中国农业科学 ›› 2020, Vol. 53 ›› Issue (23): 4738-4749.doi: 10.3864/j.issn.0578-1752.2020.23.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

苦荞ARF基因家族的鉴定及生长素诱导下的表达模式

郝彦蓉1(),杜伟1,侯思宇1,王东航1,冯红梅1,韩渊怀1,周美亮2,张凯旋2,刘龙龙3,王俊珍4,李红英1,孙朝霞1()   

  1. 1山西农业大学农学院,山西太谷 030801
    2中国农业科学院作物科学研究所,北京 100081
    3山西农业大学农业基因资源研究中心,太原 030031
    4凉山州西昌农业科学研究所,四川西昌 615000
  • 收稿日期:2020-03-25 接受日期:2020-06-22 出版日期:2020-12-01 发布日期:2020-12-09
  • 通讯作者: 孙朝霞
  • 作者简介:郝彦蓉,Tel:19834543980;E-mail: 1148639230@qq.com
  • 基金资助:
    国家重点研发计划中欧政府间合作项目(2017YFE0117600);山西省农业科学院应用基础研究计划(YGC2019FZ2);国家燕荞麦产业体系(CARS-07-A-2);山西省应用基础研究项目(201801D221296);山西省回国留学人员科研资助项目(2017-069);山西省研究生教育创新项目(2020SY211);山西农业大学专业提升计划(TSJH1406)

Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum

HAO YanRong1(),DU Wei1,HOU SiYu1,WANG DongHang1,FENG HongMei1,HAN YuanHuai1,ZHOU MeiLiang2,ZHANG KaiXuan2,LIU LongLong3,WANG JunZhen4,LI HongYing1,SUN ZhaoXia1()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    3Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031
    4Xichang Agricultural Institute of Liangshan, Xichang 615000, Sichuan
  • Received:2020-03-25 Accepted:2020-06-22 Online:2020-12-01 Published:2020-12-09
  • Contact: ZhaoXia SUN

摘要:

【目的】全基因组水平鉴定苦荞ARF家族基因,并对其家族基因结构、保守结构域、系统进化、组织表达差异及外源生长素处理下基因表达水平进行分析,为苦荞ARF的功能研究和利用奠定基础。【方法】通过转录组数据和ARF保守结构域(PF06507)分析,筛选苦荞ARF家族成员,利用TBtools软件绘制基因结构图,利用NCBI及MEME在线预测苦荞ARF蛋白保守结构域和保守基序,利用MEGA X构建苦荞和拟南芥、水稻、甜荞、甜菜、大豆ARF蛋白系统进化树。使用根、茎、叶、花、未成熟和成熟籽粒6个组织转录组数据的FPKM值,通过TBtools HeatMap绘制FtARFs基因表达热图,分析FtARFs的组织表达特异性。使用PlantCARE在线网站预测茎秆特异表达的FtARFs启动子的顺式作用元件。以0.5 mg·L -1 IAA处理2份高秆(ZNQ189和PI673849)与2份矮秆(PI658429和PI647612)苦荞材料,观察苦荞下胚轴伸长的特征,于生长素处理不同时间段(0、0.5、1、6、12、24和48 h)取样,qRT-PCR检测FtARFs基因在不同苦荞下胚轴中的表达差异;同时,对生长7 d的4份材料进行石蜡切片,番红固绿染色后显微镜下观察下胚轴细胞大小。【结果】系统分析鉴定了26个苦荞ARF家族基因,染色体定位分析显示,除第4染色体外,FtARFs在其余染色体均有分布。理化性质分析表明,氨基酸残基数目范围为331—1 083 aa,理论等电点为5.34—8.63。保守基序分析表明,不同组间Motif组成有一定的差异。基因结构分析显示,苦荞ARF基因外显子数量为2—15,变异较大。系统进化将其分成4组(Group Ⅰ—Group Ⅳ),且苦荞FtARFs在4个类群中均有分布。组织特异性分析显示,在各组织中,FtARFs基因FPKM值差异明显,在根、茎、花中,分别检测到7个、9个和4个基因表达量较高,在叶、未成熟籽粒和成熟籽粒中,表达值均较低。外源生长素处理4份苦荞材料,下胚轴伸长趋势不一,与其细胞大小变化相一致。qRT-PCR结果显示,FtARFs基因在生长素处理前期(0.5—1 h)表达较高,在处理后期,基因表达量降低。且处理苦荞幼苗0.5 h时,大多数FtARFs基因被显著诱导表达。【结论】苦荞ARF基因结构和蛋白基序具有组间多样性和组内保守性,且具有组织表达特异性,9个茎秆特异表达的FtARFs基因响应IAA诱导,暗示其对苦荞茎秆伸长可能具有调控作用。

