中国农业科学 ›› 2021, Vol. 54 ›› Issue (17): 3561-3572.doi: 10.3864/j.issn.0578-1752.2021.17.001
曾晓珊1(),汤国华1,谢红军1,朱明东1,敖和军2,陈博1,2,李方婷1,2,郝明3,肖燕1,符慧荣1,张健4(
),余应弘1(
)
收稿日期:
2021-01-07
接受日期:
2021-03-08
出版日期:
2021-09-01
发布日期:
2021-09-09
通讯作者:
张健,余应弘
作者简介:
曾晓珊,E-mail: 基金资助:
ZENG XiaoShan1(),TANG GuoHua1,XIE HongJun1,ZHU MingDong1,AO HeJun2,CHEN Bo1,2,LI FangTing1,2,HAO Ming3,XIAO Yan1,FU HuiRong1,ZHANG Jian4(
),YU YingHong1(
)
Received:
2021-01-07
Accepted:
2021-03-08
Online:
2021-09-01
Published:
2021-09-09
Contact:
Jian ZHANG,YingHong YU
摘要:
【目的】随着水稻生产模式机械化、规模化程度的加深,中、晚稻在成熟后,常因天气、收割机械配置、晒场矛盾等引起的不能及时收割问题日益突显,由此造成的产量损失及米质下降也逐渐得到生产者的重视。稻米中镉的积累及其转移至食物链所引起的食品安全问题已成为育种家、生产者的首要关注问题。淹水灌溉可有效降低稻米中镉的含量。推广种植生育期内能耐受持续淹水灌溉的耐迟收(post-maturation sustainability,PMS)水稻品种,可同时解决稻米镉低积累、延时机收的问题。建立科学有效的水稻PMS性状评价体系,并应用该体系开展PMS水稻品种的筛选,为缓解水稻生产上延时收割后产量安全、稻米镉积累安全等生产问题奠定基础。【方法】2018年,在孕穗-黄熟期淹水灌溉条件下,对来自全国的244个品种成熟后植株的倒伏、种子休眠、籽粒落粒等性状进行调查,通过田间观察、数据调查,结合显著性分析,对PMS性状鉴定时间及鉴定值进行鉴定,并对延迟收获后的稻谷碾磨品质、稻米外观品质及糊化温度、胶稠度、直链淀粉含量进行检测。2019年,利用PMS性状鉴定时间及鉴定值,对湖南省推广种植的132个水稻品种进行评价,筛选PMS水稻品种。通过设计孕穗-黄熟期干-湿交替水分管理对照,进行千粒重比较;应用PMS水稻品种开展千亩示范,进行产量及降镉效果检测。【结果】PMS性状评价体系具体为:倒伏的调查时间为成熟后第14天,鉴定值为稻秆与垂直倾斜角度小于45°;落粒性的调查时间为成熟后第7天,鉴定值为小于5.0%;穗发芽率调查时间为成熟后第0天,鉴定值为小于10.0%。2018—2019年共筛选到21个PMS水稻品种。淹水灌溉与干-湿交替灌溉处理间的千粒重差异不显著;千亩示范田中,处理间产量无明显差异;移栽后在孕穗-黄熟期进行淹水管理,稻米镉含量均低于0.20 mg·kg-1,并显著低于干-湿交替灌溉管理。【结论】根据PMS性状评价体系,筛选获得的PMS水稻品种可经受长期淹水灌溉,成熟后延迟收获时间对产量、米质无明显影响。应用PMS水稻品种,在孕穗-黄熟期结合淹水灌溉,可实现镉中、轻度污染稻田安全生产。
曾晓珊,汤国华,谢红军,朱明东,敖和军,陈博,李方婷,郝明,肖燕,符慧荣,张健,余应弘. 耐迟收水稻品种的筛选及其在淹水降镉中的应用[J]. 中国农业科学, 2021, 54(17): 3561-3572.
ZENG XiaoShan,TANG GuoHua,XIE HongJun,ZHU MingDong,AO HeJun,CHEN Bo,LI FangTing,HAO Ming,XIAO Yan,FU HuiRong,ZHANG Jian,YU YingHong. Selection of PMS Rice Varieties and Application in Flooding Irrigation for Cadmium Reduction[J]. Scientia Agricultura Sinica, 2021, 54(17): 3561-3572.
