中国农业科学 ›› 2020, Vol. 53 ›› Issue (22): 4537-4549.doi: 10.3864/j.issn.0578-1752.2020.22.002
魏鑫1,王寒涛2,魏恒玲2,付小康2,马亮2,芦建华2,王省芬1(),喻树迅2(
)
收稿日期:
2020-06-10
接受日期:
2020-06-28
出版日期:
2020-11-16
发布日期:
2020-11-28
通讯作者:
王省芬,喻树迅
作者简介:
魏鑫,Tel:17629552778;E-mail:
WEI Xin1,WANG HanTao2,WEI HengLing2,FU XiaoKang2,MA Liang2,LU JianHua2,WANG XingFen1(),YU ShuXun2(
)
Received:
2020-06-10
Accepted:
2020-06-28
Online:
2020-11-16
Published:
2020-11-28
Contact:
XingFen WANG,ShuXun YU
摘要: 【目的】 通过克隆陆地棉GhWRKY33并研究其抗旱功能,为棉花抗旱机制解析及分子育种奠定基础。【方法】 利用同源克隆的方法从陆地棉中棉所10号中克隆GhWRKY33的开放读码框(open reading frame,ORF),并进行生物信息学分析,分析该基因的二级结构、亲疏水性,预测磷酸化位点和启动子区域的顺式作用元件,在NCBI中通过BLASTP检索同源性高的蛋白序列进行序列比对并构建系统发育树;构建35S::GhWRKY33-GFP融合表达载体,通过农杆菌介导注射烟草叶片,观察荧光信号;利用qRT-PCR检测基因的组织表达特异性,以及干旱、ABA、JA、ET处理下的基因表达模式;构建GhWRKY33过表达载体并转化拟南芥,利用20% PEG6000对野生型和T3代转基因拟南芥进行干旱处理,观察处理后野生型和转基因拟南芥的表型,并测定脯氨酸和丙二醛含量等生理生化指标,分析目的基因与干旱响应基因AtP5CS、AtRD29A、AtCOR15A的表达水平。【结果】 从陆地棉品种中棉所10号克隆获得GhWRKY33的ORF全长为1 533 bp,编码一个含510个氨基酸残基的蛋白,含有2个WRKY保守结构域和2个C2H2型锌指结构,属于第Ⅰ类WRKY转录因子家族;二级结构预测其编码的蛋白主要由无规则卷曲构成,含有26个苏氨酸磷酸化位点,推测可能与磷酸化有密切的关系,亲疏水性预测表明该蛋白属于亲水性蛋白;系统发育树分析显示该蛋白与GrWRKY33同源性最高。亚细胞定位将GhWRKY33定位于细胞核。qRT-PCR显示该基因具有明显的组织表达特异性,在棉花顶芽的表达量最高;干旱、ABA、JA、ET处理后,基因的表达量明显上升。干旱胁迫后,与野生型相比,转基因拟南芥的抗旱性水平明显提高,植株萎蔫程度较轻,其脯氨酸含量显著升高,丙二醛含量显著降低,且目的基因与干旱响应基因AtP5CS、AtRD29A、AtCOR15A的表达水平均明显提高,表明PEG诱导了该基因的表达,进而调控了干旱响应基因表达上调,使转基因拟南芥表现出对干旱胁迫的抗性。【结论】 GhWRKY33响应干旱胁迫,过表达后能明显提高转基因拟南芥的抗旱性。
魏鑫, 王寒涛, 魏恒玲, 付小康, 马亮, 芦建华, 王省芬, 喻树迅. 陆地棉GhWRKY33的克隆及抗旱功能分析[J]. 中国农业科学, 2020, 53(22): 4537-4549.
WEI Xin, WANG HanTao, WEI HengLing, FU XiaoKang, MA Liang, LU JianHua, WANG XingFen, YU ShuXun. Cloning and Drought Resistance Analysis of GhWRKY33 in Upland Cotton[J]. Scientia Agricultura Sinica, 2020, 53(22): 4537-4549.
