中国农业科学 ›› 2022, Vol. 55 ›› Issue (9): 1811-1821.doi: 10.3864/j.issn.0578-1752.2022.09.010
侯将将1(),王金洲2,*(),孙平1,朱文琰3,徐靖2,卢昌艾4
收稿日期:
2021-03-16
修回日期:
2021-06-07
出版日期:
2022-05-01
发布日期:
2022-05-19
通讯作者:
王金洲
作者简介:
侯将将,E-mail: 基金资助:
HOU JiangJiang1(),WANG JinZhou2,*(),SUN Ping1,ZHU WenYan3,XU Jing2,LU ChangAi4
Received:
2021-03-16
Revised:
2021-06-07
Online:
2022-05-01
Published:
2022-05-19
Contact:
JinZhou WANG
摘要:
【目的】评估中国草地地上生产力氮限制强度的时空变化,为全球环境变化背景下草地适应性管理和氮循环模拟评估提供参考。【方法】以中国草地为研究对象,系统收集了1980—2020年已发表的423组氮添加试验数据,整合分析地上生产力响应比(lnRR)和氮素敏感系数(lnRR/N,即lnRR与氮添加量的比值)及其影响因素。利用直线、双直线和逐步回归等方法,评估了lnRR/N的时空动态及其驱动因子。【结果】lnRR随氮添加量的增加总体呈先增加后持平的趋势。当氮添加量超过(21.1±5.5)g N·m-2·a-1(平均值±95%置信区间)时,lnRR达到最大值(0.60±0.08)。整合分析结果显示,lnRR/N总体平均为0.043±0.004,即单位氮添加量(1 g N·m-2·a-1)可提高地上生产力(4.36±0.38)%,且因草地类型、氮添加量、试验持续年限和年代而异。时间尺度上,过去40年来lnRR/N呈显著降低趋势,且在相对湿润(年降水量MAP>450 mm)和温暖区(年均温MAT>4.5℃)的下降速率是相对干旱(MAP≤450 mm)和寒冷区(MAT≤4.5℃)的1.5—1.7倍。空间尺度上,降水量和土壤养分是lnRR/N变化的主要影响因子。其中,lnRR/N随着MAP的增加而增加,随着土壤氮含量的增加而降低。在相对湿润区,lnRR/N的变化由土壤氮含量和MAP共同占主导,而在相对干旱和温暖区则分别由MAP和MAT占主导。【结论】中国草地地上生产力仍受氮限制,但在全球环境变化背景下生产力氮限制强度或氮素敏感性持续减弱,尤其以相对湿润区和温暖区最为明显。要准确评估草地生态系统对全球环境变化的响应,需更多关注生产力关键限制因子及其限制强度的时空变化。
侯将将,王金洲,孙平,朱文琰,徐靖,卢昌艾. 中国草地地上生产力氮素敏感性的时空变化[J]. 中国农业科学, 2022, 55(9): 1811-1821.
HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands[J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
表1
中国草地地上生产力氮素敏感系数(lnRR/N)与时间、气候、土壤养分等解释因子的逐步回归分析"
气候区 Climatic regions | 逐步回归方程Step-wise regressions | df | R2 |
---|---|---|---|
总体Overall | lnRR/N = -0.0011Year -0.0070 STN +0.81×10-4 MAP | 315 | 0.09*** |
MAP≤450 mm | lnRR/N = -0.0008Year +2.35×10-4 MAP +0.0039 Duration +0.013 | 267 | 0.18*** |
MAP>450 mm | lnRR/N = -0.0025Year -0.014 STN +1.98×10-4 MAP -0.016 | 77 | 0.27*** |
MAT≤4.5℃ | NA | NA | NA |
MAT>4.5℃ | lnRR/N = -0.0019Year -0.0098 MAT -0.011 Duration +0.055 | 93 | 0.25*** |
[1] |
LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, 89(2): 371-379.
doi: 10.1890/06-2057.1 |
[2] |
XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 2008, 179(2): 428-439.
doi: 10.1111/j.1469-8137.2008.02488.x |
[3] | PIAO S L, WANG X H, PARK T, CHEN C, LIAN X, HE Y E, BJERKE J W, CHEN A P, CIAIS P, TØMMERVIK H, NEMANI R R, MYNENI R B. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[4] |
LUO Y Q, SU B, CURRIE W S, DUKES J S, FINZI A, HARTWIG U, HUNGATE B, MCMURTRIE R E, OREN R, PARTON W J, PATAKI D E, SHAW R M, ZAK D R, FIELD C B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 2004, 54(8): 731-739.
doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2 |
[5] | NORBY R J, WARREN J M, IVERSEN C M, MEDLYN B E, MCMURTRIE R E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19368-19373. |
[6] |
BAI E, LI S L, XU W H, LI W, DAI W W, JIANG P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013, 199(2): 441-451.
doi: 10.1111/nph.12252 |
[7] |
ZHANG X Z, SHEN Z X, FU G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 2015, 87: 32-38.
doi: 10.1016/j.apsoil.2014.11.012 |
[8] |
CROWTHER T W, TODD-BROWN K E O, ROWE C W, WIEDER W R, CAREY J C, MACHMULLER M B, SNOEK B L, FANG S, ZHOU G, ALLISON S D, BLAIR J M, BRIDGHAM S D, BURTON A J, CARRILLO Y, REICH P B, CLARK J S, CLASSEN A T, DIJKSTRA F A, ELBERLING B, EMMETT B A, ESTIARTE M, FREY S D, GUO J, HARTE J, JIANG L, JOHNSON B R, KRÖEL-DULAY G, LARSEN K S, LAUDON H, LAVALLEE J M, LUO Y, LUPASCU M, MA L N, MARHAN S, MICHELSEN A, MOHAN J, NIU S, PENDALL E, PEÑUELAS J, PFEIFER- MEISTER L, POLL C, REINSCH S, REYNOLDS L L, SCHMIDT I K, SISTLA S, SOKOL N W, TEMPLER P H, TRESEDER K K, WELKER J M, BRADFORD M A. Quantifying global soil carbon losses in response to warming. Nature, 2016, 540(7631): 104-108.
doi: 10.1038/nature20150 |
[9] | VAN GESTEL N, SHI Z, VAN GROENIGEN K J, OSENBERG C W, ANDRESEN L C, DUKES J S, HOVENDEN M J, LUO Y Q, MICHELSEN A, PENDALL E, REICH P B, SCHUUR E A G, HUNGATE B A. Predicting soil carbon loss with warming. Nature, 2018, 554(7693): E4-E5. |
[10] |
GREAVER T L, CLARK C M, COMPTON J E, VALLANO D, TALHELM A F, WEAVER C P, BAND L E, BARON J S, DAVIDSON E A, TAGUE C L, FELKER-QUINN E, LYNCH J A, HERRICK J D, LIU L, GOODALE C L, NOVAK K J, HAEUBER R A. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6(9): 836-843.
doi: 10.1038/nclimate3088 |
[11] |
LU M, YANG Y H, LUO Y Q, FANG C M, ZHOU X H, CHEN J K, YANG X, LI B. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 2011, 189(4): 1040-1050.
doi: 10.1111/j.1469-8137.2010.03563.x |
[12] |
TIAN D S, WANG H, SUN J A, NIU S L. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 2016, 11(2): 024012.
doi: 10.1088/1748-9326/11/2/024012 |
[13] |
BAI Y F, WU J G, XING Q, PAN Q M, HUANG J H, YANG D L, HAN X G. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89(8): 2140-2153.
doi: 10.1890/07-0992.1 |
[14] |
WILCOX K R, SHI Z, GHERARDI L A, LEMOINE N P, KOERNER S E, HOOVER D L, BORK E, BYRNE K M, CAHILL J Jr, COLLINS S L, EVANS S, GILGEN A K, HOLUB P, JIANG L F, KNAPP A K, LECAIN D, LIANG J Y, GARCIA-PALACIOS P, PEÑUELAS J, POCKMAN W T, SMITH M D, SUN S H, WHITE S R, YAHDJIAN L, ZHU K, LUO Y Q. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 2017, 23(10): 4376-4385.