表1
2018年不同收获时间落粒率比较"
组别 Group | 成熟后天数Days after mature (d) | |||
---|---|---|---|---|
0 | 7 | 14 | 21 | |
中稻迟熟Late-maturing middle-season (%) | 5.75cA | 6.68bcB | 7.88abA | 8.46aA |
一季晚稻Single-cropping late rice (%) | 4.83bB | 7.95aA | 7.29aB | 7.34aB |
晚稻迟熟Late-maturing late rice (%) | 5.36bA | 6.74abB | 7.33aAB | 6.31abC |
晚稻中熟Middle-maturing late rice (%) | 5.42bA | 7.14aB | 7.51aA | 7.35aB |
平均Mean (%) | 5.34b | 7.13a | 7.50 a | 7.37 a |
表2
2018 年不同收获时间穗发芽率比较"
组别 Group | 成熟后天数Days after mature (d) | |||
---|---|---|---|---|
0 | 7 | 14 | 21 | |
中稻迟熟Late-maturing middle-season (%) | 19.95bB | 32.11aB | 33.15aA | 35.40aA |
一季晚稻Single-cropping late rice (%) | 21.10bB | 32.82aA | 32.02aB | 30.41aD |
晚稻迟熟Late-maturing late rice (%) | 21.17bB | 33.07aA | 30.85aC | 31.55aC |
晚稻中熟Middle-maturing late rice (%) | 22.15bA | 30.11aC | 31.82aB | 32.44aB |
平均Mean (%) | 21.09b | 32.03a | 31.96a | 32.45a |
表3
2018年淹水处理244个品种米质表现"
成熟后天数 Days after mature (d) | 糙米率 Brown rice rate (%) | 精米率 Milled rice rate (%) | 整精米率 Head rice rate (%) | 长宽比 Length-width ratio | 垩白度 Chalkiness (%) | 透明度 Transparency | 垩白粒率 Chalky grain rate (%) | 碱消值 Alkali value | 胶稠度 Gel consistency (mm) | 直链淀粉含量 Amylase content (%) |
---|---|---|---|---|---|---|---|---|---|---|
0 | 79.80a | 69.91a | 53.73a | 3.50a | 0.78b | 1.52a | 6.17b | 6.15a | 74.02a | 16.65a |
7 | 79.75a | 69.35b | 47.37b | 3.47a | 1.03a | 1.45a | 7.90a | 6.06a | 73.07ab | 16.57a |
14 | 79.76a | 69.26b | 47.93b | 3.48a | 1.16a | 1.59a | 8.91a | 6.06a | 71.91bc | 16.56a |
21 | 79.43b | 68.96b | 46.42b | 3.47a | 1.13a | 1.52a | 9.04a | 6.07a | 71.35c | 16.63a |
表4
2019 年不同灌溉管理不同收获时期千粒重比较"
组别 Group | 干-湿交替Dry-wet (d) | 淹水Flooding (d) | ||||||
---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | 0 | 7 | 14 | 21 | |
中稻迟熟Late-maturing middle-season (g) | 25.38A | 25.02B | 25.20A | 25.60A | 24.66B | 24.61B | 25.20B | 24.85B |
一季晚稻Single-cropping late rice (g) | 23.27B | 23.56C | 23.80C | 23.79B | 23.32C | 23.59C | 23.59C | 22.84C |
晚稻迟熟Late-maturing late rice (g) | 22.53C | 21.95D | 21.54D | 21.78C | 22.33D | 22.07D | 21.63D | 21.69D |
晚稻中熟Middle-maturing late rice (g) | 25.37A | 25.46A | 24.78B | 25.44A | 25.80A | 26.61A | 25.63A | 26.41A |
平均Mean (g) | 24.34 | 24.32 | 24.33 | 24.98 | 24.25 | 24.29 | 24.56 | 24.56 |
表5
2019年PMS水稻品种信息"
组别 Group | 品种 Variety | 最大倾斜度 Max gradient (°) | 穗发芽 Pre-harvest sprouting (%) | 落粒率 Grain percentage (%) |
---|---|---|---|---|
中稻迟熟 Late-maturing middle-season | 两优1316 Liangyou 1316 | ≤30—45 | 9.89 | 0.58 |
隆两优1308 Longliangyou 1308 | ≤30—45 | 3.56 | 0.91 | |
隆两优1813 Longliangyou 1813 | <30 | 6.06 | 0.69 | |
隆两优1988 Longliangyou 1988 | ≤30—45 | 9.11 | 3.08 | |
Y两优800 Yliangyou 800 | ≤30—45 | 9.11 | 0.44 | |
甬优4949 Yongyou 4949 | <30 | 5.93 | 0.69 | |
韵两优332 Yunliangyou 332 | ≤30—45 | 9.02 | 0.63 | |
