中国农业科学 ›› 2020, Vol. 53 ›› Issue (23): 4738-4749.doi: 10.3864/j.issn.0578-1752.2020.23.002
郝彦蓉1(),杜伟1,侯思宇1,王东航1,冯红梅1,韩渊怀1,周美亮2,张凯旋2,刘龙龙3,王俊珍4,李红英1,孙朝霞1(
)
收稿日期:
2020-03-25
接受日期:
2020-06-22
出版日期:
2020-12-01
发布日期:
2020-12-09
通讯作者:
孙朝霞
作者简介:
郝彦蓉,Tel:19834543980;E-mail: 基金资助:
HAO YanRong1(),DU Wei1,HOU SiYu1,WANG DongHang1,FENG HongMei1,HAN YuanHuai1,ZHOU MeiLiang2,ZHANG KaiXuan2,LIU LongLong3,WANG JunZhen4,LI HongYing1,SUN ZhaoXia1(
)
Received:
2020-03-25
Accepted:
2020-06-22
Online:
2020-12-01
Published:
2020-12-09
Contact:
ZhaoXia SUN
摘要:
【目的】全基因组水平鉴定苦荞ARF家族基因,并对其家族基因结构、保守结构域、系统进化、组织表达差异及外源生长素处理下基因表达水平进行分析,为苦荞ARF的功能研究和利用奠定基础。【方法】通过转录组数据和ARF保守结构域(PF06507)分析,筛选苦荞ARF家族成员,利用TBtools软件绘制基因结构图,利用NCBI及MEME在线预测苦荞ARF蛋白保守结构域和保守基序,利用MEGA X构建苦荞和拟南芥、水稻、甜荞、甜菜、大豆ARF蛋白系统进化树。使用根、茎、叶、花、未成熟和成熟籽粒6个组织转录组数据的FPKM值,通过TBtools HeatMap绘制FtARFs基因表达热图,分析FtARFs的组织表达特异性。使用PlantCARE在线网站预测茎秆特异表达的FtARFs启动子的顺式作用元件。以0.5 mg·L -1 IAA处理2份高秆(ZNQ189和PI673849)与2份矮秆(PI658429和PI647612)苦荞材料,观察苦荞下胚轴伸长的特征,于生长素处理不同时间段(0、0.5、1、6、12、24和48 h)取样,qRT-PCR检测FtARFs基因在不同苦荞下胚轴中的表达差异;同时,对生长7 d的4份材料进行石蜡切片,番红固绿染色后显微镜下观察下胚轴细胞大小。【结果】系统分析鉴定了26个苦荞ARF家族基因,染色体定位分析显示,除第4染色体外,FtARFs在其余染色体均有分布。理化性质分析表明,氨基酸残基数目范围为331—1 083 aa,理论等电点为5.34—8.63。保守基序分析表明,不同组间Motif组成有一定的差异。基因结构分析显示,苦荞ARF基因外显子数量为2—15,变异较大。系统进化将其分成4组(Group Ⅰ—Group Ⅳ),且苦荞FtARFs在4个类群中均有分布。组织特异性分析显示,在各组织中,FtARFs基因FPKM值差异明显,在根、茎、花中,分别检测到7个、9个和4个基因表达量较高,在叶、未成熟籽粒和成熟籽粒中,表达值均较低。外源生长素处理4份苦荞材料,下胚轴伸长趋势不一,与其细胞大小变化相一致。qRT-PCR结果显示,FtARFs基因在生长素处理前期(0.5—1 h)表达较高,在处理后期,基因表达量降低。且处理苦荞幼苗0.5 h时,大多数FtARFs基因被显著诱导表达。【结论】苦荞ARF基因结构和蛋白基序具有组间多样性和组内保守性,且具有组织表达特异性,9个茎秆特异表达的FtARFs基因响应IAA诱导,暗示其对苦荞茎秆伸长可能具有调控作用。
郝彦蓉,杜伟,侯思宇,王东航,冯红梅,韩渊怀,周美亮,张凯旋,刘龙龙,王俊珍,李红英,孙朝霞. 苦荞ARF基因家族的鉴定及生长素诱导下的表达模式[J]. 中国农业科学, 2020, 53(23): 4738-4749.
