中国农业科学 ›› 2021, Vol. 54 ›› Issue (1): 58-70.doi: 10.3864/j.issn.0578-1752.2021.01.005

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

增温增CO2对间作玉米光合特性的影响

王飞(),孙增光,尹飞,郭彬彬,刘领,焦念元()   

  1. 河南科技大学农学院/河南省旱地农业工程技术研究中心,河南洛阳471023
  • 收稿日期:2020-03-07 接受日期:2020-05-26 出版日期:2021-01-01 发布日期:2021-01-13
  • 通讯作者: 焦念元
  • 作者简介:王飞,E-mail: 1216677627@qq.com
  • 基金资助:
    河南省自然科学基金(182300410014);河南省科技攻关项目(182102110180)

Effects of Elevated Temperature and CO2 on the Photosynthetic Characteristics of Intercropping Maize

WANG Fei(),SUN ZengGuang,YIN Fei,GUO BinBin,LIU Ling,JIAO NianYuan()   

  1. College of Agriculture, Henan University of Science and Technology/Dryland Agricultural Engineering Technology Research Center of Henan, Luoyang 471023, Henan
  • Received:2020-03-07 Accepted:2020-05-26 Online:2021-01-01 Published:2021-01-13
  • Contact: NianYuan JIAO

摘要:

【目的】明确增温增CO2对玉米||花生体系中玉米光合特性的影响,以期为未来气候变化条件下玉米||花生绿色高产高效栽培提供理论依据。【方法】以玉米||花生2﹕4模式为研究对象,2018年设常温常CO2(TC)和增温增CO2(+T+C)处理,2019年增设增温增CO2(+TC)处理,在P0(0)和P180(180 kg P2O5·hm-2)2个磷水平下,研究了增温增CO2对间作玉米叶绿素含量、SPAD值、光合-光强、光合-CO2响应曲线及其相关参数的影响。【结果】(1)与TC处理相比,+TC处理提高了间作玉米苗后34 d叶绿素b和叶绿素a+b含量,降低了叶绿素a/b值,苗后55 d施磷条件下,SPAD值、AQYCEAmaxVc,maxJmaxTPU分别提高了7.80%、18.18%、18.86%、13.34%、13.33%和20.14%,产量提高了19.2%—28.1%;与+TC处理相比,+T+C处理提高了苗后55 d和65 d间作玉米AQY,降低了LCP,苗后55 d间作玉米CEAmaxVc,maxJmaxTPU分别提高13.58%—32.96%、21.31%—11.61%、9.35%—14.55%、9.52%—15.13%和8.82%—26.16%,产量提高5.25%—18.70%,均达到显著差异水平(P<0.05)。(2)与TC处理相比,+T+C处理间作玉米大喇叭口期和灌浆期SPAD值分别提高4.68%—12.91%和7.88%—18.37%,蜡熟期却降低8.63%—12.72%;间作玉米苗后35 d叶绿素a、b和a+b分别提高17.58%—19.54%、52.55%—59.55%和26.08%—28.47%,叶绿素a/b降低了23.04%—25.18%;间作玉米苗后55 d 的AQYLSPn分别提高了30.30%—75.76%和16.87%—19.44%;CEAmaxVc,maxJmaxTPU分别提高了15.72%—36.78%、24.91%—32.66%、20.77%—29.83%、20.93%—30.48%和27.16%—30.74%,产量提高了7.24%—52.0%,均达到显著差异水平(P<0.05)。(3)与不施磷相比,施磷提高了TC、+TC和+T+C处理苗后85 d时叶绿素b含量,增幅分别为24.15%、18.64%和22.04%;苗后34 d 的LSPn分别提高了13.30%、17.0%和9.86%,产量分别提高了24.2%—67.2%、55.6%和27.8%—38.0%,均达到显著差异水平(P<0.05)。【结论】增温和增CO2均能提高间作玉米生育前期叶绿素含量和净光合速率,两者表现出正向协同作用,而在其生育中后期增CO2能缓解增温带来的负效应;增温增CO2能提高间作玉米的产量,关键在于其生育前中期叶绿素含量、羧化效率、最大电子传递速率和磷酸丙糖利用率的提高。施磷具有明显的正效应。

