中国农业科学 ›› 2023, Vol. 56 ›› Issue (1): 104-117.doi: 10.3864/j.issn.0578-1752.2023.01.008
赵政鑫1,2(),王晓云1,2,田雅洁1,2,王锐1,2,彭青1,2,蔡焕杰1,2(
)
收稿日期:
2021-11-10
接受日期:
2022-01-17
出版日期:
2023-01-01
发布日期:
2023-01-17
通讯作者:
蔡焕杰
作者简介:
赵政鑫,E-mail:基金资助:
ZHAO ZhengXin1,2(),WANG XiaoYun1,2,TIAN YaJie1,2,WANG Rui1,2,PENG Qing1,2,CAI HuanJie1,2(
)
Received:
2021-11-10
Accepted:
2022-01-17
Online:
2023-01-01
Published:
2023-01-17
Contact:
HuanJie CAI
摘要:
【目的】秸秆还田配施氮肥可以提高作物生产力,但在气候变化条件下,不同管理措施对夏玉米农田氮素利用存在很大的不确定性。明确在未来气候条件下秸秆还田与氮肥种类对夏玉米产量和土壤氨挥发的影响,以应对气候变化。【方法】利用DNDC模型预测未来不同情景下,秸秆还田和不同氮肥种类对关中地区夏玉米产量和土壤氨挥发的影响。通过田间土壤温度、水分、产量和土壤氨挥发累积量试验数据的验证,DNDC模型可以很好地模拟未来气候条件下不同处理的作物产量和土壤氨挥发累积量。【结果】模拟和实测结果均表明,在当前气候条件下秸秆还田会提高作物产量并促进土壤氨挥发,稳定性氮肥与普通尿素相比对产量无显著影响但会显著减少土壤氨挥发累积量。敏感性分析表明,作物产量与土壤氨挥发累积量均对施氮量最敏感。在RCP4.5排放情景下,单施稳定性氮肥(NF1)和单施尿素(NF2)分别在2050s—2090s和2070s—2090s产量显著降低,秸秆配施稳定性氮肥(SF1)和秸秆配施尿素(SF2)均在2050s—2090s产量显著升高;在RCP8.5排放情景下,单施稳定性氮肥(NF1)在2070s—2090s产量显著降低,单施尿素(NF2)产量无显著变化,秸秆配施稳定性氮肥(SF1)和秸秆配施尿素(SF2)均在2050s—2090s产量显著升高。单施稳定性氮肥(NF1)在RCP4.5排放情景下的2050s—2090s和在RCP8.5排放情景下2030s—2090s土壤氨挥发累积量与当前气候条件相比显著提高,其余各处理在不同排放情景下未来各时期土壤氨挥发累积量与当前气候条件相比均显著降低。【结论】DNDC预测结果表明,在关中地区未来气温和CO2浓度升高以及降水变化的气候条件下,秸秆还田配施稳定性氮肥会显著提高夏玉米产量并降低土壤氨挥发累积量,是最佳的高产减排农田管理方案,可为应对气候变化及合理使用秸秆和氮肥提供理论基础。
赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117.
ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change[J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
表1
土壤和作物参数"
参数种类 Parameter type | 参数种名称 Parameter name | 取值 Value | 单位 Note |
---|---|---|---|
土壤参数 Soil parameter | 土壤质地 Texture | 粉质黏壤土 Silly clay loam | |
土壤容重 Bulk density | 1.40 | g·cm-3 | |
田间持水量 Field capacity (WFPS) | 0.56 | g·cm-3 | |
孔隙度 Porosity | 0.477 | ||
0—10 cm土层有机碳含量 SOC in surface (0-10 cm soil layer) | 5 | g·kg-1 | |
表层土壤NO3-含量 Nitrate content in soil suface | 2.5 | mg·kg-1 | |
表层土壤NH4+含量 Ammoium content in soil suface | 2 | mg·kg-1 | |
坡度 Slop | 1 | ° | |
作物参数 Crop parameter | 最高生物量 Max biomass production | 4500 | kg C·hm-2·a-1 |
生物量比例 Biomass fraction | 0.53/0.18/0.18/0.11 | grain/leaf/stem/root | |
生物量C/N Biomass C/N ratio | 31/60/60/42 | grain/leaf/stem/root | |
总需氮量 Annual N demand | 218.342 | kg N·hm-2·a-1 | |
生长积温 TDD | 2350 | ℃ | |
需水量 Water demand | 120 | mm | |
最适温度 Optimum temperature | 30 | ℃ | |
固氮系数 Nitrgen fixation index | 1 |
表2
敏感性分析结果"
输入参数 Input parameter | 基础值 Base value | 变化范围 Variation range | 产量SI值 SI value of yield | 土壤氨挥发SI值 SI value of CAE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NF1 | NF2 | SF1 | SF2 | NF1 | NF2 | SF1 | SF2 | |||
生育期均温 Average temperature during growth period (℃) | 23.7 | 16.59—30.8 | 0.02 | 0.02 | 0.02 | 0.02 | -0.01 | 0.02 | -0.01 | 0.02 |
生育期降水量 Precipitation during growth period (mm) | 552 | 386—718 | -0.12 | -0.10 | -0.11 | -0.13 | -0.01 | -0.01 | -0.05 | -0.04 |
土壤黏粒含量 Soil clay content (%) | 14.0 | 10—18 | 0.47 | 0.39 | 0.47 | 0.44 | -0.68 | -1.08 | -0.87 | -1.14 |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 5 | 4—7 | -0.01 | 0.01 | -0.04 | 0.01 | -0.29 | -0.40 | -0.43 | -0.40 |
施氮量 Nitrogen application rate (kg·hm-2) | 180 | 126—234 | 0.89 | 0.91 | 0.67 | 0.67 | 1.38 | 2.53 | 1.30 | 2.47 |
秸秆还田量 Amount of straw returned to the field (kg·hm-2) | 8000 | 5600—10400 | - | - | -0.01 | -0.01 | - | - | -0.08 | -0.08 |
[1] |
宋敏, 王宏新, 郭慧捷, 肖嘉利. 农业领域面对气候变化的脆弱性与适应性举措. 肥料与健康, 2021, 48(4): 1-9. doi:10.3969/j.issn.2096-7047.2021.04.001.
doi: 10.3969/j.issn.2096-7047.2021.04.001 |
SONG M, WANG H X, GUO H J, XIAO J L. Vulnerability of agriculture to climate change and adaptive measures. Fertilizer & Health, 2021, 48(4): 1-9. doi:10.3969/j.issn.2096-7047.2021.04.001. (in Chinese)
doi: 10.3969/j.issn.2096-7047.2021.04.001 |
|
[2] |
DING D Y, FENG H, ZHAO Y, LIU W Z, CHEN H X, HE J Q. Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China. Climatic Change, 2016, 138(1/2): 157-171. doi:10.1007/s10584-016-1714-1.
doi: 10.1007/s10584-016-1714-1 |
[3] |
PAN B B, LAM S K, MOSIER A, LUO Y Q, CHEN D L. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems & Environment, 2016, 232: 283-289. doi:10.1016/j.agee.2016.08.019.
doi: 10.1016/j.agee.2016.08.019 |
[4] |
ZHANG H L, LAL R, ZHAO X, XUE J F, CHEN F. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Advances in Agronomy. Amsterdam: Elsevier, 2014: 1-36. doi:10.1016/b978-0-12-800138-7.00001-2.
doi: 10.1016/b978-0-12-800138-7.00001-2 |
[5] |
王丽波. 秸秆直接还田是农业可持续发展的需要. 农机使用与维修, 2018(4): 74. doi:10.14031/j.cnki.njwx.2018.04.055.
doi: 10.14031/j.cnki.njwx.2018.04.055 |
WANG L B. The direct return of straw to the field is the need of sustainable agricultural development. Agricultural Mechanization Using & Maintenance, 2018(4): 74. doi:10.14031/j.cnki.njwx.2018.04.055. (in Chinese)
doi: 10.14031/j.cnki.njwx.2018.04.055 |
|
[6] |
LI M N, WANG Y L, ADELI A, YAN H J. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crops Research, 2018, 218: 115-125. doi:10.1016/j.fcr.2018.01.011.
doi: 10.1016/j.fcr.2018.01.011 |
[7] |
赵苗苗, 邵蕊, 杨吉林, 赵芬, 徐明. 基于DNDC模型的稻田温室气体排放通量模拟. 生态学杂志, 2019, 38(4): 1057-1066. doi:10.13292/j.1000-4890.201904.030.