doi: 10.1111/gcb.13706 |
[15] | 魏志标, 柏兆海, 马林, 张福锁. 中国天然草地氮磷流动空间特征. 中国农业科学, 2018, 51(3): 523-534. |
WEI Z B, BAI Z H, MA L, ZHANG F S. Spatial characteristics of nitrogen and phosphorus flow in natural grassland of China. Scientia Agricultura Sinica, 2018, 51(3): 523-534. (in Chinese) | |
[16] | 陈德亮, 徐柏青, 姚檀栋, 郭正堂, 崔鹏, 陈发虎, 张人禾, 张宪洲, 张镱锂, 樊杰, 侯增谦, 张天华. 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 2015, 60(32): 3025-3035. |
CHEN D L, XU B Q, YAO T D, GUO Z T, CUI P, CHEN F H, ZHANG R H, ZHANG X Z, ZHANG Y L, FAN J E, HOU Z Q, ZHANG T H. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3025-3035. (in Chinese) | |
[17] | 张煦庭, 潘学标, 徐琳, 魏培, 尹紫薇, 邵长秀. 基于降水蒸发指数的1960-2015年内蒙古干旱时空特征. 农业工程学报, 2017, 33(15): 190-199. |
ZHANG X T, PAN X B, XU L, WEI P, YIN Z W, SHAO C X. Analysis of spatio-temporal distribution of drought characteristics based on SPEI in Inner Mongolia during 1960-2015. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 190-199. (in Chinese) | |
[18] |
ZHU J X, WANG Q F, HE N P, SMITH M D, ELSER J J, DU J Q, YUAN G F, YU G R, YU Q A. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1605-1616.
doi: 10.1002/2016JG003393 |
[19] |
LIU X J, ZHANG Y, HAN W X, TANG A H, SHEN J L, CUI Z L, VITOUSEK P, ERISMAN J W, GOULDING K, CHRISTIE P, FANGMEIER A, ZHANG F S. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462.
doi: 10.1038/nature11917 |
[20] | LÜ C, TIAN H Q. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research: Atmospheres, 2007, 112(D22): D22S05. |
[21] |
YU G R, JIA Y L, HE N P, ZHU J X, CHEN Z, WANG Q F, PIAO S L, LIU X J, HE H L, GUO X B, WEN Z, LI P, DING G A, GOULDING K. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019, 12(6): 424-429.
doi: 10.1038/s41561-019-0352-4 |
[22] |
BAI Y F, HAN X G, WU J G, CHEN Z Z, LI L H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431(7005): 181-184.
doi: 10.1038/nature02850 |
[23] | LIU H Y, MI Z R, LIN L, WANG Y H, ZHANG Z H, ZHANG F W, WANG H, LIU L L, ZHU B A, CAO G M, ZHAO X Q, SANDERS N J, CLASSEN A T, REICH P B, HE J S. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4051-4056. |
[24] |
PIAO S L, TAN K, NAN H J, CIAIS P, FANG J Y, WANG T, VUICHARD N, ZHU B A. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Global and Planetary Change, 2012, 98/99: 73-80.
doi: 10.1016/j.gloplacha.2012.08.009 |
[25] | 沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. |
SHEN H H, ZHU Y K, ZHAO X, GENG X Q, GAO S Q, FANG J Y. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. (in Chinese) | |
[26] |
FORNARA D A, TILMAN D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology, 2012, 93(9): 2030-2036.
doi: 10.1890/12-0292.1 |
[27] |
FORNARA D A, BANIN L, CRAWLEY M J. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils. Global Change Biology, 2013, 19(12): 3848-3857.
doi: 10.1111/gcb.12323 |
[28] |
DEMALACH N, ZAADY E, KADMON R. Contrasting effects of water and nutrient additions on grassland communities: A global meta-analysis. Global Ecology and Biogeography, 2017, 26(8): 983-992.
doi: 10.1111/geb.12603 |
[29] |
MIDOLO G, ALKEMADE R, SCHIPPER A M, BENÍTEZ-LÓPEZ A, PERRING M P, DE VRIES W. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis. Global Ecology and Biogeography, 2019, 28(3): 398-413.
doi: 10.1111/geb.12856 |
[30] |
YOU C M, WU F Z, GAN Y M, YANG W Q, HU Z M, XU Z F, TAN B, LIU L, NI X Y. Grass and forbs respond differently to nitrogen addition: A meta-analysis of global grassland ecosystems. Scientific Reports, 2017, 7: 1563.