Y两优372 Yliangyou 372 | ≤30—45 | 9.75 | 0.04 | |
一季晚稻 Single-cropping late rice | C两优258 C liangyou 258 | ≤30—45 | 4.99 | 5.24 |
C两优755 Cliangyou755 | ≤30—45 | 3.37 | 0.25 | |
金两优华占 Jingliangyouhuazhan | ≤30—45 | 9.15 | 2.28 | |
晶两优641 Jingliangyou 641 | ≤30—45 | 7.15 | 1.19 | |
隆两优1212 Longliangyou 1212 | ≤30—45 | 9.43 | 2.17 | |
甬优1538 Yongyou 1583 | <30 | 5.11 | 0.71 | |
甬优4149 Yongyou 4149 | <30 | 8.25 | 0.04 | |
黄华占 Huanghuazhan | ≤30—45 | 7.41 | 0.27 | |
晚稻迟熟 Late-maturing late rice | 玖两优1212 Jiuliangyou 1212 | ≤30—45 | 9.13 | 2.94 |
晚稻中熟 Middle-maturing late rice | 玖两优黄华占 Jiuliangyouhuanghuazhan | ≤30—45 | 6.96 | 4.17 |
桃优香占Taoyouxiangzhan | <30 | 3.06 | 3.55 | |
农香42 Nongxiang 42 | <30 | 7.51 | 4.30 | |
板仓粳糯Bancanggengnuo | <30 | 3.09 | 0.00 |
表6
2019年PMS水稻品种机收测产"
品种 Variety | 灌溉管理 Irrigation management | 实测面积 Area (m2) | 实收毛谷重量 Grain weight (kg) | 实测含水量 Water content (%) | 折合产量 Yield (t·hm-2) |
---|---|---|---|---|---|
桃优香占 Taoyouxiangzhan | 干-湿交替Dry-wet | 479.78 | 364.10 | 22.77 | 6.78 |
淹水Flooding | 572.70 | 472.60 | 24.57 | 7.20 NS | |
玖两优黄华占 Jiuliangyouhuanghuazhan | 干-湿交替Dry-wet | 579.80 | 506.80 | 22.23 | 7.76 |
淹水Flooding | 470.29 | 409.10 | 24.83 | 7.56NS | |
|
表7
2019年PMS水稻品种示范点稻米镉含量"
地点 Site | 土壤pH Soil pH | 土壤镉含量 Soil cadmium content (mg·kg-1) | 播种期 Seeding time (M/D) | 品种 Variety | 灌溉管理 Irrigation management | |
---|---|---|---|---|---|---|
淹水Flooding | 干-湿交替Dry-wet | |||||
双江口镇 Shuangjiangkou | 5.3—6.9 | 0.21—0.46 | 06/04 | 桃优香占Taoyouxiangzhan | 0.05* | 0.33 |
玖两优黄华占Jiuliangyouhuanghuazhan | 0.01** | 0.26 | ||||
农香42 NongXiang42 | 0.09* | 0.79 | ||||
新市镇 Xinshi | 5.0—5.2 | 0.35—0.41 | 06/20 | 桃优香占Taoyouxiangzhan | 0.06* | 0.49 |
玖两优黄华占Jiuliangyouhuanghuazhan | 0.03** | 0.49 | ||||
农香42Nongxiang42 | 0.05* | 0.35 | ||||
青山桥镇 Qingshanqiao | 5.0—6.6 | 0.40—0.62 | 06/10 | 桃优香占Taoyouxiangzhan | <0.01** | 0.34 |
玖两优黄华占Jiuliangyouhuanghuazhan | <0.01** | 0.33 | ||||
农香42 Nongxiang42 | <0.01** | 0.44 |
[1] | KUBIER A, WILKIN R T, PICHLER T. Cadmium in soils and groundwater: A review. Applied Geochemistry, 2019, 108: 1-16. |
[2] | 马艳杰. 水稻机械收割存在的问题与建议. 现代农业, 2018, 7: 36-37. |
MA Y J. The problems and suggestion existing in rice harvest machinery. Modern Agriculture, 2018, 7: 36-37. (in Chinese) | |
[3] | 沈欣, 朱奇宏, 朱捍华, 许超, 何演兵, 黄道友. 农艺调控措施对水稻镉积累的影响及其机理研究. 农业环境科学学报, 2015, 34(8): 1449-1454. |
SHEN X, ZHU Q H, ZHU H H, XU C, HE Y B, HUANG D Y. Effects of agronomic measures on accumulation of Cd in rice. Journal of Agro-Environment Science, 2015, 34(8): 1449-1454. (in Chinese) | |
[4] | HU Y N, CHENG H F, TAO S. The challenges and solutions for cadmium-contaminated rice in China: A critical review. Environment International, 2016(92/93): 515-532. |
[5] | SUN L M, ZHENG M M, LIU H Y, PENG S B, HUANG J L, CUI K H, NIE L X. Water management practices affect arsenic and cadmium accumulation in rice grains. The Scientific World Journal, 2014(2014): 1-6. |