HAO YanRong,DU Wei,HOU SiYu,WANG DongHang,FENG HongMei,HAN YuanHuai,ZHOU MeiLiang,ZHANG KaiXuan,LIU LongLong,WANG JunZhen,LI HongYing,SUN ZhaoXia. Identification of ARF Gene Family and Expression Pattern Induced by Auxin in Fagopyrum tataricum[J]. Scientia Agricultura Sinica, 2020, 53(23): 4738-4749.
表1
引物序列"
基因名称 Gene name | 正向引物 Forward primers (5′-3′) | 反向引物 Reverse primers (5′-3′) |
---|---|---|
FtARF1 | AACCCGAGGACACACCTTTC | GTTGCCTTGAATAAGCGGGC |
FtARF2 | GCTTGTCGGAGATGACCCTT | CTGCACTCCTTCCTTGCTCA |
FtARF4 | CGGGCTGATGTTACCCATGA | CCTGCACTCGGCAGTTCATA |
FtARF14 | GCAAATGGGCTTCAACCGAG | CCAAGCCATCCATACCAGCA |
FtARF16 | CCAACCTTTGTCTCCGCAAG | CGAGGAACAGAAAAACCCCC |
FtARF17 | CGAGGATTGCTTCCCTCCTT | CTCCATCCTGTCGTGAGCAA |
FtARF18 | ATAGCATGCACATCGGCCTT | ACTTTGCCAGAGGAACGACA |
FtARF22 | CCACGATGTGGTAAACGGGA | TTGAGTCCGCACAGAACCTC |
FtARF23 | ACTGAATGGAAGTTCCGCCA | AACCGCATCCCCTGAAACAA |
FtHis | ATTCCAGAGGCTTGTTCGTG | CATAATGGTGACACGCTTGG |
[1] |
TSUJI K, OHNISHI O . Origin of cultivated tatary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genetic Resources and Crop Evolution, 2000,47(4):431-438.
doi: 10.1023/A:1008741513277 |
[2] |
JOSHI D C, CHAUDHARI G V, SOOD S, KANT L, PATTANAYAK A, ZHANG K X, FAN Y, JANOVSKA D, MEGLIC V, ZHOU M L . Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 2019,250:783-801.
doi: 10.1007/s00425-018-03080-4 pmid: 30623242 |
[3] |
JOSHI D C, ZHANG K X, WANG C L, CHANDORA R, KHURSHID M, LI J B, HE M, GEORGIEV M I, ZHOU M L . Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances, 2018, https://doi.org/10.1016/j.biotechadv.2019.107479.
doi: 10.1016/j.biotechadv.2020.107650 pmid: 33091484 |
[4] | HAGIWARA M, IZUSAWA H, INOUE N . Varietal difference of shoot growth characters related to lodging in tartary buckwheat. Fagopyrum, 1999,16:67-72. |
[5] | 郭志利, 孙常青 . 北方旱地荞麦抗倒栽培技术研究. 园艺与种苗, 2007,27(5):364-366. |
GUO Z L, SUN C Q . Study on the cultivation technology of buckwheat in the north dry land. Horticulture & Seed, 2007,27(5):364-366. (in Chinese) | |
[6] | 虞慧芳, 曹家树, 王永勤 . 植物矮化突变体的激素调控. 生命科学, 2002,14(2):85-88. |
YU H F, CAO J S, WANG Y Q . Hormones regulation in plant dwarfing mutants. Chinese Bulletin of Life Sciences, 2002,14(2):85-88. (in Chinese) | |
[7] |
FORD B A, FOO E, SHARWOOD R, KARAFIATOVA M, VRANA J, MACMILLAN C, NICHOLS D S, STEUERNAGEL B, UAUY C, DOLEZEL J, CHANDLER P M, SPIELMEYER W . Rht18 semi-dwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiology, 2018,177(1):168-180.
doi: 10.1104/pp.18.00023 pmid: 29545269 |
[8] |
BERNARDO-GARCIA S, DE LUCAS M, MARTINEZ C, ESPINOSA-RUIZ A, DAVIERE J M, PRAT S . BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Development, 2014,28(15):1681-1694.
