中国农业科学 ›› 2022, Vol. 55 ›› Issue (22): 4327-4341.doi: 10.3864/j.issn.0578-1752.2022.22.001
刘进1,2(),胡佳晓1,马小定2,陈武1,勒思1,Jo Sumin3,崔迪2,周慧颖1,张立娜1,Shin Dongjin3,黎毛毛1,韩龙植2(
),余丽琴1(
)
收稿日期:
2022-07-04
接受日期:
2022-08-12
出版日期:
2022-11-16
发布日期:
2022-12-14
通讯作者:
韩龙植,余丽琴
作者简介:
刘进,E-mail:基金资助:
LIU Jin1,2(),HU JiaXiao1,MA XiaoDing2,CHEN Wu1,LE Si1,JO Sumin3,CUI Di2,ZHOU HuiYing1,ZHANG LiNa1,SHIN Dongjin3,LI MaoMao1,HAN LongZhi2(
),YU LiQin1(
)
Received:
2022-07-04
Accepted:
2022-08-12
Online:
2022-11-16
Published:
2022-12-14
Contact:
LongZhi HAN,LiQin YU
摘要:
【目的】 随着全球气候变暖,高温严重威胁粮食安全,发掘耐热基因资源是培育耐高温新品种和消除高温危害最直接的绿色生态途径,也是阐明耐热生理生化和分子遗传机理的基础。【方法】 构建苗期耐热性鉴定评价方法,以热敏感品种周南稻和强耐热品种赣早籼58号杂交衍生的重组自交系(recombinant inbred lines,RIL)群体为研究材料,利用高通量测序技术对亲本和RIL群体进行全基因组测序;依据171个家系的基因型数据,利用滑动窗口法将SNP信息转换成Bin基因型,预测染色体上的重组断点,构建RIL群体高密度BinMap遗传图谱,结合耐热表型数据,运用QTL IciMapping软件完备复合区间ICIM的作图方法,进行高温胁迫下幼苗存活率和耐热等级QTL分析。【结果】 构建了一张包含3 321个Bin标记高密度遗传图谱,各染色体Bin标记数为159—400个,标记间平均物理距离为106 kb;利用逐步高温胁迫方式鉴定亲本和RIL家系幼苗耐热表型,高温胁迫下,幼苗存活率和耐热等级存在极显著负相关性,且幼苗存活率与籼型基因频率存在显著正相关性,籼型基因频率越高,耐热性越好,RIL群体表型性状呈现双峰连续分布,苗期耐热性可能受少数几个主效QTL调控;共检测到12个苗期耐热性相关的QTL,其中,调控幼苗存活率和耐热等级的QTL分别有8和4个,幼苗存活率和耐热等级相关QTL存在遗传重叠现象,形成调控耐热性的主效QTL簇qHTS2、qHTS7和qHTS8,三者在调控苗期高温抗逆中具有重要作用,其中,qHTS7为新发现主效QTL,对增强苗期耐热性具有较强的功效。【结论】 构建了一张包含3 321个Bin标记的高密度分子遗传图谱,解析了耐热品种赣早籼58号苗期耐热基因,鉴定出3个苗期耐热调控关键QTL簇,发掘了一个新主效QTL簇qHTS7,基于高密度遗传图谱高效获取目标区段及候选基因,筛选出8个苗期耐热性调控的关键目标基因。
刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341.
LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.)[J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
表1
水稻苗期耐热等级判定标准"
耐热等级 HTC | 热胁迫症状 Heat stress phenotype | 耐热性 Heat tolerance |
1 | 植株叶片、根系无损害症状,生长势较好,高温胁迫幼苗存活率高于80% The plant leaves and roots showed no damage symptoms, the growth potential was good, and then heat stress seedling survival rate was higher than 80% | 强耐热 Extreme heat tolerance |
3 | 部分植株叶片卷曲、黄化失绿,根系受损变黄,高温胁迫幼苗存活率明显下降 The leaves of some plants were curled, yellowing and lost green, the roots were damaged and turned yellow, and then heat stress seedling survival rate have a significantly decreased | 耐热 Heat tolerance |
5 | 植株整株或部分叶片黄化、枯死,生长受抑,高温胁迫幼苗存活率低于50% The whole or part of the plant leaves were yellowing and dead, the growth was inhibited, and then heat stress seedling survival rate was less than 50% | 中抗 Moderate resistance |
7 | 植株叶片和茎秆脱水、生长停止,幼苗枯死或新叶死亡,高温胁迫幼苗存活率较低 Plant leaves and stalks were dehydrated, growth stopped, and then seedlings died or new leaves died, which heat stress seedling survival rate was lower | 热敏感 Heat sensitive |
9 | 幼苗植株全部枯死或接近死亡,高温胁迫幼苗存活率低于10% All seedling plants died or were nearly death, and then heat stress seedlings survival rate was less than 10% | 极端热敏感 Extreme heat sensitive |
表2
水稻RIL群体遗传连锁图染色体标记分布"
染色体 Chr. | Bin标记数 Bin marker | 遗传图距 Distance (cM) | 标记间平均遗传距离 Average distance (cM) | 最大遗传距离 Max gap (cM) |
Chr.1 | 306 | 160.62 | 0.52 | 3.29 |
Chr.2 | 332 | 115.86 | 0.35 | 3.11 |
Chr.3 | 400 | 152.91 | 0.38 | 3.34 |
Chr.4 | 325 | 155.75 | 0.48 | 3.44 |
Chr.5 | 342 | 141.71 | 0.41 | 3.62 |
Chr.6 | 192 | 99.60 | 0.52 | 4.77 |
Chr.7 | 190 | 147.96 | 0.78 | 4.18 |
Chr.8 | 255 | 142.60 | 0.56 | 3.97 |
Chr.9 | 225 | 160.73 | 0.71 | 3.79 |
Chr.10 | 332 | 154.57 | 0.47 | 5.42 |
Chr.11 | 263 | 155.00 | 0.59 | 4.18 |
Chr.12 | 159 | 115.78 | 0.73 | 3.80 |
总计Total | 3321 | 1703.09 | 0.51 | 5.42 |
表3
水稻苗期耐热性QTL分析"
性状 Trait | 位点 Locus | 标记 Marker | LOD值 LOD value | 贡献率 PVE (%) | 加性效应 Additive effect | 物理位置及距离 Position(bp) and distance (kb) |
幼苗存活率 HTSR | qHTSR2 | Block4364-4396 | 3.89 | 5.25 | 6.33 | 34029923—34439386 (409) |
qHTSR3 | Block4512-4513 | 2.95 | 7.20 | 9.44 | 2137—105390 (103) | |
qHTSR4 | Block6417-6435 | 2.89 | 5.80 | 4.99 | 4868070—5212956 (345) | |
qHTSR6 | Block9309-9325 | 2.68 | 5.25 | 6.33 | 1814778—1992782 (178) | |
qHTSR7 | Block11026-11067 | 4.55 | 15.89 | -17.86 | 2023438—2912508 (889) | |
qHTSR8 | Block12594-12597 | 2.67 | 6.31 | 8.34 | 5289371—5860658 (571) | |
qHTSR9 | Block14481-14488 | 2.52 | 6.72 | -9.10 | 22679210—22800304 (121) | |
qHTSR12 | Block18068-18081 | 3.22 | 8.51 | 3.53 | 3003771—3304029 (300) | |
耐热等级 HTC | qHTC2.1 | Block3098-3136 | 3.39 | 8.52 | 0.66 | 9969848—10850583 (880) |
qHTC2.2 | Block4364-4396 | 3.44 | 9.93 | 1.55 | 34029923—34439386 (409) | |
qHTC7 | Block11026-11067 | 6.52 | 18.88 | -2.56 | 2023438—2912508 (889) | |
qHTC8 | Block12456-12597 | 3.67 | 7.80 | 0.88 | 5289371—5860658 (571) |