[6] | YAMAGATA N, SHIGEMATSU I. Cadmium pollution in perspective. Koshu Eisei in Kenkyu Hokoku, 1970, 19(1): 1-27. |
[7] | MASUI M, KANAMARU N, TAKESAKO H, TAKESAKO H, MIYAKODA H, NANBA I, TAKAHASHI H. Annual surveys on correlation between the degree of cadmium contamination of paddy field rice grain and the number of dry-paddyfifield days in the cadmium contaminated area in Tama region of Tokyo. Bulletin of Tokyo-To Agricultural Experiment Station, 1971, 5: 1-5. |
[8] |
LI H, LUO N, LI Y W, CAI Q Y, LI H Y, MO C H, WONG M H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 2017, 224(5): 622-630.
doi: 10.1016/j.envpol.2017.01.087 |
[9] |
WANG P, CHEN H, KOPITTKE P M, ZHAO F J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249: 1038-1048.
doi: 10.1016/j.envpol.2019.03.063 |
[10] |
HORIGUCHI H, TERANISHI H, NIIYA K, AOSHIMA K, KASUYA M. Hypoproduction of erythropoietin contributes to anemia in chromic cadmium intoxication: Clinical study on Itai-itai disease in Japan. Archives of Toxicology, 1994, 68(10): 632-636.
doi: 10.1007/BF03208342 |
[11] |
WANG M, CHEN W, PENG C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere, 2016, 144: 346-351.
doi: 10.1016/j.chemosphere.2015.09.001 |
[12] |
ARAO T, ISHIKAWA S, MURAKAMI M, ABE K, MAEJIMA Y, MAKINO T. Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy and Water Environment, 2010, 8(3): 247-257.
doi: 10.1007/s10333-010-0205-7 |
[13] | OGAWA B. Studies on the actual situation of cadmium pollution to paddy rice in Akita prefecture and its control. Bulletin of the Akita Agricultural Experiment Station, 1994, 35: 1-64. |
[14] | OTAKE T. Absorption of cadmium by rice plants and its control in cadmium-contaminated paddy soils. Special Bulletin of the Yamagata Prefectural Agricultural Experiment Station, 1992, 20: 1-77. |
[15] | 刘昭兵, 纪雄辉, 官迪, 谢运河, 朱坚, 彭建伟. 镉胁迫条件下淹水时间对水稻吸收累积镉的影响. 生态与农村环境学报, 2017, 33(12): 1125-1131. |
LIU S B, JI X H, GUAN D, XIE Y H, ZHU J, PENG J W. Effects of timing and duration of waterlogging on Cd absorption and accumulation by rice under cadmium stress. Journal of Ecology and Rural Environment, 2017, 33(12): 1125-1131. (in Chinese) | |
[16] | ALI A, KARIM M A, MAJID A, HASSAA G, ALI L, ALI S S, 廖伏明. 不同收获时期对稻米品质的影响. 杂交水稻, 1994, 2: 30-31. |
ALI A, KARIM M A, MAJID A, HASSAA G, ALI L, ALI S S, LIAO F M. Grain quality of rice harvested at differed maturities. Hybrid Rice, 1994, 2: 30-31. (in Chinese) | |
[17] | 苗得雨, 魏玉光, 贺海生. 不同收获时期和收获方式对水稻碾米品质和产量的影响. 北方水稻, 2007, 4: 25-27. |
MIAO D Y, WEI Y G, HE H S. Effect of harvesting time and pattern on milling quality and yield rice. North Rice, 2007, 4: 25-27. (in Chinese) | |
[18] | 顾帅娣, 于艳杰, 万波, 杭民仁, 许建华. 崇明区不同收获时期水稻种子发芽率比较试验初报. 上海农业科技, 2020, 2: 28-29. |