doi: 10.1101/gad.243675.114 pmid: 25085420 |
[9] |
HU Z Y, YAN H F, YANG J H, SHINJIRO Y, MASAHIKO M, ITSURO T, NOBUHIRO T, JUNKO K, MIKIO N . Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant and Cell Physiology, 2010,51(7):1136-1142.
doi: 10.1093/pcp/pcq075 pmid: 20498118 |
[10] | 王冰, 李家洋, 王永红 . 生长素调控植物株型形成的研究进展. 植物学通报, 2006,23(5):443-458. |
WANG B, LI J Y, WANG Y H . Advances in understanding the roles of auxin involved in modulating plant architecture. Chinese Bulletin of Botany, 2006,23(5):443-458. (in Chinese) | |
[11] |
WANG Q, QIN G C, CAO M, CHEN R, HE Y M, YANG L Y, ZENG Z J, YU Y Q, GU Y T, XING W M, TAO W A, XU T D . A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nature Communications, 2020,11:679.
doi: 10.1038/s41467-020-14395-w pmid: 32015349 |
[12] |
ROOSJEN M, PAQUE S, WEIJERS D . Auxin response factors: Output control in auxin biology. Journal of Experimental Botany, 2018,69(2):179-188.
doi: 10.1093/jxb/erx237 pmid: 28992135 |
[13] |
GUILFOYLE T J, HAGEN G . Auxin response factors. Current Opinion in Plant Biology, 2007,10(5):453-460.
doi: 10.1016/j.pbi.2007.08.014 |
[14] |
OKUSHIMA Y, OVERVOORDE P J, ARIMA K, ALONSO J M, CHAN A, CHANG C, ECKER J R, HUGHES B, LUI A, NGUYEN D, ONODERA C, QUACH H, SMITH A, YU G X, THEOLOGIS A . Functional genomic analysis of the auxin response factor gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. The Plant Cell, 2005,17(2):444-463.
doi: 10.1105/tpc.104.028316 pmid: 15659631 |
[15] |
WANG D, PEI K, FU Y, SUN Z, LI S, LIU H, TANG K, HAN B, TAO Y . Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007,394(1):13-24.
doi: 10.1016/j.gene.2007.01.006 |
[16] |
KALLURI U C, DIFAZIO S P, BRUNNER A M, TUSKAN G A . Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology, 2007,7(1):59.
doi: 10.1186/1471-2229-7-59 |
[17] |
XING H, PUDAKE R N, GUO G, XING G, HU Z, ZHANG Y, SUN Q, NI Z . Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics, 2011,12(1):178.
doi: 10.1186/1471-2164-12-178 |
[18] |
WU J, WANG F, CHENG L, KONG F, PENG Z, LIU S, YU X, LU G . Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Reports, 2011,30(11):2059-2073.
doi: 10.1007/s00299-011-1113-z |
[19] |
VAN HA C, LE D T, NISHIYAMA R, WATANABE Y, SULIEMAN S, TRAN U T, MOCHIDA K, DONG N V, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K, PHAN TRAN L S . The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Research, 2013,20(5):511-524.
doi: 10.1093/dnares/dst027 |
[20] |
WAN S, LI W, ZHU Y, LIU Z, HUANG W, ZHAN J . Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Reports, 2014,33:1365-1375.
doi: 10.1007/s00299-014-1622-7 |
[21] |
WU B, LI Y H, WU J Y, CHEN Q Z, HUANG X, CHEN Y F, HUANG X L . Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis. Molecular Biology Reports, 2011,38(5):3189-3194.
doi: 10.1007/s11033-010-9990-8 |
[22] |
JUNG J H, LEE M, PARK C M . A transcriptional feedback loop modulating signaling crosstalks between auxin and brassinosteroid in Arabidopsis. Molecules and Cells, 2010,29(5):449-456.
doi: 10.1007/s10059-010-0055-6 |
[23] |
HUANG J, LI Z, ZHAO D . Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Scientific Reports, 2016,6(1):29938.
doi: 10.1038/srep29938 |
[24] |
ZHANG L J, LI X X, MA B, GAO Q, DU H L, HAN Y H, LI Y, CAO Y H, QI M, ZHU Y X, LU H W, MA M C, LIU L L, ZHOU J P, NAN C H, QIN Y J, WANG J, CUI L, LIU H M, LIANG C Z, QIAO Z J . The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant, 2017,10:1224-1237.