doi: 10.13292/j.1000-4890.201904.030 |
ZHAO M M, SHAO R, YANG J L, ZHAO F, XU M. Simulation of greenhouse gas fluxes in rice fields based on DNDC model. Chinese Journal of Ecology, 2019, 38(4): 1057-1066. doi:10.13292/j.1000-4890.201904.030. (in Chinese)
doi: 10.13292/j.1000-4890.201904.030 |
|
[8] |
LI C S. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 2000, 58(1/2/3): 259-276. doi:10.1023/A:1009859006242.
doi: 10.1023/A:1009859006242 |
[9] |
HU X K, SU F, JU X T, GAO B, OENEMA O, CHRISTIE P, HUANG B X, JIANG R F, ZHANG F S. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environmental Pollution, 2013, 176: 198-207. doi:10.1016/j.envpol.2013.01.040.
doi: 10.1016/j.envpol.2013.01.040 |
[10] |
王朝辉, 刘学军, 巨晓棠, 张福锁. 田间土壤氨挥发的原位测定: 通气法. 植物营养与肥料学报, 2002, 8(2): 205-209. doi:10.3321/j.issn:1008-505X.2002.02.014.
doi: 10.3321/j.issn:1008-505X.2002.02.014 |
WANG Z H, LIU X J, JU X T, ZHANG F S. Field in situ determination of ammo nia volatilization from soil: Venting method. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209. doi:10.3321/j.issn:1008-505X.2002.02.014. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2002.02.014 |
|
[11] |
LI C S, FROLKING S, FROLKING T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 1992, 97(D9): 9759-9776. doi:10.1029/92jd00509.
doi: 10.1029/92jd00509 |
[12] |
高小叶, 袁世力, 吕爱敏, 周鹏, 安渊. DNDC模型评估苜蓿绿肥对水稻产量和温室气体排放的影响. 草业学报, 2016, 25(12): 14-26. doi:10.11686/cyxb2016038.
doi: 10.11686/cyxb2016038 |
GAO X Y, YUAN S L, LÜ A M, ZHOU P, AN Y. Effects of alfalfa green manure on rice production and greenhouse gas emissions based on a DNDC model simulation. Acta Prataculturae Sinica, 2016, 25(12): 14-26. doi:10.11686/cyxb2016038. (in Chinese)
doi: 10.11686/cyxb2016038 |
|
[13] |
WANG B, DE LI LIU, ASSENG S, MACADAM I, YU Q. Impact of climate change on wheat flowering time in eastern Australia. Agricultural and Forest Meteorology, 2015, 209/210: 11-21. doi:10.1016/j.agrformet.2015.04.028.
doi: 10.1016/j.agrformet.2015.04.028 |
[14] |
ZHANG Y J, NIU H S. The development of the DNDC plant growth sub-model and the application of DNDC in agriculture: A review. Agriculture, Ecosystems & Environment, 2016, 230: 271-282. doi:10.1016/j.agee.2016.06.017.
doi: 10.1016/j.agee.2016.06.017 |
[15] | 李长生. 生物地球化学:科学基础与模型方法. 北京: 清华大学出版社, 2016. |
LI C S. Biogeochemistry:Scientific Fundamentals and Modeling Approach. Beijing: Tsinghua University Press, 2016. (in Chinese) | |
[16] |
ZHANG F, ZHANG W J, LI M, ZHANG Y, LI F M, LI C B. Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agricultural Systems, 2017, 150: 67-77. doi:10.1016/j.agsy.2016.10.011.
doi: 10.1016/j.agsy.2016.10.011 |
[17] |
YU Y X, TAO H, JIA H T, ZHAO C Y. Impact of plastic mulching on nitrous oxide emissions in China’s arid agricultural region under climate change conditions. Atmospheric Environment, 2017, 158: 76-84. doi:10.1016/j.atmosenv.2017.03.020.
doi: 10.1016/j.atmosenv.2017.03.020 |
[18] |
HAN J, JIA Z K, WU W, LI C S, HAN Q F, ZHANG J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Research, 2014, 155: 202-212. doi:10.1016/j.fcr.2013.09.004.
doi: 10.1016/j.fcr.2013.09.004 |
[19] |
卢丽丽, 吴根义. 农田氨排放影响因素研究进展. 中国农业大学学报, 2019, 24(1): 149-162. doi:10.11841/j.issn.1007-4333.2019.01.19.
