8±2.0 b A |
表7
不同施肥处理对氮素回收率的影响"
施氮量 N rate (mg·kg-1 dry soil) | 氮素回收率 Nitrogen recovery (%) | |||
---|---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer | |
40 | 21.11 b B | 15.00 ab BC | 8.23 b C | 65.51 a A |
80 | 28.74 ab B | 18.53 b C | 15.23 b C | 53.16 b A |
120 | 35.21 a B | 25.64 ab B | 16.69 ab B | 43.17 c A |
160 | 37.14 a AB | 32.59 a AB | 22.24 a B | 43.75 bc A |
200 | 30.37 ab A | 18.30 b B | 12.45 b C | 27.27 d AB |
[1] |
牛新胜, 巨晓棠. 我国有机肥料资源及利用. 植物营养与肥料学报, 2017, 23(6): 1462-1479. doi:10.11674/zwyf.17430.
doi: 10.11674/zwyf.17430 |
NIU X S, JU X T. Organic fertilizer resources and utilization in China. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1462-1479. doi:10.11674/zwyf.17430. (in Chinese)
doi: 10.11674/zwyf.17430 |
|
[2] |
姜茜, 王瑞波, 孙炜琳. 我国畜禽粪便资源化利用潜力分析及对策研究: 基于商品有机肥利用角度. 华中农业大学学报(社会科学版), 2018(4): 30-37, 166. doi:10.13300/j.cnki.hnwkxb.2018.04.004.
doi: 10.13300/j.cnki.hnwkxb.2018.04.004 |
JIANG Q, WANG R B, SUN W L. Potential evaluation and countermeasures on livestock manure resource utilization—based on perspective of commercial organic fertilizer utilization. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018(4): 30-37, 166. doi:10.13300/j.cnki.hnwkxb.2018.04.004. (in Chinese)
doi: 10.13300/j.cnki.hnwkxb.2018.04.004 |
|
[3] |
李燕青, 温延臣, 林治安, 赵秉强. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响. 植物营养与肥料学报, 2019, 25(10): 1669-1678. doi:10.11674/zwyf.18417.
doi: 10.11674/zwyf.18417 |
LI Y Q, WEN Y C, LIN Z A, ZHAO B Q. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1669-1678. doi:10.11674/zwyf.18417. (in Chinese)
doi: 10.11674/zwyf.18417 |
|
[4] |
MUÑOZ G R, KELLING K A, RYLANT K E, ZHU J. Field evaluation of nitrogen availability from fresh and composted manure. Journal of Environmental Quality, 2008, 37(3): 944-955. doi:10.2134/jeq2007.0219.
doi: 10.2134/jeq2007.0219 pmid: 18453417 |
[5] | 杨蕊, 李裕元, 魏红安, 高茹, 石辉, 吴金水. 畜禽有机肥氮、磷在红壤中的矿化特征研究. 植物营养与肥料学报, 2011, 17(3): 600-607. |
YANG R, LI Y Y, WEI H A, GAO R, SHI H, WU J S. Study on the nitrogen and phosphorus mineralization of livestock and chichken manure in red soil. Plant Nutrition and Fertilizer Science, 2011, 17(3): 600-607. (in Chinese) | |
[6] | 赵明, 蔡葵, 赵征宇, 于秋华, 王文娇. 不同有机肥料中氮素的矿化特性研究. 农业环境科学学报, 2007, 26(S1): 146-149. |
ZHAO M, CAI K, ZHAO Z Y, YU Q H, WANG W J. Characteristics of NO3--N and NH4+-N mineralization from different organic fertilizers. Journal of Agro-Environment Science, 2007, 26(S1): 146-149. (in Chinese) | |
[7] | 李玲玲. 有机肥氮素有效性和替代化肥氮比例研究[D]. 北京: 中国农业科学院, 2011. |
LI L L. Manure nitrogen availability and its substitution ratio for chemical fertilizer nitrogen[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[8] |
THOMSEN I K. Nitrogen use efficiency of 15N-labeled poultry manure. Soil Science Society of America Journal, 2004, 68(2): 538-544. doi:10.2136/sssaj2004.5380.