表1
研究所用引物"
引物名称 Primer name | 引物序列 Primer sequence(5′-3′) |
---|---|
GhWRKY33-F | CACGGGGGACTCTAGAATGGCTGCTTCATCATCATCT |
GhWRKY33-R | GACGGCCAGTGAATTCTCAAGACAGGAATCCGTCCAA |
qRT-GhWRKY33-F | GGGAAACCCCAATCCAAGGAGC |
qRT-GhWRKY33-R | AATCATGGGATGCTCGCTCCAC |
qRT-GhActin-F | ATCCTCCGTCTTGACCTTG |
qRT-GhActin-R | TGTCCGTCAGGCAACTCAT |
GhWRKY33-GFP-F | CACGGGGGACTCTAGAATGGCTGCTTCATCATCATCT |
GhWRKY33-GFP-R | CTTTACTCATACTAGTAGACAGGAATCCGTCCAAAAATG |
qRT-AtRD29A-F | ATCACTTGGCTCCACTGTTGTTC |
qRT-AtRD29A-R | AAAACACACATAAACATCCAAAGT |
qRT-AtCOR15A-F | ACTCAGTTCGTCGTCGTTTCT |
qRT-AtCOR15A-R | CTTCTTTTCCTTTCTCCTCCAC |
qRT-AtP5CS-F | GAGGGGGTATGACTGCAAAA |
qRT-AtP5CS-R | AACAGGAACGCCACCATAAG |
qRT-AtUBQ1-F | TGAGCCTTCCTTGATGATGCT |
qRT-AtUBQ1-R | GCACTTGCGGCAAATCATCT |
表2
GhWRKY33启动子序列分析"
基序 Motif | 位置 Position (bp) | 序列 Sequence | 功能 Function |
---|---|---|---|
ABRE | 1252 | ACGTG | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
ARE | 960 | AAACCA | 厌氧诱导所必需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction |
1858 | AAACCA | ||
CAT-box | 1446 | GCCACT | 与分生组织表达相关的顺式作用元件Cis-acting regulatory element related to meristem expression |
G-Box | 910 | CACGAC | 参与光响应的顺式作用元件Cis-acting regulatory element involved in light responsiveness |
GCN4_motif | 222 | TGAGTCA | 胚乳表达中的顺式作用元件 Cis-regulatory element involved in endosperm expression |
1344 | TGAGTCA | ||
497 | TGAGTCA | ||
MBS | 154 | CAACTG | 与干旱诱导相关的MYB结合位点MYB binding site involved in drought-inducibility |
图3
GhWRKY33与其他物种WRKY蛋白序列比对分析 方框表示WRKY结构域,星号表示锌指结构。拟南芥AtWRKY33(NP_181381)、雷蒙德氏棉GrWRKY33(XP_012460140)、亚洲棉GaWRKY33(XP_017615740)、可可TcWRKY33(XP_017977471)、哥伦比亚锦葵HuWRKY33(XP_021290063)、榴莲DzWRKY33(XP_022767833)、黄麻CcWRKY33(OMO85052)、番木瓜CpWRKY33(XP_021908634)、橡胶树HbWRKY33(XP_021664002)、银白杨PaWRKY17(TKS07377)、木薯MeWRKY33(XP_021623467)、麻风树JcWRKY33(XP_012089749)、龙眼DlWRKY17(AEO31478)、橄榄树CaWRKY33(AXY96406)、山胡椒LgWRKY33(ALE71299)、豇豆VuWRKY33(QCE01025)、杨梅MrWRKY33(KAB1225722)、葡萄VvWRKY24(XP_002272040)、大豆GmWRKY49(NP_001304523)、大豆GmWRKY39(NP_001348302)、棉花GhWRKY33(XP_016680843)。下同"
[1] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007,58(2):221.
doi: 10.1093/jxb/erl164 pmid: 17075077 |
[2] |
SEKI M, UMEZAWA T, URANO K, SHINOZAKI K . Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 2007,10(3):296-302.