doi: 10.11841/j.issn.1007-4333.2019.01.19 |
LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland. Journal of China Agricultural University, 2019, 24(1): 149-162. doi:10.11841/j.issn.1007-4333.2019.01.19. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2019.01.19 |
|
[20] |
夏文建, 王淳, 张丽芳, 张文学, 冀建华, 陈金, 刘增兵, 刘光荣. 基于DNDC模型的双季稻体系氨挥发损失研究. 长江流域资源与环境, 2020, 29(9): 2035-2046. doi:10.11870/cjlyzyyhj202009014.
doi: 10.11870/cjlyzyyhj202009014 |
XIA W J, WANG C, ZHANG L F, ZHANG W X, JI J H, CHEN J, LIU Z B, LIU G R. Suitability of DNDC model to simulate ammonia volatilization for double rice cropping system. Resources and Environment in the Yangtze Basin, 2020, 29(9): 2035-2046. doi:10.11870/cjlyzyyhj202009014. (in Chinese)
doi: 10.11870/cjlyzyyhj202009014 |
|
[21] |
朱影, 庄国强, 吴尚华, 黄占斌, 庄绪亮. 农田土壤氨挥发的过程和控制技术研究. 环境保护科学, 2020, 46(6): 88-96. doi:10.16803/j.cnki.issn.1004-6216.2020.06.015.
doi: 10.16803/j.cnki.issn.1004-6216.2020.06.015 |
ZHU Y, ZHUANG G Q, WU S H, HUANG Z B, ZHUANG X L. Ammonia volatilization process and control technology of farmland soil. Environmental Protection Science, 2020, 46(6): 88-96. doi:10.16803/j.cnki.issn.1004-6216.2020.06.015. (in Chinese)
doi: 10.16803/j.cnki.issn.1004-6216.2020.06.015 |
|
[22] |
TANG R S, ZHENG J C, JIN Z Q, ZHANG D D, HUANG Y H, CHEN L G. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regulation, 2008, 54(1): 37-43. doi:10.1007/s10725-007-9225-8.
doi: 10.1007/s10725-007-9225-8 |
[23] |
XU C H, XU Y. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 2012, 5(6): 527-533. doi:10.1080/16742834.2012.11447042.
doi: 10.1080/16742834.2012.11447042 |
[24] |
谢瑞芝, 明博. 玉米生产系统对气候变化的响应与适应. 中国农业科学, 2021, 54(17): 3587-3591. doi:10.3864/j.issn.0578-1752.2021.17.003.
doi: 10.3864/j.issn.0578-1752.2021.17.003 |
XIE R Z, MING B. Response and adaptation of maize production system to climate change. Scientia Agricultura Sinica, 2021, 54(17): 3587-3591. doi:10.3864/j.issn.0578-1752.2021.17.003. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.17.003 |
|
[25] |
李树岩, 潘学标, 王靖. RCP情景下河南省夏玉米产量的变化及适应措施. 西北农林科技大学学报(自然科学版), 2020, 48(10): 24-37. doi:10.13207/j.cnki.jnwafu.2020.10.004.
doi: 10.13207/j.cnki.jnwafu.2020.10.004 |
LI S Y, PAN X B, WANG J. Variation of summer maize yield under RCP scenarios and adaptation measures in Henan. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(10): 24-37. doi:10.13207/j.cnki.jnwafu.2020.10.004. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2020.10.004 |
|
[26] |
LÜ F L, SONG J S, GILTRAP D, FENG Y T, YANG X Y, ZHANG S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Science of the Total Environment, 2020, 732: 139321. doi:10.1016/j.scitotenv.2020.139321.
doi: 10.1016/j.scitotenv.2020.139321 |
[27] |
高雪慧, 刘强, 王钧. 基于APSIM模型的旱地春小麦产量对大气CO2浓度和氮肥水平的响应. 作物研究, 2021, 35(5): 544-548, 552. doi:10.16848/j.cnki.issn.1001-5280.2021.05.31.