doi: 10.1038/s41598-017-01728-x |
[31] |
TIAN D S, NIU S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10(2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
[32] |
WANG N, QUESADA B, XIA L L, BUTTERBACH-BAHL K, GOODALE C L, KIESE R. Effects of climate warming on carbon fluxes in grasslands-A global meta-analysis. Global Change Biology, 2019, 25(5): 1839-1851.
doi: 10.1111/gcb.14603 |
[33] |
PENG Y F, CHEN H Y H, YANG Y H. Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 2020, 34(9): 1979-1990.
doi: 10.1111/1365-2435.13622 |
[34] |
BAI Y F, WU J G, CLARK C M, NAEEM S, PAN Q M, HUANG J H, ZHANG L X, HAN X G. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 2010, 16(1): 358-372.
doi: 10.1111/j.1365-2486.2009.01950.x |
[35] |
TIAN D S, NIU S L, PAN Q M, REN T T, CHEN S P, BAI Y F, HAN X G. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 2016, 30(3): 490-499.
doi: 10.1111/1365-2435.12513 |
[36] |
CHEN W Q, ZHANG Y J, MAI X H, SHEN Y E. Multiple mechanisms contributed to the reduced stability of Inner Mongolia grassland ecosystem following nitrogen enrichment. Plant and Soil, 2016, 409(1): 283-296.
doi: 10.1007/s11104-016-2967-1 |
[37] |
ZONG N, SHI P L, SONG M H, ZHANG X Z, JIANG J, CHAI X. Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. Environmental Management, 2016, 57(3): 531-542.
doi: 10.1007/s00267-015-0626-6 |
[38] | 辛晓平, 丁蕾, 程伟, 朱晓昱, 陈宝瑞, 刘钟龄, 何广礼, 青格勒, 杨桂霞, 唐华俊. 北方草地及农牧交错区草地植被碳储量及其影响因素. 中国农业科学, 2020, 53(13): 2757-2768. |
XIN X P, DING L, CHENG W, ZHU X Y, CHEN B R, LIU Z L, HE G L, QING G L, YANG G X, TANG H J. Biomass carbon storage and its effect factors in steppe and agro-pastoral ecotones in Northern China. Scientia Agricultura Sinica, 2020, 53(13): 2757-2768. (in Chinese) | |
[39] |
QUAN Q A, TIAN D S, LUO Y Q, ZHANG F Y, CROWTHER T W, ZHU K, CHEN H Y H, ZHOU Q P, NIU S L. Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 2019, 5(8): eaav1131.
doi: 10.1126/sciadv.aav1131 |
[40] |
LI J Z, LIN S, TAUBE F, PAN Q M, DITTERT K. Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 2011, 340(1/2): 253-264.
doi: 10.1007/s11104-010-0612-y |
[41] | CRAINE J M, ELMORE A J, WANG L X, ARANIBAR J, BAUTERS M, BOECKX P, CROWLEY B E, DAWES M A, DELZON S, FAJARDO A, FANG Y T, FUJIYOSHI L, GRAY A, GUERRIERI R, GUNDALE M J, HAWKE D J, HIETZ P, JONARD M, KEARSLEY E, KENZO T, MAKAROV M, MARAÑÓN-JIMÉNEZ S, MCGLYNN T P, MCNEIL B E, MOSHER S G, NELSON D M, PERI P L, ROGGY J C, SANDERS-DEMOTT R, SONG M H, SZPAK P, TEMPLER P H, VAN DER COLFF D, WERNER C, XU X L, YANG Y, YU G R, ZMUDCZYŃSKA-SKARBEK K. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nature Ecology & Evolution, 2018, 2(11): 1735-1744. |
[42] |
XU W, ZHU M Y, ZHANG Z H, MA Z Y, LIU H Y, CHEN L T, CAO G M, ZHAO X Q, SCHMID B, HE J S. Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 2018, 55(3): 1486-1497.
doi: 10.1111/1365-2664.13066 |
[43] |
WANG S P, DUAN J C, XU G P, WANG Y F, ZHANG Z H, RUI Y C, LUO C Y, XU B, ZHU X X, CHANG X F, CUI X Y, NIU H S, ZHAO X Q, WANG W Y. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93(11): 2365-2376.
doi: 10.1890/11-1408.1 |
[44] |
CHANG R Y, WANG G X, YANG Y H, CHEN X P. Experimental warming increased soil nitrogen sink in the Tibetan permafrost. Journal of Geophysical Research: Biogeosciences, 2017, 122(7): 1870-1879.