doi: 10.2136/sssaj2004.5380 |
[9] |
GALE E S, SULLIVAN D M, COGGER C G, BARY A I, HEMPHILL D D, MYHRE E A. Estimating plant-available nitrogen release from manures, composts, and specialty products. Journal of Environmental Quality, 2006, 35(6): 2321-2332. doi:10.2134/jeq2006.0062.
doi: 10.2134/jeq2006.0062 pmid: 17071903 |
[10] | 刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响. 植物营养与肥料学报, 2011, 17(1): 38-47. |
LIU Z J, XIE J G, ZHANG K, WANG X F, HOU Y P, YIN C X, LI S T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin Province. Plant Nutrition and Fertilizer Science, 2011, 17(1): 38-47. (in Chinese) | |
[11] | 李燕青. 不同类型有机肥与化肥配施的农学和环境效应研究[D]. 北京: 中国农业科学院, 2016. |
LI Y Q. Study on agronomic and environmental effects of combined application of different organic manures with chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[12] | 鲁如坤. 土壤-植物营养学原理和施肥. 北京: 化学工业出版社, 1998. |
LU R K. Principles of Soil Plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998. (in Chinese) | |
[13] | 沈其荣, 沈振国, 史瑞和. 有机肥氮素的矿化特征及与其化学组成的关系. 南京农业大学学报, 1992(1): 59-64. |
SHEN Q R, SHEN Z G, SHI R H. The characteristics of mineralization of nitrogen in organic manure and its relation to chemical composi tion of organic manure. Journal of Nanjing Agricultural University, 1992(1): 59-64. (in Chinese) | |
[14] |
李玲玲, 李书田. 猪粪氮素有效性与替代化肥氮当量研究. 中国土壤与肥料, 2011(5): 60-64. doi:10.3969/j.issn.1673-6257.2011.05.012.
doi: 10.3969/j.issn.1673-6257.2011.05.012 |
LI L L, LI S T. Nitrogen availability of pig manure and its fertilizer equivalence. Soil and Fertilizer Sciences in China, 2011(5): 60-64. doi:10.3969/j.issn.1673-6257.2011.05.012. (in Chinese)
doi: 10.3969/j.issn.1673-6257.2011.05.012 |
|
[15] |
MUÑOZ G R, KELLING K A, POWELL J M, SPETH P E. Comparison of estimates of first-year dairy manure nitrogen availability or recovery using nitrogen-15 and other techniques. Journal of Environmental Quality, 2004, 33(2): 719-727. doi:10.2134/jeq2004.7190.
doi: 10.2134/jeq2004.7190 pmid: 15074825 |
[16] |
SCHRÖDER J J, UENK D, HILHORST G J. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant and Soil, 2007, 299(1/2): 83-99. doi:10.1007/s11104-007-9365-7.
doi: 10.1007/s11104-007-9365-7 |
[17] |
CAVALLI D, CABASSI G, BORRELLI L, GEROMEL G, BECHINI L, DEGANO L, MARINO GALLINA P. Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. European Journal of Agronomy, 2016, 73: 34-41. doi:10.1016/j.eja.2015.10.007.
doi: 10.1016/j.eja.2015.10.007 |
[18] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
LU R K. Analysis Methods of Soil and Agricultural Chemistry. Beijing: China Agriculture Scientech Press, 2000. (in Chinese) | |
[19] |
VAX SOEST P J. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of AOAC INTERNATIONAL, 1963, 46(5): 829-835. doi:10.1093/jaoac/46.5.829.
doi: 10.1093/jaoac/46.5.829 |
[20] |
MULVANEY R L, KHAN S A. Diffusion methods to determine different forms of nitrogen in soil hydrolysates. Soil Science Society of America Journal, 2001, 65(4): 1284-1292. doi:10.2136/sssaj2001.6541284x.
doi: 10.2136/sssaj2001.6541284x |
[21] |
鲍艳宇, 周启星, 颜丽, 关连珠. 不同畜禽粪便堆肥过程中有机氮形态的动态变化. 环境科学学报, 2008, 28(5): 930-936. doi:10.13671/j.hjkxxb.2008.05.033.