doi: 10.1016/j.pbi.2007.04.014 |
[3] | 张秋平, 杨宇红, 谢丙炎, 刘志敏 . 植物转录因子的超表达及其在分子育种中的应用. 分子植物育种, 2006,4(3):115-122. |
ZHANG Q P, YANG Y H, XIE B Y, LIU Z M . Overexpression of plant transcription factors and its application in molecular breeding. Molecular Plant Breeding, 2006,4(3):115-122. (in Chinese) | |
[4] |
CIOLKOWSKI I, WANKE D, BIRKENBIHL R P, SOMSSICH I E . Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 2008,68(1/2):81-92.
doi: 10.1007/s11103-008-9353-1 |
[5] | CAI M, QIU D Y, YUAN T, DING X H, LI H J, DUAN L, XU C G, LI X G, WANG S P . Identification of novel pathogen‐responsive cis‐elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant, Cell & Environment, 2008,31(1):86-96. |
[6] |
孙淑豪, 余迪求 . WRKY转录因子家族调控植物逆境胁迫响应. 生物技术通报, 2016,32(10):66-76.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.009 |
SUN S H, YU D Q . WRKY transcription factor family regulates plant stress response. Biotechnology Bulletin, 2016,32(10):66-76. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.009 |
|
[7] |
CHEN H, LAI Z, SHI J, XIAO Y, CHEN Z X, XU X . Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 2010,10(1):281-290.
doi: 10.1186/1471-2229-10-281 |
[8] |
PARK C Y, LEE J H, YOO J H, MOON B C, CHOI M S, KANG Y H, LEE S M, KIM H S, KANG K Y, CHUNG W S, LIM C O, CHO M J . WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 2005,579(6):1545-1550.
doi: 10.1016/j.febslet.2005.01.057 pmid: 15733871 |
[9] |
ZHANG C Q, XU Y, LU Y, YU H X, GU M H, LIU Q Q . The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta, 2011,234(3):541-554.
doi: 10.1007/s00425-011-1423-y |
[10] | SAHIN-CEVIK M . A WRKY transcription factor gene isolated from Poncirus trifoliata shows differential responses to cold and drought stresses. Plant Omics, 2012,5(5):438-445. |
[11] |
ULLAH A, SUN H, HAKIM X, ZHANG X L . A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiologia Plantarum, 2018,162(4):439-454.
doi: 10.1111/ppl.12651 pmid: 29027659 |
[12] |
HUH S U, CHOI L M, LEE G J, KIM Y J, PEAK K H . Capsicum annuum WRKY transcription factor d( CaWRKYd) regulates hypersensitive response and defense response upon tobacco mosaic virus infection. Plant Science, 2012,197:50-58.
doi: 10.1016/j.plantsci.2012.08.013 |
[13] |
CHU X, WANG C, CHEN X, LU W J, LI H, WANG X L, HAO L L, GUO X Q . The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE, 2015,10(11):e0143002.
doi: 10.1371/journal.pone.0143002 |
[14] |
LIU X, SONG Y, XING F, WANG N, WEN F, ZHU C . GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 2016,253(5):1265-1281.
doi: 10.1007/s00709-015-0885-3 pmid: 26410829 |
[15] |
ASAI T, TENA G, PLOTNIKOVA J, WILLMANN M R, CHIU W L, GOMEZ-GOMEZ L, BOLLER T, AUSUBEL F M, SHEEN J . MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002,415(6875):977-983.
doi: 10.1038/415977a pmid: 11875555 |
[16] |
JIANG Y J, QIU Y P, HU Y R, YU D Q . Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Frontiers in Plant Science, 2016,7:145-152.
doi: 10.3389/fpls.2016.00145 pmid: 26904091 |
[17] |
DING Z J, YAN J Y, XU X Y, YU D Q, LI G X, ZHANG S Q, ZHENG S J . Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently i. Arabidopsis. The Plant Journal, 2014,79(1):13-27.
doi: 10.1111/tpj.12538 pmid: 24773321 |
[18] | LIU L, ZHANG Z, DONG J, WANG T . Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environmental and Experimental Botany, 2016,123:50-58. |
[19] |
ZHAO J, ZHANG X, GUO R, WANG Y Q, GUO C L, LI Z, CHEN Z P, GAO H, WANG X P . Over-expression of a grape WRKY transcription factor gene, VlWRKY48, i. Arabidopsis thaliana increases disease resistance and drought stress tolerance. Plant Cell, Tissue and Organ Culture, 2017,132(11):359-370.