表4
主效QTL簇定位区间关键候选基因分析"
编号 Number | 候选基因 Candidate gene | 基因功能 Gene function |
ORF2-1 | Os02g0801700 | 锌指蛋白,BED型预测结构域 Zinc finger, BED-type predicted domain containing protein |
ORF2-2 | Os02g0802700* | 单半乳糖基二酰基甘油合酶,调控植物生长发育 Monogalactosyldiacylglycerol synthase, plant growth and development |
ORF2-3 | Os02g0804500* | 热休克蛋白Hsp40,含有DnaJ结构域蛋白 Heat shock protein, Hsp40, DnaJ domain containing protein |
ORF2-4 | Os02g0804900* | 核糖核苷酸还原酶,叶绿体生物合成 Ribonucleotide reductase, chloroplast biogenesis |
ORF2-5 | Os02g0805100 | 生长素反应蛋白IAA12 Auxin-responsive protein IAA12 |
ORF2-6 | Os02g0806400 | 锌指家族蛋白 Zine finger family protein |
ORF7-1 | Os07g0138200* | NAC转录因子,ABA诱导的叶片衰老和分蘖 NAC transcription factor, ABA-induced leaf senescence and tillering |
ORF7-2 | Os07g0138400 | CCCH型锌指蛋白,调控耐旱性 CCCH-type zinc finger protein, drought tolerance |
ORF7-3 | Os07g0139000 | 预测的含锌指 CCCH 结构域蛋白48 Putative zinc finger CCCH domain-containing protein 48 |
ORF7-4 | Os07g0141500 | 含有SWIM型结构域锌指蛋白 Zinc finger, SWIM-type domain containing protein |
ORF7-5 | Os07g0143200* | 光敏色素互作 bHLH 因子,冷诱导OsPIF14可变剪接体,光力信号传导 Phytochrome-interacting bHLH factor, cold-induced alternative splicing variant of OsPIF14, cross-talk between light and stress signaling |
ORF7-6 | Os07g0148900 | 特色光系统I蛋白 Photosystem I protein-like protein |
ORF7-7 | Os07g0150500 | 含C3HC结构域的锌指蛋白 Zinc finger, C3HC-like domain containing protein |
ORF7-8 | Os07g0152000* | 转录因子,调控耐冷性 Transcription factor, cold tolerance |
ORF8-1 | Os08g0191100* | 乌头酸酶,参与热激响应 Aconitase, response to heat stress |
ORF8-2 | Os08g0191200 | 叶绿体发育、叶绿素代谢和细胞分裂调节 Regulation of chloroplast development, chlorophyll metabolism and cell division |
ORF8-3 | Os08g0191900 | 低温条件下调控叶绿体发育 Regulation of chloroplast development under low-temperature condition |
ORF8-4 | Os08g0191700* | 乙二醛酶I,非生物逆境应激反应 Glyoxalase I, abiotic stress response |
ORF8-5 | Os08g0196700 | 核因子Y转录因子,干旱胁迫耐受性 Nuclear Factor Y transcription factor, drought stress tolerance |
ORF8-6 | Os08g0198100 | 锌指蛋白,BED型预测结构域 Zinc finger, BED-type predicted domain containing protein |
ORF8-7 | Os08g0199300 | 特异G蛋白,参与植物防御及耐盐胁迫反应 Unconventional G protein, plant defense response, salinity stress tolerance |
ORF8-8 | Os08g0200600* | NAC转录因子,调控耐旱性 NAC transcription factor, negative regulation of drought tolerance |
[1] | 杨沈斌, 申双和, 赵小艳, 赵艳霞, 许吟隆, 王主玉, 刘娟, 张玮玮. 气候变化对长江中下游稻区水稻产量的影响. 作物学报, 2010, 36(9): 1519-1528. |
YANG S B, SHEN S H, ZHAO X Y, ZHAO Y X, XU Y L, WANG Z Y, LIU J, ZHANG W W. Impacts of climate changes on rice production in the middle and lower reaches of the Yangtze River. Acta Agronomica Sinica, 2010, 36(9): 1519-1528. (in Chinese) | |
[2] | IPCC.Climate change 2013: The physical science basis contribution of working group I to the fifth assessment report of the inter governmental panel on climate change. Cambridge: Cambridge University Press, 2013: 1-36. |
[3] |
张桂莲, 廖斌, 唐文帮, 陈立云, 肖应辉. 稻米垩白性状对高温耐性的QTL分析. 中国水稻科学, 2017, 31(3): 257-264.