doi: 10.16848/j.cnki.issn.1001-5280.2021.05.31 |
GAO X H, LIU Q, WANG J. Response of spring wheat yield in dryland to CO2 concentration and nitrogen fertilizer level based on APSIM model. Crop Research, 2021, 35(5): 544-548, 552. doi:10.16848/j.cnki.issn.1001-5280.2021.05.31. (in Chinese)
doi: 10.16848/j.cnki.issn.1001-5280.2021.05.31 |
|
[28] | 路文涛, 高飞, 贾志宽, 韩清芳, 杨宝平, 侯贤清. 秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响. 生态学报, 2011, 31(3): 777-783. |
LU W T, GAO F, JIA Z K, HAN Q F, YANG B P, HOU X Q. Effects of different straw returning treatments on soil water, maize growth and photosynthetic characteristics in the semi-arid area of Southern Ningxia. Acta Ecologica Sinica, 2011, 31(3): 777-783. (in Chinese) | |
[29] |
张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10): 1746-1760. doi:10.3864/j.issn.0578-1752.2019.10.008.
doi: 10.3864/j.issn.0578-1752.2019.10.008 |
ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubation and field conditions. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760. doi:10.3864/j.issn.0578-1752.2019.10.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.10.008 |
|
[30] |
杨杉, 吴胜军, 王雨, 周文佐, 程辉, 叶飞, 黄培, 黄平. 三峡库区农田氨挥发及其消减措施研究进展. 土壤, 2014, 46(5): 773-779. doi:10.13758/j.cnki.tr.2014.05.001.
doi: 10.13758/j.cnki.tr.2014.05.001 |
YANG S, WU S J, WANG Y, ZHOU W Z, CHENG H, YE F, HUANG P, HUANG P. Ammonia volatilization and its reducing countermeasures in the agro-ecosystem of the Three Gorges area: A review. Soils, 2014, 46(5): 773-779. doi:10.13758/j.cnki.tr.2014.05.001. (in Chinese)
doi: 10.13758/j.cnki.tr.2014.05.001 |
|
[31] |
NICHOLSON F A, BHOGAL A, CHADWICK D, GILL E, GOODAY R D, LORD E, MISSELBROOK T, ROLLETT A J, SAGOO E, SMITH K A, THORMAN R E, WILLIAMS J R, CHAMBERS B J. An enhanced software tool to support better use of manure nutrients: Manner-NPK. Soil Use and Management, 2013, 29(4): 473-484. doi:10.1111/sum.12078.
doi: 10.1111/sum.12078 |
[32] |
WANG W Y, AKHTAR K, REN G X, YANG G H, FENG Y Z, YUAN L Y. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Science of the Total Environment, 2019, 652: 471-482. doi:10.1016/j.scitotenv.2018.10.207.
doi: 10.1016/j.scitotenv.2018.10.207 |
[33] |
王峰, 陈玉真, 吴志丹, 江福英, 翁伯琦, 尤志明. 酸性茶园土壤氨挥发及其影响因素研究. 农业环境科学学报, 2016, 35(4): 808-816. doi:10.11654/jaes.2016.04.027.
doi: 10.11654/jaes.2016.04.027 |
WANG F, CHEN Y Z, WU Z D, JIANG F Y, WENG B Q, YOU Z M. Ammonia volatilization and its influencing factors in tea garden soils. Journal of Agro-Environment Science, 2016, 35(4): 808-816. doi:10.11654/jaes.2016.04.027. (in Chinese)
doi: 10.11654/jaes.2016.04.027 |
|
[34] |
马晓燕, 王军玲, 郭秀锐, 韩玉花. 不同施氮情景下北京地区露地甘蓝土壤氨的排放. 北方园艺, 2017(13): 140-147. doi:10.11937/bfyy.20164671.
doi: 10.11937/bfyy.20164671 |
MA X Y, WANG J L, GUO X R, HAN Y H. Ammonia emission from outdoor cabbage soil in Beijing area based on different nitrogen application rate. Northern Horticulture, 2017(13): 140-147. doi:10.11937/bfyy.20164671. (in Chinese)
doi: 10.11937/bfyy.20164671 |
|
[35] | 王东, 于振文, 于文明, 石玉, 周忠新. 施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响. 应用生态学报, 2006, 17(9): 1593-1598. |
WANG D, YU Z W, YU W M, SHI Y, ZHOU Z X. Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field. Chinese Journal of Applied Ecology, 2006, 17(9): 1593-1598. (in Chinese) |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[6] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[7] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[8] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[9] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[10] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[11] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[14] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[15] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
|