doi: 10.13671/j.hjkxxb.2008.05.033 |
BAO Y Y, ZHOU Q X, YAN L, GUAN L Z. Dynamic changes of organic nitrogen forms during the composting of different manures. Acta Scientiae Circumstantiae, 2008, 28(5): 930-936. doi:10.13671/j.hjkxxb.2008.05.033. (in Chinese)
doi: 10.13671/j.hjkxxb.2008.05.033 |
|
[22] |
SØRENSEN P, JENSEN E S, NIELSEN N E. The fate of 15N-labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions. Plant and Soil, 1994, 162(1): 39-47. doi:10.1007/BF01416088.
doi: 10.1007/BF01416088 |
[23] |
GUTSER R, EBERTSEDER T, WEBER A, SCHRAML M, SCHMIDHALTER U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 439-446. doi:10.1002/jpln.200520510.
doi: 10.1002/jpln.200520510 |
[24] | 唐继伟, 徐久凯, 温延臣, 田昌玉, 林治安, 赵秉强. 长期单施有机肥和化肥对土壤养分和小麦产量的影响. 植物营养与肥料学报, 2019, 25(11): 1827-1834. |
TANG J W, XU J K, WEN Y C, TIAN C Y, LIN Z A, ZHAO B Q. Effects of organic fertilizer and inorganic fertilizer on the wheat yields and soil nutrients under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1827-1834. (in Chinese) | |
[25] |
林治安, 赵秉强, 袁亮, Hwat Bing-So. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8): 2809-2819. doi:10.3864/j.issn.0578-1752.2009.08.021.
doi: 10.3864/j.issn.0578-1752.2009.08.021 |
LIN Z A, ZHAO B Q, YUAN L, BING-SO H. Effects of organic manure and fertlizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. doi:10.3864/j.issn.0578-1752.2009.08.021. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2009.08.021 |
|
[26] |
ZHANG W J, XU M G, WANG B R, WANG X J. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystems, 2009, 84(1): 59-69. doi:10.1007/s10705-008-9226-7.
doi: 10.1007/s10705-008-9226-7 |
[27] | 郭腾飞. 稻田秸秆分解的碳氮互作机理[D]. 北京: 中国农业科学院, 2019. |
GUO T F. The mechanism of carbon and nitrogen interaction during rice straw decomposition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[28] | 尚斌. 畜禽粪便热解特性试验研究[D]. 北京: 中国农业科学院, 2007. |
SHANG B. Study on pyrolysis characteristics of animal manure[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese) | |
[29] |
李菊梅, 李生秀. 可矿化氮与各有机氮组分的关系. 植物营养与肥料学报, 2003, 9(2): 158-164. doi:10.3321/j.issn:1008-505X.2003.02.005.
doi: 10.3321/j.issn:1008-505X.2003.02.005 |
LI J M, LI S X. Relation of mineralizable N to organic N components. Plant Nutrition and Fertilizer Science, 2003, 9(2): 158-164. doi:10.3321/j.issn:1008-505X.2003.02.005. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2003.02.005 |
|
[30] | 王媛, 周建斌, 杨学云. 长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响. 中国农业科学, 2010, 43(6): 1173-1180. |
WANG Y, ZHOU J B, YANG X Y. Effects of different long-term fertilization on the fractions of organic nitrogen and nitrogen mineralization in soils. Scientia Agricultura Sinica, 2010, 43(6): 1173-1180. (in Chinese) | |
[31] |
同延安, 赵营, 赵护兵, 樊红柱. 施氮量对冬小麦氮素吸收、转运及产量的影响. 植物营养与肥料学报, 2007, 13(1): 64-69. doi:10.3321/j.issn:1008-505X.2007.01.011.