doi: 10.16819/j.1001-7216.2017.6172 257 |
ZHANG G L, LIAO B, TANG W B, CHEN L Y, XIAO Y H. Identifying QTLs for thermo-tolerance of grain chalkiness trait in rice. Chinese Journal of Rice Science, 2017, 31(3): 257-264. (in Chinese)
doi: 10.16819/j.1001-7216.2017.6172 257 |
|
[4] | 段骅, 唐琪, 剧成欣, 刘立军, 杨建昌. 抽穗灌浆早期高温与干旱对不同水稻品种产量和品质的影响. 中国农业科学, 2012, 45(22): 4561-4573. |
DUAN H, TANG Q, JU C X, LIU L J, YANG J C. Effect of high temperature and drought on grain yield and quality of different rice varieties during heading and early grain filling periods. Scientia Agricultura Sinica, 2012, 45(22): 4561-4573. (in Chinese) | |
[5] | 王小波, 关攀锋, 辛明明, 汪永法, 陈西勇, 赵爱菊, 刘曼双, 李红霞, 张明义, 逯腊虎, 魏亦勤, 刘旺清, 张金波, 倪中福, 姚颖垠, 胡兆荣, 彭惠茹, 孙其信. 小麦种质资源耐热性评价. 中国农业科学, 2019, 52(23): 4191-4200. |
WANG X B, GUAN P F, XIN M M, WANG Y F, CHEN X Y, ZHAO A J, LIU M S, LI H X, ZHANG M Y, LU L H, WEI Y Q, LIU W Q, ZHANG J B, NI Z F, YAO Y Y, HU Z R, PENG H R, SUN Q X. Evaluation of heat tolerance in wheat germplasm resources. Scientia Agricultura Sinica, 2019, 52(23): 4191-4200. (in Chinese) | |
[6] |
姜树坤, 王立志, 杨贤莉, 迟力勇, 李忠杰, 李明贤, 张喜娟, 赵茜, 李锐, 姜辉, 李文华. 不同生育时期增温对寒地水稻产量和品质的影响. 中国农业科技导报, 2021, 23(6): 130-139.
doi: 10.13304/j.nykjdb.2019.0983 |
JIANG S K, WANG L Z, YANG X L, CHI L Y, LI Z J, LI M X, ZHANG X J, ZHAO Q, LI R, JIANG H, LI W H. Effect of increasing temperature in different growth stages on rice yield and quality in cold regions. Journal of Agricultural Science and Technology, 2021, 23(6): 130-139. (in Chinese)
doi: 10.13304/j.nykjdb.2019.0983 |
|
[7] |
于江辉, 赵森, 周浩, 孟秋成, 蒋建雄, 肖国樱. 分期播种对耐高温东北粳稻农艺性状的影响及耐热性评价. 中国生态农业学报, 2012, 20(8): 1037-1042.
doi: 10.3724/SP.J.1011.2012.01037 |
YU J H, ZHAO S, ZHOU H, MENG Q C, JIANG J X, XIAO G Y. Effect of interval sowing on agronomic traits and thermo-tolerance of japonica rice from Northeast China. Chinese Journal of Eco- Agriculture, 2012, 20(8): 1037-1042. (in Chinese)
doi: 10.3724/SP.J.1011.2012.01037 |
|
[8] | 花劲, 周年兵, 张军, 张洪程, 霍中洋, 周培建, 程飞虎, 李国业, 黄大山, 陈忠平, 陈国梁, 戴其根, 许轲, 魏海燕, 高辉, 郭保卫. 双季稻区晚稻“籼改粳”品种筛选. 中国农业科学, 2014, 47(23): 4582-4594. |
HUA J, ZHOU N B, ZHANG J, ZHANG H C, HUO Z Y, ZHOU P J, CHENG F H, LI G Y, HUANG D S, CHEN Z P, CHEN G L, DAI Q G, XU K, WEI H Y, GAO H, GUO B W. Selection of late rice cultivars of japonica rice switched from indica rice in double cropping rice area. Scientia Agricultura Sinica, 2014, 47(23): 4582-4594. (in Chinese) | |
[9] |
杨军, 章毅之, 贺浩华, 李迎春, 陈小荣, 边建民, 金国花, 李翔翔, 黄淑娥. 水稻高温热害的研究现状与进展. 应用生态学报, 2020, 31(8): 2817-2830.
doi: 10.13287/j.1001-9332.202008.027 |
YANG J, ZHANG Y Z, HE H H, LI Y C, CHEN X R, BIAN J M, JIN G H, LI X X, HUANG S E. Current status and research advances of high-temperature hazards in rice. Chinese Journal of Applied Ecology, 2020, 31(8): 2817-2830. (in Chinese)
doi: 10.13287/j.1001-9332.202008.027 |
|
[10] | 刘鸣, 李玉花, 解莉楠. 水稻非生物胁迫相关QTL研究进展. 植物生理学报, 2013, 49(12): 1301-1308. |
LIU M, LI Y H, XIE L N. Progress in QTL research for abiotic stress in rice. Plant Physiology Journal, 2013, 49(12): 1301-1308. (in Chinese) | |
[11] |
曹志斌, 李瑶, 曾博虹, 毛凌华, 蔡耀辉, 吴晓峰, 袁林峰. 非洲栽培稻垩白粒率耐热性QTL的定位. 中国水稻科学, 2020, 34(2): 135-142.