关键词: 气候变化, 增温增CO2, 间作玉米, 羧化效率, 光化学效率, 产量

Abstract:

【Objective】The aim of this study was to clarify effects of elevated temperature and CO2 concentration on the photosynthetic characteristics of maize under intercropping with peanut, so as to provide the theoretical basis for the green high-yield and high-efficient cultivation of maize intercropping peanut (maize||peanut) under the condition of climate change in the future.【Method】In this study, maize intercropping peanut 2﹕4 pattern was taken as the research object. In 2018, ambient temperature ambient CO2 concentration (TC) and elevated temperature and CO2 (+T+C) were set up in the experiment, and elevated temperature ambient CO2(+TC) was added in 2019 to conduct the experiment, under two phosphorus levels of P0 (0) and P180 (180 kg P2O5·hm-2), respectively. The effects of elevated temperature and CO2 on photosynthetic pigment content, SPAD value, and photosynthetic response curves to light intensity and CO2 concentration and the related parameters of intercropped maize were studied.【Result】 (1) Compared with TC, +TC increased the content of chlorophyll b and chlorophyll a+b of intercropping maize at 34 days after seedlings, while this treatment reduced the chlorophyll a/b value. Under the condition of phosphorus application at 55 days after seedling, SPAD value, AQY, CE, Amax, Vc,max, Jmax, and TPU of maize were increased by 7.80%, 18.18%, 18.86%, 13.34%, 13.33%, and 20.14%, respectively, and maize grain yield increased by 19.2% to 28.1%. Compared with +TC, +T+C improved the AQY, but reduced LCP of intercropping maize at 55 and 65 days after seedling; The CE, Amax, Vc,max, Jmax, and TPU of intercropping maize were increased by 13.58%-32.96%, 21.31%-11.61%, 9.35%-14.5%, 9.52%-15.13% and 8.82%-26.16% at 55 days after seedling, respectively; The yield were increased by 5.25%-18.70%. All reached significant difference levels (P<0.05). (2) Compared with TC, +T+C increased the SPAD value of intercropping maize at big bell mouth and filling stages, which were increased by 4.68%-12.91% and 7.88%-18.37%, respectively, while decreased by 8.63%-12.72% at dough stage; chlorophyll a, b, and a+b of intercropping maize increased by 17.58%-19.54%, 52.55%-59.55%, and 26.08%-28.47%, respectively, at 35 days after seedlings; chlorophyll a/b were decreased by 23.04%-25.18%; AQY and LSPn were increased by 30.30%-75.76% and 16.87%-19.44%, respectively, at 55 days after seedlings; CE, Amax, Vc,max, Jmax and TPU increased by 15.72%-36.78%, 24.91%-32.66%, 20.77%-29.83%, 20.93%-30.48%, and 27.16%-30.74%, respectively; The yield increased by 7.24%-52.0%. All reached significant difference levels. (3) Compared with no phosphorus application, phosphorus application increased the content of chlorophyll b of intercropping maize under TC, +TC and +T+C by 24.15%, 18.64% and 22.04%, respectively, at 85 days after seedling; LSPn was increased by 13.30%, 17.0% and 9.86%, respectively, at 34 days after seedling; and the yield was increased by 24.2%-67.2%, 55.6% and 27.8%-38.0%, respectively. All reached significant difference levels. 【Conclusion】 Elevated temperature or elevated temperature and CO2 could increase chlorophyll content and net photosynthetic rate of intercropping maize at early growth stage, showing a positive synergy, while elevated CO2 could alleviate the negative effects of elevated temperature at the middle and late growth stage. Elevated temperature and CO2 could increase the yield of intercropping maize, the key lies in the improvement of chlorophyll content, carboxylation efficiency, maximum electron transfer rate and triose phosphate utilization rate at the early and middle growth stage. The supply of phosphorus had an obvious positive effect.

Key words: climatic change, elevated temperature and CO2 concentration, intercropping maize, carboxylation efficiency, photochemical efficiency, yield