GU S T, YU Y J, WAN B, HANG M R, XU J H. Rice seed germination rate comparison test of different harvest period in Chongming area. Shanghai Agricultural Science and Technology, 2020, 2: 28-29. (in Chinese) | |
[19] | 王桂民, 易中懿, 陈聪, 曹光乔. 收获时期对稻麦轮作水稻机收损失构成的影响. 农业工程学报, 2016, 32(2): 36-42. |
WANG G M, YI Z Y, CHEN C, CAO G Q. Effect of harvesting date on loss component characteristic of rice mechanical harvested in rice and wheat rotation area. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 36-42. (in Chinese) | |
[20] | 康洪灿, 李国生, 钏兴宽, 王锦艳. 水稻生产全程机械化对品种的要求. 中国稻米, 2015, 21(4): 191-192. |
KANG H C, LI G S, CHUAN X K, WANG J Y. Variety selection in rice production with full mechanization. China Rice, 2015, 21(4): 191-192. (in Chinese) | |
[21] | 曾勇军, 吕伟生, 石庆华, 谭雪明, 潘晓华, 黄山, 商庆银. 水稻机收减损技术研究. 作物杂志, 2014, 6: 131-134. |
ZENG Y J, LÜ W S, SHI Q H, TAN X M, PAN X H, HUANG S, SHANG Q Y. Study on mechanical harvesting technique for loss reducing of rice. Crops, 2014, 6: 131-134. (in Chinese) | |
[22] | 冷雪. 久保田水稻收割机的使用与调整. 农民致富之友, 2015, 13: 128. |
LENG X. The use and adjustment of Kubota rice harvester. Nongmin Zhifu Zhiyou, 2015, 13: 128. (in Chinese) | |
[23] | 谭丁勇. 水稻收割机操作要点. 湖南农机, 2014, 10: 100. |
TAN D Y. Rice harvester operation point. Hunan Agricultural Machine, 2014, 10: 100. (in Chinese) | |
[24] | 江玲, 张文伟, 翟虎渠, 万建民. 水稻种子休眠性基因座的定位和分析. 中国农业科学, 2005, 38(4): 650-656. |
JIANG L, ZHANG W W, ZHAI H Q, WAN J M. Mapping and analysis of quantitative trait loci controlling seed dormancy in rice. Scientia Agricultura Sinica, 2005, 38(4): 650-656. (in Chinese) | |
[25] | 唐九友, 江玲, 王春明, 刘世家, 陈亮明, 翟虎渠, 吉村醇, 万建民. 水稻种子休眠性QTL定位及其对干热处理的响应. 中国农业科学, 2004, 37(12): 1791-1796. |
TANG J Y, JIANG L, WANG C M, LIU S J, CHEN L M, ZHAI H Q, YOSHIMURA A, WAN J M. Analysis of QTL for seed dormancy and their response to dry heat treatment in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2004, 37(12): 1791-1796. (in Chinese) | |
[26] | 张忠旭, 陈温福. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响. 沈阳农业大学学报, 1999, 30(2): 81-85. |
ZHANG Z X, CHEN W F. Effect of lodging resistance on yield and its relationship with stalk physical characteristics. Journal of Shenyang Agricultural University, 1999, 30(2): 81-85. (in Chinese) | |
[27] | 王文霞, 周燕芝, 曾勇军, 吴自明, 谭雪明, 潘晓华, 石庆华, 曾研华. 不同机直播方式对南方优质晚籼稻产量及抗倒伏特性的影响. 中国水稻科学, 2020, 34(1): 46-56. |
WANG W X, ZHOU Y Z, ZENG Y J, WU Z M, TAN X M, PAN X H, SHI Q H, ZENG Y H. Effects of different mechanical direct seeding patterns on yield and lodging resistance of high-quality late indica rice in south China. Chinese Journal of Rice Science, 2020, 34(1): 46-56. (in Chinese) | |
[28] | 彭世彰, 张正良, 庞桂斌. 控制灌溉条件下寒区水稻茎秆抗倒伏力学评价及成因分析. 农业工程学报, 2009, 25(1): 6-10. |
PENG S Z, ZHANG Z L, PANG G B. Mechanical evaluation and cause analysis of rice-stem lodging resistance under controlled irrigation in cold region. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 6-10. (in Chinese) | |