doi: 10.16819/j.1001-7216.2020.9086 |
CAO Z B, LI Y, ZENG B H, MAO L H, CAI Y H, WU X F, YUAN L F. QTL mapping for heat tolerance of chalky grain rate of Oryza glaberrima Steud. Chinese Journal of Rice Science, 2020, 34(2): 135-142. (in Chinese)
doi: 10.16819/j.1001-7216.2020.9086 |
|
[12] |
刘进, 崔迪, 余丽琴, 张立娜, 周慧颖, 马小定, 胡佳晓, 韩冰, 韩龙植, 黎毛毛. 水稻苗期耐热种质资源筛选及QTL定位. 中国水稻科学, 2022, 36(3): 259-268.
doi: 10.16819/j.1001-7216.2022 |
LIU J, CUI D, YU L Q, ZHANG L N, ZHOU H Y, MA X D, HU J X, HAN B, HAN L Z, LI M M. Screening and QTL mapping of heat-tolerant rice (Oryza sativa L.) germplasm resources at seedling stage. Chinese Journal of Rice Science, 2022, 36(3): 259-268. (in Chinese)
doi: 10.16819/j.1001-7216.2022 |
|
[13] | 赵凌, 赵春芳, 王建, 陈涛, 赵庆勇, 姚姝, 王才林. 20个水稻引进资源的花药开裂及苗期耐热性评价. 植物遗传资源学报, 2017, 18(5): 968-973. |
ZHAO L, ZHAO C F, WANG J, CHEN T, ZHAO Q Y, YAO S, WANG C L. Analyzing of length dehiscence at basal part of thecae and heat resistance during seedling stage of 20 introduced rice germplasms. Journal of Plant Genetic Resources, 2017, 18(5): 968-973. (in Chinese) | |
[14] |
冯活仪, 江浩林, 王孟, 唐湘如, 段美洋, 潘圣刚, 田华, 王树丽, 莫钊文. 不同香稻品种苗期耐高温的形态生理响应. 中国水稻科学, 2019, 33(1): 68-74.
doi: 10.16819/j.1001-7216.2019.8022 |
FENG H Y, JIANG H L, WANG M, TANG X R, DUAN M Y, PAN S G, TIAN H, WANG S L, MO Z W. Morphophysiological responses of different scented rice varieties to high temperature at seedling stage. Chinese Journal of Rice Science, 2019, 33(1): 68-74. (in Chinese)
doi: 10.16819/j.1001-7216.2019.8022 |
|
[15] | 许红云, 许为军, 谭学林. 高温对粳稻品种发芽及幼苗生长发育影响的研究. 西南农业学报, 2008, 21(3): 593-596. |
XU H Y, XU W J, TAN X L. Effect of continuing high temperature on germination and seedling development ofjaponica rice. Southwest China Journal of Agricultural Sciences, 2008, 21(3): 593-596. (in Chinese) | |
[16] |
张长海, 汪向东, 李立中, 方金旭. 常规粳稻在安徽沿江稻区的特征特性研究. 中国稻米, 2017, 23(4): 190-198.
doi: 10.3969/j.issn.1006-8082.2017.04.041 |
ZHANG C H, WANG X D, LI L Z, FANG J X. Study on characteristics of japonica rice in Anhui area along the Yangtze River. China Rice, 2017, 23(4): 190-198. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2017.04.041 |
|
[17] | 陈波, 周年兵, 郭保卫, 黄大山, 陈忠平, 花劲, 霍中洋, 张洪程. 南方稻区“籼改粳”研究进展. 扬州大学学报(农业与生命科学版), 2017, 38(1): 67-88. |
CHEN B, ZHOU N B, GUO B W, HUANG D S, CHEN Z P, HUA J, HUO Z Y, ZHANG H C. Progress of "indica rice to japonica rice" in southern China. Journal of Yangzhou University (Agricultural and Life Science Edition), 2017, 38(1): 67-88. (in Chinese) | |
[18] | 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36(6): 918-931. |
LI H H, ZHANG L Y, WANG J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agronomica Sinca, 2010, 36(6): 918-931. (in Chinese) | |
[19] |
YANG J, SUN K, LI D X, LUO L X, LIU Y Z, HUANG M, YANG G L, LIU H, WANG H, CHEN Z Q, GUO T. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC Genomics, 2019, 20: 15.