doi: 10.1016/j.molp.2017.08.013 pmid: 28866080 |
[25] |
LIU M Y, MA Z T, WANG A H, ZHENG T R, HUANG L, SUN W J, ZHANG Y J, JIN W Q, ZHAN J Y, CAI Y T, TANG Y J, WU Q, TANG Z Z, BU T L, LI C L, CHEN H . Genome-wide investigation of the auxin response factor gene family in tartary buckwheat (Fagopyrum tataricum). International Journal of Molecular Sciences, 2018,19(11):3526.
doi: 10.3390/ijms19113526 |
[26] | 王茜茹, 惠志明, 徐建飞, 段绍光, 卞春松, 金黎平, 李广存 . 马铃薯薯形发育的组织细胞学研究. 中国蔬菜, 2020(4):67-73. |
WANG Q R, HUI Z M, XU J F, DUAN S G, BIAN C S, JIN L P, LI G C . Studies on histocytology of potato tuber shape development. China Vegetables, 2020(4):67-73. (in Chinese) | |
[27] | 李艳林, 高志红, 宋娟, 王万许, 侍婷 . 植物生长素响应因子ARF与生长发育. 植物生理学报, 2017,53(10):1842-1858. |
LI Y L, GAO Z H, SONG J, WANG W X, SHI T . Auxin response factor (ARF) and its functions in plant growth and development. Plant Physiology Journal, 2017,53(10):1842-1858. (in Chinese) | |
[28] |
LAU S, JURGENS G, DE SMET I . The evolving complexity of the auxin pathway. The Plant Cell, 2008,20(7):1738-1746.
doi: 10.1105/tpc.108.060418 pmid: 18647826 |
[29] |
欧春青, 姜淑苓, 王斐, 赵亚楠 . 梨全基因组生长素反应因子(ARF)基因家族鉴定及表达分析. 中国农业科学, 2018,51(2):327-340.
doi: 10.3864/j.issn.0578-1752.2018.02.012 |
OU C Q, JIANG S L, WANG F, ZHAO Y N . Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in pear. Scientia Agricultura Sinica, 2018,51(2):327-340. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.02.012 |
|
[30] | 李慧峰, 冉昆, 何平, 王海波, 常源升, 孙清荣, 程来亮, 李林光 . 苹果生长素响应因子(ARF)基因家族全基因组鉴定及表达分析. 植物生理学报, 2015,51(7):1045-1054. |
LI H F, RAN K, HE P, WANG H B, CHANG Y S, SUN Q R, CHENG L L, LI L G . Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in apple. Plant Physiology Journal, 2015,51(7):1045-1054. (in Chinese) | |
[31] | ELLIS C M, NAGPAL P, YOUNG J C, HAGEN G, GUILFOYLE T J, REED J W . Auxin response factor 1 and Auxin response factor 2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005,132(20):4563-4574. |
[32] | FENG Z H, ZHU J, DU X L, CUI X H . Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. Planta, 2012,236(4):1227-1237. |
[33] |
HARDTKE C S, CKURSHUMOVA W, VIDAURRE D P, SINGH S A, STAMATIOU G, TIWARI S B, HAGEN G, GUILFOYLE T J, BERLETH T . Overlapping and non-redundant functions of the Arabidopsis auxin response factors monopteros and nonphototropic hypocotyl 4. Development, 2004,131(5):1089-1100.
doi: 10.1242/dev.00925 pmid: 14973283 |
[34] |
WU M F, TIAN Q, REED J W . Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006,133(21):4211-4218.
doi: 10.1242/dev.02602 pmid: 17021043 |
[35] |
ODAT O, GARDINER J, SAWCHUK M G, VERNA C, DONNER T J, SCARPELLA E . Characterization of an allelic series in the monopteros gene of Arabidopsis. Genesis, 2014,52(2):127-133.
doi: 10.1002/dvg.22729 |
[36] |
TIAN C E, MUTO H, HIGUCHI K, MATAMURA T, TATEMATSU K, KOSHIBA T, YAMAMOTO K T . Disruption and over expression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. The Plant Journal, 2004,40(3):333-343.