doi: 10.3321/j.issn:1008-505X.2007.01.011 |
TONG Y A, ZHAO Y, ZHAO H B, FAN H Z. Effect of N rates on N uptake, transformation and the yield of winter wheat. Plant Nutrition and Fertilizer Science, 2007, 13(1): 64-69. doi:10.3321/j.issn:1008-505X.2007.01.011. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2007.01.011 |
|
[32] | 张蓉. 有机栽培方式下不同基因型水稻氮素利用效率的协同与转变机理研究[D]. 扬州: 扬州大学, 2015. |
ZHANG R. Synergy and transition mechanism of nitrogen use efficiency in various genotype rice under organic farming[D]. Yangzhou: Yangzhou University, 2015. (in Chinese) | |
[33] |
韩晓日, 郑国砥, 刘晓燕, 孙振涛, 杨劲峰, 战秀梅. 有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征. 中国农业科学, 2007, 40(4): 765-772. doi:10.3321/j.issn:0578-1752.2007.04.016.
doi: 10.3321/j.issn:0578-1752.2007.04.016 |
HAN X R, ZHENG G D, LIU X Y, SUN Z T, YANG J F, ZHAN X M. Dynamics, sources and supply characteristic of microbial biomass nitrogen in soil applied with manure and fertilizer. Scientia Agricultura Sinica, 2007, 40(4): 765-772. doi:10.3321/j.issn:0578-1752.2007.04.016. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2007.04.016 |
|
[34] |
FRIEDEL J K, GABEL D. Microbial biomass and microbial C∶N ratio in bulk soil and buried bags for evaluating in situ net N mineralization in agricultural soils. Journal of Plant Nutrition and Soil Science, 2001, 164(6): 673-679. doi:10.1002/1522-2624(200112)164:6673:AID-JPLN673>3.0.CO;2-R.
doi: 10.1002/1522-2624(200112)164:6673:AID-JPLN673>3.0.CO;2-R |
[35] | 李浩然, 李雁鸣, 李瑞奇. 灌溉和施氮对小麦产量形成及土壤肥力影响的研究进展. 麦类作物学报, 2022(2): 1-15. |
LI H R, LI Y M, LI R Q. Research progress on the effect of irrigation and nitrogen application on wheat yield formation and soil fertility. Journal of Triticeae Crops, 2022(2): 1-15. (in Chinese) | |
[36] |
HIJBEEK R, BERGE H F M, WHITMORE A P, BARKUSKY D, SCHRÖDER J J, ITTERSUM M K. Nitrogen fertiliser replacement values for organic amendments appear to increase with N application rates. Nutrient Cycling in Agroecosystems, 2018, 110(1): 105-115. doi:10.1007/s10705-017-9875-5.
doi: 10.1007/s10705-017-9875-5 |
[37] |
DELIN S, STENBERG B, NYBERG A, BROHEDE L. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use and Management, 2012, 28(3): 283-291. doi:10.1111/j.1475-2743.2012.00417.x.
doi: 10.1111/j.1475-2743.2012.00417.x |
[38] |
MÖLLER K, MÜLLER T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences, 2012, 12(3): 242-257. doi:10.1002/elsc.201100085.
doi: 10.1002/elsc.201100085 |
[39] | JENSEN L S. Animal manure fertiliser value, crop utilisation and soil quality impacts. //Animal Manure Recycling. Wiley, 2013: 295-328. |
[40] |
徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41(10): 3133-3139. doi:10.3864/j.issn.0578-1752.2008.10.029.
doi: 10.3864/j.issn.0578-1752.2008.10.029 |
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI Y, YASUKAZU H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Scientia Agricultura Sinica, 2008, 41(10): 3133-3139. doi:10.3864/j.issn.0578-1752.2008.10.029. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.10.029 |
|
[41] |
侯苗苗, 吕凤莲, 张弘弢, 周应田, 路国艳, Ayaz Muhammad, 黎青慧, 杨学云, 张树兰. 有机氮替代比例对冬小麦/夏玉米轮作体系作物产量及N2O排放的影响. 环境科学, 2018, 39(1): 321-330. doi:10.13227/j.hjkx.201707010.
doi: 10.13227/j.hjkx.201707010 |
HOU M M, LÜ F L, ZHANG H T, ZHOU Y T, LU G Y, MUHAMMAD A, LI Q H, YANG X Y, ZHANG S L. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O emission in the winter wheat-summer maize rotation system. Environmental Science, 2018, 39(1): 321-330. doi:10.13227/j.hjkx.201707010. (in Chinese)
doi: 10.13227/j.hjkx.201707010 |
|
[42] |
XIA L L, LAM S K, YAN X Y, CHEN D L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environmental Science & Technology, 2017, 51(13): 7450-7457. doi:10.1021/acs.est.6b06470.