doi: 10.1186/s12864-018-5411-5 |
[20] | 张亚东, 梁文化, 赫磊, 赵春芳, 朱镇, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 王才林. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位. 中国农业科学, 2021, 54(24): 5163-5176. |
ZHANG Y D, LIANG W H, HE L, ZHAO C F, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L, YAO S, ZHOU L H, LU K, WANG C L. Construction of high-density genetic map and QTL analysis of grain shape in rice RIL population. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176. (in Chinese) | |
[21] |
HUANG X, FENG Q, QIAN Q, ZHAO Q, WANG L, WANG A H, GUAN J P, FAN D L, WENG Q J, HUANG T, DONG G J, SANG T, HAN B. High-throughput genotyping by whole-genome resequencing. Genome Research, 2009, 19(6): 1068-1076.
doi: 10.1101/gr.089516.108 pmid: 19420380 |
[22] | WANG J K, LI H H, ZHANG L Y, MENG L. QTL IciMapping Version 4.2. http://www.isbreeding.net, 2019. |
[23] |
MCCOUCH S R. Gene nomenclature system for rice. Rice, 2008, 1: 72-84.
doi: 10.1007/s12284-008-9004-9 |
[24] |
姜树坤, 王立志, 杨贤莉, 李伟杰, 董世晨, 车韦才, 李忠杰, 迟力勇, 李明贤, 张喜娟, 姜辉, 李锐, 赵茜, 李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定. 作物学报, 2020, 46(8): 1174-1184.
doi: 10.3724/SP.J.1006.2020.92066 |
JIANG S K, WANG L Z, YANG X L, LI W J, DONG S C, CHE W C, LI Z J, CHI L Y, LI M X, ZHANG X J, JIANG H, LI R, ZHAO Q, LI W H. Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice. Acta Agronomica Sinca, 2020, 46(8): 1174-1184. (in Chinese)
doi: 10.3724/SP.J.1006.2020.92066 |
|
[25] | 田小海, 罗海伟, 周恒多, 吴晨阳. 中国水稻热害研究历史、进展与展望. 中国农学通报, 2009, 25(22): 166-168. |
TIAN X H, LUO H W, ZHOU H D, WU C Y. Research on heat stress of rice in China: Progress and prospect. Chinese Agricultural Science Bulletin, 2009, 25(22): 166-168. (in Chinese) | |
[26] | 万丙良, 查中萍. 气候变暖对水稻生产的影响及水稻耐高温遗传改良. 中国农学通报, 2012, 28(36): 1-7. |
WAN B L, ZHA Z P. Effects of climate warming on rice production and genetic improvement for rice heat tolerance. Chinese Agricultural Science Bulletin, 2012, 28(36): 1-7. (in Chinese) | |
[27] |
凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45(3): 323-334.
doi: 10.3724/SP.J.1006.2019.82044 |
LING X X, ZHANG Z L, ZHAI J Q, YE S C, HUANG J L. A review for impacts of climate change on rice production in China. Acta Agronomica Sinica, 2019, 45(3): 323-334. (in Chinese)
doi: 10.3724/SP.J.1006.2019.82044 |
|
[28] |
JAGADISH S V K, CRAUFURD P Q, WHEELER T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(7): 1627-1635.
doi: 10.1093/jxb/erm003 |
[29] | 陈慧, 高梅, 熊方建, 杨毅. 水稻耐热性的鉴定方法研究. 四川大学学报(自然科学版), 2012, 46(6): 1331-1336. |
CHEN H, GAO M, XIONG F J, YANG Y. Study on method of rice heat tolerance. Journal of Sichuan University (Natural Science Edition), 2012, 46(6): 1331-1336. (in Chinese) | |
[30] |
CAO Z B, LI Y, TANG H W, ZENG B H, TANG X Y, LONG Q Z, XF W U, CAI Y H, YUAN L F, WAN J L. Fine mapping of the qHTB1-1 QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line. Theoretical and Applied Genetics, 2020, 133(4): 1161-1175.