doi: 10.1007/s11240-017-1335-z |
[20] |
LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2002,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M . Sequencing of allotetraploid cotton ( Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015,33(5):531-537.
doi: 10.1038/nbt.3207 pmid: 25893781 |
[22] |
TUNNACLIFFE A, WISE M J . The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007,94(10):791-812.
doi: 10.1007/s00114-007-0254-y pmid: 17479232 |
[23] |
XUE R, LIU Y, ZHENG Y, WU Y J, LI X J, PEI F K, NI J Z . Three-dimensional structure and mimetic-membrane association of consensus 11-amino-acid motif from soybean lea3 protein. Peptide Science, 2012,98(1):59-66.
doi: 10.1002/bip.21693 pmid: 23325560 |
[24] |
YAN H, JIA H, CHEN X, HAO L, AN H L, GUO X Q . The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgeni. Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant & Cell Physiology, 2014,55(12):2060-2076.
doi: 10.1093/pcp/pcu133 pmid: 25261532 |
[25] |
DING W W, FANG W B, SHI S Y, ZHAO Y Y, LI X J, XIAO K . Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Molecular Biology Reporter, 2016,34(6):1111-1126.
doi: 10.1007/s11105-016-0991-1 |
[26] |
FAN Q Q, SONG A P, JIANG J F, ZHANG T, SUN H N, WANG Y J, CHEN S M, CHEN F D . CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE, 2016,11(3):e0150572.
doi: 10.1371/journal.pone.0150572 pmid: 26938878 |
[27] |
LUO X, BAI X, SUN X, ZHU D, LIU B H, JI W, CAI H, CAO L, WU J, HU M R, LIU X, TANG L, ZHU Y M . Expression of wild soybean WRKY20 i. Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of Experimental Botany, 2013,64(8):2155-2169.
doi: 10.1093/jxb/ert073 pmid: 23606412 |
[28] |
ASHRAF M, FOOLAD M R . Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007,59(2):206-216.
doi: 10.1016/j.envexpbot.2005.12.006 |
[29] |
HU C A, DELAUNEY A J, VERMA D P . A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences of the USA, 1992,89(19):9354-9358.
doi: 10.1073/pnas.89.19.9354 pmid: 1384052 |
[30] |
MSANNE J, LIN J S, STONE J M, AWADA T . Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A an. RD29B genes and evaluation of transgenes. Planta, 2011,234(1):97-107.
doi: 10.1007/s00425-011-1387-y |
[31] |
MENG L S, WANG Z B, YAO S Q, LIU A Z . The ARF2-ANT- COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought i. Arabidopsis. Journal of Cell Science, 2015,128(21):3922-3932.
doi: 10.1242/jcs.171207 pmid: 26395398 |
[1] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[2] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[3] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 隋心意,赵小刚,陈鹏宇,李亚灵,温祥珍. 生菜LsPHYB可变剪接体的克隆与高温诱导表达模式[J]. 中国农业科学, 2022, 55(9): 1822-1830. |
[6] | 王俊娟,陆许可,王延琴,王帅,阴祖军,付小琼,王德龙,陈修贵,郭丽雪,陈超,赵兰杰,韩迎春,孙亮庆,韩明格,张悦新,范亚朋,叶武威. 陆地棉遗传标准系TM-1的特性及其耐冷性[J]. 中国农业科学, 2022, 55(8): 1503-1517. |
[7] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[8] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[9] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[10] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
[11] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[12] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[13] | 谢晓宇, 王凯鸿, 秦晓晓, 王彩香, 史春辉, 宁新柱, 杨永林, 秦江鸿, 李朝周, 马麒, 宿俊吉. 陆地棉吐絮率的限制性两阶段多位点全基因组关联分析及候选基因预测[J]. 中国农业科学, 2022, 55(2): 248-264. |
[14] | 李刚,白阳,贾子颖,马正阳,张祥池,李春艳,李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[15] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 783
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 602
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|