关键词: 苦荞, ARF基因家族, 生长素, 株高, 基因表达

Abstract:

【Objective】 The objective of this study is to lay a foundation for the further functional studies and application of ARF genes by identifying the ARF gene family in tartary buckwheat (Fagopyrum tataricum), and analysis of gene structure, conserved domains, phylogeny, tissue expression characteristics, and gene expression levels under exogenous auxin treatment. 【Method】 The data of transcriptome and ARF conservative domains (PF06507) were analyzed to screen for ARF family members in tartary buckwheat. TBtools software was used to analyze the gene structure, NCBI and MEME were used to predict the conserved domain and motif of ARF proteins online, and MEGA X was used to construct ARF protein phylogenetic trees for tartary buckwheat, Arabidopsis thaliana, Oryza sativa, Fagopyrum esculentum, Beta vulgaris, and Glycine max. The FPKM values of six tissues of roots, stems, leaves, flowers, green grains, and black grains were analyzed in the transcriptome data of tartary buckwheat. Heat maps of FtARFs were drawn using TBtools HeatMap to analyze the tissue expression specificity of FtARFs. To predict the cis-acting elements of the FtARFs promoter specifically expressed on the stem, the PlantCARE online website was used. Two parts of tall buckwheat (ZNQ189 and PI673849) and two parts of dwarf buckwheat (PI658429 and PI647612) were treated with 0.5 mg·L -1 IAA and the elongation characteristics of the hypocotyls were analyzed. Samples were taken at different time periods (0, 0.5, 1, 6, 12, 24, and 48 h) after auxin treatment, and the expression differences of FtARFs in different hypocotyls were analyzed by qRT-PCR. Moreover, paraffin sections of four materials grown for 7 days were saffron and green stained, and the cell length was measured. 【Result】Total of 26 FtARFs were identified in the buckwheat genome. Chromosome mapping analysis showed that in addition to chromosome 4, FtARFs were distributed in other chromosomes. Analysis of physical and chemical properties showed that amino acid residues ranged from 331 to 1 083 aa and the theoretical isoelectric point ranged from 5.34 to 8.63. Conserved motif analysis identified several differences in motif composition among different groups. Gene structure analysis showed that the number of FtARFs exons ranged from 2 to 15, showing large variation. Phylogenetic analysis showed that 114 ARF proteins were divided into four groups (Group Ⅰ to Group Ⅳ), and FtARFs were distributed throughout all groups. The results of tissue-specific analysis showed that FPKM values of FtARFs differed significantly in different tissues. In roots, stems, and flowers, seven, nine, and four genes showed high expression, respectively, whereas in leaves, green grains, and black grains, the expression values remained low. When exogenous auxin was applied to these four buckwheat materials, the trend of hypocotyl elongation differed, which is consistent with observed changes in cell length. qRT-PCR showed that the expression of FtARFs was higher during the early stage (0.5-1 h) of auxin treatment, and decreased during later stages. When buckwheat seedlings were treated for 0.5 h, the expression of most genes was induced. 【Conclusion】The tartary buckwheat ARF gene structures and protein motifs show diversity among groups and conservation within groups. FtARFs show tissue expression specificity, and nine FtARFs, that are specifically expressed in the stem, respond to IAA induction. These exert a regulatory role in the stem elongation of tartary buckwheat.

Key words: tartary buckwheat, ARF gene family, auxin, plant height, gene expression