doi: 10.1021/acs.est.6b06470 |
[43] | DEFRA, UK Farming Nutrient Management Fertilizer Recommendations for Agricultural and Horticultural Crops (RB209). Department for Environment, Food and Rural Affairs (Defra), 2010. |
[44] |
徐久凯, 袁亮, 温延臣, 张水勤, 林治安, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥磷素在冬小麦上替代化肥磷当量研究. 中国农业科学, 2021, 54(22): 4826-4839. doi:10.3864/j.issn.0578-1752.2021.22.010.
doi: 10.3864/j.issn.0578-1752.2021.22.010 |
XU J K, YUAN L, WEN Y C, ZHANG S Q, LIN Z A, LI Y T, LI H Y, ZHAO B Q. Phosphorus fertilizer replacement value of livestock manure in winter wheat. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839. doi:10.3864/j.issn.0578-1752.2021.22.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.22.010 |
|
[45] |
SIKORA L J, ENKIRI N K. Comparison of phosphorus uptake from poultry litter compost with triple superphosphate in codorus soil. Agronomy Journal, 2005, 97(3): 668-673. doi:10.2134/agronj2004.0008.
doi: 10.2134/agronj2004.0008 |
[1] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[2] | 侯将将,王金洲,孙平,朱文琰,徐靖,卢昌艾. 中国草地地上生产力氮素敏感性的时空变化[J]. 中国农业科学, 2022, 55(9): 1811-1821. |
[3] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[4] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[5] | 张学林, 吴梅, 何堂庆, 张晨曦, 田明慧, 李晓立, 侯小畔, 郝晓峰, 杨青华, 李潮海. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729-742. |
[6] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
[7] | 王娟,陈皓宁,石大川,于天一,闫彩霞,孙全喜,苑翠玲,赵小波,牟艺菲,王奇,李春娟,单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究[J]. 中国农业科学, 2022, 55(22): 4356-4372. |
[8] | 马玉峰,周忠雄,李雨桐,高雪琴,乔亚丽,张文斌,颉建明,胡琳莉,郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389. |
[9] | 陈杨,徐孟泽,王玉红,白由路,卢艳丽,王磊. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 2022, 55(15): 2973-2987. |
[10] | 冯晨,黄波,冯良山,郑家明,白伟,杜桂娟,向午燕,蔡倩,张哲,孙占祥. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61-73. |
[11] | 张锦源,李彦生,于镇华,谢志煌,刘俊杰,王光华,刘晓冰,吴俊江,Stephen J Herbert,金剑. 作物-土壤氮循环对大气CO2浓度和温度升高响应的研究进展[J]. 中国农业科学, 2021, 54(8): 1684-1701. |
[12] | 蒋伟勤,胡群,俞航,马会珍,任高磊,马中涛,朱盈,魏海燕,张洪程,刘国栋,胡雅杰,郭保卫. 优质食味粳稻控混肥一次性基施效应[J]. 中国农业科学, 2021, 54(7): 1382-1396. |
[13] | 吕腾飞,谌洁,马鹏,代邹,杨志远,徐徽,郑传刚,马均. 氮肥缓速配施对机插杂交稻氮素利用特征的影响[J]. 中国农业科学, 2021, 54(7): 1410-1423. |
[14] | 邓飞,何连华,陈多,田青兰,李秋萍,曾玉玲,李博,陈虹,王丽,任万军. 不同日产量类型机插杂交籼稻的氮素吸收利用特性[J]. 中国农业科学, 2021, 54(7): 1469-1481. |
[15] | 曹小闯,吴龙龙,朱春权,朱练峰,孔亚丽,陆若辉,孔海民,胡兆平,戴锋,张均华,金千瑜. 不同灌溉和施肥模式对水稻产量、氮利用和稻田氮转化特征的影响[J]. 中国农业科学, 2021, 54(7): 1482-1498. |
|