[29] | 郭相平, 黄双双, 王振昌, 王甫, 陈斌. 不同灌溉模式对水稻抗倒伏能力影响的试验研究. 灌溉排水学报, 2017, 36(5): 1-5. |
GUO X P, HUANG S S, WANG Z C, WANG F, CHEN B. Impact of different irrigation methods on resistance of rice against bending and breaking. Journal of Irrigation and Drainage, 2017, 36(5): 1-5. (in Chinese) | |
[30] | 陈兵先, 刘军. 水稻穗萌及调控的研究进展. 种子, 2017, 36(2): 49-55. |
CHEN B X, LIU J. Research progress of rice vivipary and its regulation. Seed, 2017, 36(2): 49-55. (in Chinese) | |
[31] | 宋松泉, 龙春林, 殷寿华, 兰芹英. 种子的脱水行为及其分子机制. 云南植物研究, 2003, 25(4): 465-479. |
SONG S Q, LONG C L, YIN S H, LAN Q Y. Desiccation behavior of seeds and their molecular mechanisms. Acta Botanica Yunnanica, 2003, 25(4): 465-479. (in Chinese) | |
[32] |
CHEN M, XIE S, OUYANG Y, YAO J. Rice PcG gene OsEMF2b controls seed dormancy and seedling growth by regulating the expression of OsVP1. Plant Science, 2017, 260: 80-89.
doi: 10.1016/j.plantsci.2017.04.005 |
[33] |
CHEN B X, PENG Y X, GAO J D, ZHANG Q, LIU Q J, FU H, LIU J. Coumarin-induced delay of rice seed germination is mediated by suppression of abscisic acid catabolism and reactive oxygen species production. Frontiers in Plant Science, 2019, 10: 828.
doi: 10.3389/fpls.2019.00828 |
[34] | SUGIMOTO K, TAKEUCHI Y, EBANA K, MIYAO A, HIROCHIKA H, HARA N, ISHIYAMA K, KOBAYASHI M, BAN Y, HATTORI T, YANO M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5792-5797. |
[35] |
WANG M, LI W, FANG C, XU F, LIU Y, WANG Z, YANG R, ZHANG M, LIU S, LU S, LIN T, TANG J, WANG Y, WANG H, LIN H, ZHU B, CHEN M, KONG F, LIU B, ZENG D, JACKSON S A, CHU C, TIAN Z. Parallel selection on dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50(10): 1435-1441.
doi: 10.1038/s41588-018-0229-2 |
[36] |
HORI K, SUGIMOTO K, NONOUE Y, ONO N, MATSUBARA K, YAMANOUCHI U, ABE A, TAKEUCHI Y, YANO M. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theoretical and Applied Genetics, 2010, 120(8): 1547-1557.
doi: 10.1007/s00122-010-1275-z |
[37] |
WAN J, NAKAZAKI T, KAWAURA K, IKEHASHI H. Identification of marker loci for seed dormancy in rice (Oryza sativa L.). Crop Science, 1997, 37: 1759-1763.
doi: 10.2135/cropsci1997.0011183X003700060015x |
[38] |
SHI H, SHEN X, LIU R L, XUE C, WEI N, DENG X W, ZHONG S W. The red light receptor phytochrome B directly enhances substrate-E3 Ligase interactions to attenuate ethylene responses. Developmental Cell, 2016, 39(5): 597-610.
doi: 10.1016/j.devcel.2016.10.020 |
[39] |
ROBERTS E H. Dormancy in rice seed: Ⅲ. The influence of temperature, moisture, and gaseous environment. Journal of Experimental Botany, 1962, 13(1): 75-94.
doi: 10.1093/jxb/13.1.75 |
[40] |
FINCH-SAVAGE W E, LEUBNER-METZGER G. Seed dormancy and the control of germination. New Phytologist, 2006, 171(3): 501-523.