doi: 10.1007/s00122-020-03539-7 |
[31] | 唐婷, 陈艳艳, 杨洋, 杨远柱, 孟桂元, 周静. 水稻耐高温性研究进展. 分子植物育种, 2017, 15(9): 3694-3700. |
TANG T, CHEN Y Y, YANG Y, YANG Y Z, MENG G Y, ZHOU J. Research progress of rice resistance to high temperature. Molecular Plant Breeding, 2017, 15(9): 3694-3700. (in Chinese) | |
[32] |
CHEN L, WANG Q, TANG M, ZHANG X, PAN Y, YANG X, GAO G, LV R, TAO W, JIANG L, LIANG T. QTL Mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Frontiers in Genetics, 2021, 11: 621871.
doi: 10.3389/fgene.2020.621871 |
[33] |
LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47(7): 827-833.
doi: 10.1038/ng.3305 |
[34] |
LIU J P, ZHANG C C, WEI C C, LIU X, WANG M G, YU F F, XIE Q, TU J M. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promotingH2O2-induced stomatal closure in rice. Plant Physiology, 2016, 170: 429-443.
doi: 10.1104/pp.15.00879 |
[35] |
WANG D, QIN B X, LI X, TANG D, ZHANG Y E, CHENG Z K, XUE Y B. Nucleolar DEAD-Box RNA helicase TOGR1 regulates thermotolerant growth as aPre-rRNA chaperone in rice. PLoS Genetics, 2016, 12(2): e1005844.
doi: 10.1371/journal.pgen.1005844 |
[36] |
KAN Y, MU X R, ZHANG H, GAO J, HAN J X, YE W W, LIN H X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nature Plants, 2022, 8: 53-67.
doi: 10.1038/s41477-021-01039-0 |
[37] |
ZHANG H, ZHOU J F, KAN Y, SHAN J X, YE W W, DONG N Q, GUO T, XIANG Y H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, GUO S Q, LEI J J, LIAO B, MU X R, CAO Y J, YU J J, LIN Y S, LIN H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376: 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289 |
[38] |
RAVIKIRAN K T, KRISHNAN S G, VINOD K K, DHAWAN G, DWIVEDI P, KUMAR P, BANSAL V P, NAGARAJAN M, BHOWMICK P K, ELLUR R K, BOLLINEDI H, PAL M, MITHRA A C R, SINGH A K. A trait specific QTL survey identifies NL44, a NERICA cultivar as a novel source for reproductive stage heat stress tolerance in rice. Plant Physiology Reports, 2020, 25(4): 1-13.
doi: 10.1007/s40502-020-00500-0 |
[39] |
YE C, TENORIO F A, REDONA E D, CORTEZANO P S M, CABREGA G A, JAGADISH K S V, GREGORIO G B. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theoretical and Applied Genetics, 2015, 128: 1507-1517.
doi: 10.1007/s00122-015-2526-9 |
[40] | 胡苗, 孙志忠, 孙学武, 谭炎宁, 余东, 刘瑞芬, 袁贵龙, 丁佳, 袁定阳, 段美娟. 利用高密度SNP标记定位水稻粒形相关QTL. 杂交水稻, 2015, 30(5): 54-58. |
HU M, SUN Z Z, SUN X W, TAN Y N, YU D, LIU R F, YUAN G L, DING J, YUAN D Y, DUAN M J. Mapping of rice grain shape relevant QTLs using high-density SNP markers. Hybrid Rice, 2015, 30(5): 54-58. (in Chinese) | |
[41] | 张健, 杨靖, 王豪, 李冬秀, 杨瑰丽, 黄翠红, 周丹华, 郭涛, 陈志强, 王慧. 基于高密度遗传图谱定位水稻籽粒大小相关性状QTL. 中国农业科学, 2020, 53(2): 225-238. |
ZHANG J, YANG J, WANG H, LI D X, YANG G L, HUANG C H, ZHOU D H, GUO T, CHEN Z Q, WANG H. QTL mapping for grain size related traits based on a high-density map in rice. Scientia Agricultura Sinica, 2020, 53(2): 225-238. (in Chinese) | |
[42] |
秦伟伟, 李永祥, 李春辉, 陈林, 吴迅, 白娜, 石云素, 宋燕春, 张登峰, 王天宇, 黎裕. 基于高密度遗传图谱的玉米籽粒性状QTL定位. 作物学报, 2015, 41(10): 1510-1518.