doi: 10.1111/j.1365-313X.2004.02220.x pmid: 15469491 |
[37] |
TIWARI S B, HAGEN G, GUILFOYLE T . The role of auxin response factor domains in auxin-reponsive transcription. The Plant Cell, 2003,15:533-543.
doi: 10.1105/tpc.008417 pmid: 12566590 |
[38] |
WOODWARD A W, BARTEL B . A receptor for auxin. The Plant Cell, 2005,17(9):2425-2429.
doi: 10.1105/tpc.105.036236 pmid: 16141189 |
[39] |
GUILFOYLE T . Sticking with auxin. Nature, 2007,446(7136):621-622.
doi: 10.1038/446621a pmid: 17410164 |
[40] |
CHENG Y . Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & Development, 2006,20(13):1790-1799.
doi: 10.1101/gad.1415106 pmid: 16818609 |
[41] |
LI J S, DAI X H, ZHAO Y D . A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiology, 2006,140:899-908.
doi: 10.1104/pp.105.070987 pmid: 16461383 |
[42] |
王红飞, 尚庆茂 . 被子植物下胚轴细胞伸长的分子机理. 植物学报, 2018,53(2):276-287.
doi: 10.11983/CBB17065 |
WANG H F, SHANG Q M . Molecular mechanisms of cell elongation in angiosperm hypocotyl. Chinese Bulletin of Botany, 2018,53(2):276-287. (in Chinese)
doi: 10.11983/CBB17065 |
|
[43] |
盛慧, 秦智伟, 李文滨, 周秀艳, 武涛, 辛明 . 黄瓜生长素反应因子(ARF)家族鉴定及表达特异性分析. 中国农业科学, 2014,47(10):1985-1994.
doi: 10.3864/j.issn.0578-1752.2014.10.012 |
SHENG H, QIN Z W, LI W B, ZHOU X Y, WU T, XIN M . Genome-wide identification and expression analysis of auxin response factor (ARF) family in Cucumber. Scientia Agricultura Sinica, 2014,47(10):1985-1994. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.10.012 |
|
[44] |
WALLER F, FURUYA M, NICK P . OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Molecular Biology, 2002,50(3):415-425.
doi: 10.1023/A:1019818110761 |
[1] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[2] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[3] | 赵海霞,肖欣,董玘鑫,吴花拉,李成磊,吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析[J]. 中国农业科学, 2022, 55(9): 1723-1734. |
[4] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[5] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[6] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[7] | 郝艳,李晓颍,叶茂,刘亚婷,王天宇,王海静,张立彬,肖啸,武军凯. ‘21世纪’桃与‘久脆’桃及其杂交后代果实挥发性成分特征分析[J]. 中国农业科学, 2022, 55(22): 4487-4499. |
[8] | 崔青青, 孟宪敏, 段韫丹, 庄团结, 董春娟, 高丽红, 尚庆茂. 断根与打顶对番茄嫁接愈合的抑制作用[J]. 中国农业科学, 2022, 55(2): 365-377. |
[9] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[10] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
[11] | 金梦娇,刘博,王抗抗,张广忠,钱万强,万方浩. 薇甘菊光能利用及叶绿素合成在不同光照强度下的响应[J]. 中国农业科学, 2022, 55(12): 2347-2359. |
[12] | 袁景丽,郑红丽,梁先利,梅俊,余东亮,孙玉强,柯丽萍. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1846-1855. |
[13] | 束婧婷,姬改革,单艳菊,章明,巨晓军,刘一帆,屠云洁,盛中伟,唐燕飞,蒋华莲,邹剑敏. IGF1-PI3K-Akt信号通路相关基因在黄羽肉鸡肌肉和肝脏中的表达[J]. 中国农业科学, 2021, 54(9): 2027-2038. |
[14] | 赵珂,郑林,杜美霞,龙俊宏,何永睿,陈善春,邹修平. 柑橘SAR及其信号转导基因CsSABP2在黄龙病菌侵染中的响应特征[J]. 中国农业科学, 2021, 54(8): 1638-1652. |
[15] | 赵乐,杨海丽,李佳璐,杨永恒,张蓉,程文强,成磊,赵永聚. TETs与细胞程序性死亡相关基因在山羊妊娠早期输卵管及子宫角的表达[J]. 中国农业科学, 2021, 54(4): 845-854. |
|