doi: 10.1111/nph.2006.171.issue-3 |
[41] | 韦飞严, 田继微, 孟祥伦, 武小金. 水稻穗萌抗性与OsVP1基因启动子序列及其表达水平的关系. 杂交水稻, 2015, 6: 59-63. |
WEI F Y, TIAN J W, MENG X L, WU X J. Relation of pre-harvest sprouting resistance in rice to the promoter sequence and expression of gene OsVP1. Hybrid Rice, 2015, 6: 59-63. (in Chinese) | |
[42] | MARTÍNEZ-BERDEJA A, STITZER M C, TAYLOR M A, OKADA M, EZCURRA E, RUNCIE D E, SCHMITT J. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA, 2020, 117(5): 2526-2534. |
[43] |
CAI H, MORISHIMA H. QTL clusters reflect character associations in wild and cultivated rice. Theoretical and Applied Genetics, 2002, 104(8): 1217-1228.
doi: 10.1007/s00122-001-0819-7 |
[44] |
GU X Y, KIANIAN S F, FOLEY M E. Multiple loci and epistasis control genetic variation for seed dormancy in weedy rice (Oryza sativa L.). Genetics, 2004, 166(3): 1503-1516.
doi: 10.1534/genetics.166.3.1503 |
[45] |
DONG Y, TSUZUKI E, KAMIUNTEN H, TERAO H, LIN D Z, MATSUO M, ZHENG Y F. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crop Research, 2003, 81(2/3): 133-139.
doi: 10.1016/S0378-4290(02)00217-4 |
[46] |
CAI H W, MORISHIMA H. Genomic regions affecting seed shattering and seed dormancy in rice. Theoretical and Applied Genetics, 2000, 100(6): 840-846.
doi: 10.1007/s001220051360 |
[47] |
JIANG L, LIU S, HOU M Y, TANG J Y, CHEN L M, ZHAI H Q, WAN J M. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crop Research, 2006, 98(1): 68-75.
doi: 10.1016/j.fcr.2005.12.015 |
[48] | 李玉清, 周雪梅, 姜国辉, 苏瑛, 于东洋. 含镉水灌溉对水稻产量和品质的影响. 灌溉排水学报, 2012, 31(4): 120-123. |
LI Y Q, ZHOU X M, JIANG G H, SU Y, YU D Y. Influence of irrigation with different concentrations of cadmium solution on rice yield and quality. Journal of Irrigation and Drainage, 2012, 31(4): 120-123. (in Chinese) | |
[49] | 陈江民, 杨永杰, 黄奇娜, 胡培松, 唐绍清, 吴立群, 王建龙, 邵国胜. 持续淹水对水稻镉吸收的影响及其调控机理. 中国农业科学, 2017, 50(17): 3300-3310. |
CHEN J M, YANG Y J, HUANG Q N, HU P S, TANG S Q, WU L Q, WANG J L, SHAO G S. Effects of continuous flooding on cadmium absorption and its regulation mechanisms in rice. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310. (in Chinese) | |
[50] | 刘仲齐, 张长波, 黄永春. 水稻各器官镉阻控功能的研究进展. 农业环境科学学报, 2019, 38(4): 721-727. |
LIU Z Q, ZHANG C B, HUANG Y C. Research advance on the functions of rice organs in cadmium inhibition: A review. Journal of Agro-Environment Science, 2019, 38(4): 721-727. (in Chinese) | |
[51] | ADIL M F, SEHAR S, CHEN G, CHEN Z H, JILANI G, CHAUDHRY A N, SHAMSI I H. Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological/ ultrastructural adjustments. Ecotoxicology and Environmental Safety, 2019, 190(110076): 1-12. |
[52] | TIAN S, LIANG S, QIAO K, WANG F, ZHANG Y, CHAI T. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). Journal of Hazardous Materials, 2019, 380(120853): 1-8. |
[53] | TREESUBSUNTORN C, THIRAVETYAN P. Calcium acetate-induced reduction of cadmium accumulation in Oryza sativa: Expression of auto-inhibited calcium-ATPase and cadmium transporters. Plant Biology, 2019, 1: 862-872. |
[54] |
XU D, YANG Q, CUI M, ZHANG Q. The novel transcriptional factor HP1BP3 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Scientific Reports, 2017, 7(1): 1401-1404.
doi: 10.1038/s41598-017-01573-y |
[55] |
MARESCA V, LETTIERI G, SORBO S, PISCOPO M, BASILE A. Biological responses to cadmium stress in liverwort Conocephalum conicum (Marchantiales). International Journal of Molecular Sciences, 2020, 21(18): 6485.
doi: 10.3390/ijms21186485 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[6] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[7] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[8] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[9] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[10] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[11] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[12] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[13] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[14] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[15] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
|