doi: 10.3724/SP.J.1006.2015.01510 |
QIN W W, LI Y X, LI C H, CHEN L, WU X, BAI N, SHI Y S, SONG Y C, ZHANG D F, WANG T Y, LI Y. QTL mapping for kernel related traits based on a high-density genetic map. Acta Agronomica Sinica, 2015, 41(10): 1510-1518. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01510 |
|
[43] |
刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42(6): 820-831.
doi: 10.3724/SP.J.1006.2016.00820 |
LIU K, DENG Z Y, LI Q F, ZHANG Y, SUN C L, TIAN J C, CHEN J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agronomica Sinica, 2016, 42(6): 820-831. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00820 |
|
[44] | 王朝欢, 宋博文, 余思佳, 肖武名, 黄明. 基于全基因组测序构建水稻RIL群体遗传图谱. 华南农业大学学报, 2021, 42(2): 44-50. |
WANG C H, SONG B W, YU S J, XIAO W M, HUANG M. Construction of a genetic map of rice RILs based on whole genome sequencing. Journal of South China Agricultural University, 2021, 42(2): 44-50. (in Chinese) | |
[45] |
ZHANG Y, WANG L, XIN H, LI D, MA C, DING X, HONG W, ZHANG X. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biology, 2013, 13: 141.
doi: 10.1186/1471-2229-13-141 pmid: 24060091 |
[46] |
KONG W L, ZHANG C H, ZHANG S C, QIANG Y L, ZHANG Y, ZHONG H, LI Y S. Uncovering the novel QTLs and candidate genes of salt tolerance in rice with linkage mapping, RTM-GWAS, and RNA-seq. Rice, 2021, 14: 93.
doi: 10.1186/s12284-021-00535-3 pmid: 34778931 |
[47] |
LEI L, ZHENG H L, BI Y L, YANG L M, LIU H L, WANG J G, SUN J, ZHAO H W, LI X W, LI J M, LAI Y C, ZOU D T. Identification of a major qtl and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-Seq and RNA-Seq. Rice, 2020, 13: 14.
doi: 10.1186/s12284-020-00374-8 |
[48] |
董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44(6): 938-946.
doi: 10.3724/SP.J.1006.2018.00938 |
DONG J C, YANG J, GUO T, CHEN L K, CHEN Z Q, WANG H. QTL mapping for heading date in rice using high-density Bin map. Acta Agronomica Sinica, 2018, 44(6): 938-946. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00938 |
|
[49] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL. 中国农业科学, 2022, 55(5): 825-836. |
ZHAO L, ZHANG Y, WEI X D, LIANG W H, ZHAO C F, ZHOU L H, YAO S, WANG C L, ZHANG Y D. Mapping of QTLs for chlorophyll content in flag leaves of rice on high-density Bin map. Mapping of QTLs for chlorophyll content in flag leaves of rice on high-density Bin map. Scientia Agricultura Sinica, 2022, 55(5): 825-836. (in Chinese) | |
[50] |
刘进, 姚晓云, 刘丹, 余丽琴, 李慧, 王棋, 王嘉宇, 黎毛毛. 不同生态环境下水稻穗部性状QTL鉴定. 中国水稻科学, 2019, 33(2): 124-134.
doi: 10.16819/j.1001-7216.2019.8100 |
LIU J, YAO X Y, LIU D, YU L Q, LI H, WANG Q, WANG J Y, LI M M. Identification of QTL for panicle traits under multiple environments in rice (Oryza sativa L.). Chinese Journal of Rice Science, 2019, 33(2): 124-134. (in Chinese)
doi: 10.16819/j.1001-7216.2019.8100 |
|
[51] |
YAN J B, TANG J H, MENG Y J, MA X Q, TENG W T, SUBHASH C, LI L, LI J S. Improving QTL mapping resolution based on genotypic sampling-A case using a RIL population. Acta Genetica Sinica, 2006, 33(7): 617-624.
doi: 10.1016/S0379-4172(06)60091-7 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[3] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[4] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[5] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[6] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[7] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[8] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[9] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[10] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[11] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[12] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[13] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[14] | 沈倩,张思平,刘瑞华,刘绍东,陈静,葛常伟,马慧娟,赵新华,杨国正,宋美珍,庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选[J]. 中国农业科学, 2022, 55(22): 4342-4355. |
[15] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
|