doi: 10.1002/2017JG003827 |
[45] |
SORENSEN P L, MICHELSEN A. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Global Change Biology, 2011, 17(1): 528-537.
doi: 10.1111/j.1365-2486.2010.02234.x |
[46] |
HOULTON B Z, WANG Y P, VITOUSEK P M, FIELD C B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 2008, 454(7202): 327-330.
doi: 10.1038/nature07028 |
[1] | 王思彤,陈艳,罗雨嘉,杨缘缘,蒋志洋,蒋鑫怡,钟樊,陈好,徐红星,吴俨,段红霞,唐斌. 三种新型化合物对草地贪夜蛾海藻糖与几丁质代谢及生长发育的影响[J]. 中国农业科学, 2022, 55(8): 1568-1578. |
[2] | 陈智勇, 张智, 刘杰, 康爱国, 赵素梅, 尹祥杰, 李占清, 谢爱婷, 张云慧. 2020年我国北方地区草地螟种群的时空动态与虫源分析[J]. 中国农业科学, 2022, 55(5): 907-919. |
[3] | 王帅宇,张子腾,谢爱婷,董杰,杨建国,张爱环. 我国草地贪夜蛾种群杀虫剂靶标基因突变分析[J]. 中国农业科学, 2022, 55(20): 3948-3959. |
[4] | 吴秋琳,姜玉英,刘媛,刘杰,马景,胡高,杨明进,吴孔明. 草地贪夜蛾在中国西北地区的迁飞路径[J]. 中国农业科学, 2022, 55(10): 1949-1960. |
[5] | 张方方,马宁博,岳善超,李世清. 基于不同方法的汉中盆地稻麦轮作土壤供氮能力评价[J]. 中国农业科学, 2020, 53(19): 3996-4009. |
[6] | 王德利,王岭,辛晓平,李凌浩,唐华俊. 退化草地的系统性恢复:概念、机制与途径[J]. 中国农业科学, 2020, 53(13): 2532-2540. |
[7] | 范凯凯,佟旭泽,闫玉春,辛晓平,王旭. 呼伦贝尔草原蘑菇圈对土壤呼吸作用的影响[J]. 中国农业科学, 2020, 53(13): 2595-2603. |
[8] | 王洪义, 常继方, 王正文. 退化草地恢复过程中群落物种多样性及生产力对氮磷养分的响应[J]. 中国农业科学, 2020, 53(13): 2604-2613. |
[9] | 朱瑞芬,刘杰淋,王建丽,韩微波,申忠宝,辛晓平. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 2020, 53(13): 2637-2646. |
[10] | 李强, 黄迎新, 钟荣珍, 孙海霞, 周道玮. 豆-禾混播草地中紫花苜蓿比例对其固氮效率的影响及潜在生理机制[J]. 中国农业科学, 2020, 53(13): 2647-2656. |
[11] | 徐梦,徐丽君,程淑兰,方华军,卢明珠,于光夏,杨艳,耿静,曹子铖,李玉娜. 人工草地土壤有机碳组分与微生物群落对施氮补水的响应[J]. 中国农业科学, 2020, 53(13): 2678-2690. |
[12] | 李达,方华军,王笛,徐丽君,唐雪娟,辛晓平,聂莹莹,乌仁其其格. 草甸草原区退耕地的牧草-水分-氮肥耦合机制[J]. 中国农业科学, 2020, 53(13): 2691-2702. |
[13] | 朱晓昱,徐大伟,辛晓平,沈贝贝,丁蕾,王旭,陈宝瑞,闫瑞瑞. 1992—2015年呼伦贝尔草原区不同草地类型分布时空变化遥感分析[J]. 中国农业科学, 2020, 53(13): 2715-2727. |
[14] | 程伟, 辛晓平. 基于TVDI的内蒙古草地干旱变化特征分析[J]. 中国农业科学, 2020, 53(13): 2728-2742. |
[15] | 辛晓平,丁蕾,程伟,朱晓昱,陈宝瑞,刘钟龄,何广礼,青格勒,杨桂霞,唐华俊. 北方草地及农牧交错区草地植被碳储量及其影响因素[J]. 中国农业科学, 2020, 53(13): 2757-2768. |
|