中国农业科学 ›› 2020, Vol. 53 ›› Issue (15): 3146-3157.doi: 10.3864/j.issn.0578-1752.2020.15.014
原贵波(),莫双榕,钱莹,臧栋楠,杨帆,蒋红亮,武媛,丁海东(
)
收稿日期:
2019-10-17
接受日期:
2020-01-29
出版日期:
2020-08-01
发布日期:
2020-08-06
通讯作者:
丁海东
作者简介:
原贵波,E-mail: 基金资助:
YUAN GuiBo(),MO ShuangRong,QIAN Ying,ZANG DongNan,YANG Fan,JIANG HongLiang,WU Yuan,DING HaiDong(
)
Received:
2019-10-17
Accepted:
2020-01-29
Online:
2020-08-01
Published:
2020-08-06
Contact:
HaiDong DING
摘要:
【目的】含有VQ基序(VQ)的蛋白质是植物特异性蛋白质,具有保守的“FxxhVQxhTG”氨基酸序列,调节植物生长和发育。番茄SlMPK1在高温胁迫过程中发挥重要作用,酵母双杂交(Y2H)显示SlVQ6蛋白能够与SlMPK1相互作用,通过GST pull-down技术进一步验证SlMPK1与SlVQ6的互作以及SlVQ6的互作网络,为研究SlVQ6介导的高温应答信号通路奠定基础。【方法】通过pGEX-4T-1-PC-VQ6质粒构建,以含有目的基因SIVQ6的菌液为模板,设计特异性引物,扩增目的基因序列,将获得的目的基因VQ6克隆到载体pGEX-4T-1的BamHⅠ和NotⅠ的酶切位点之间,将获得的重组质粒pGEX-4T-1-PC-VQ6转入TOP10克隆菌株经IPTG(异丙基硫代半乳糖苷)诱导表达,通过GST柱亲和纯化获得目标蛋白PC-VQ6,进而获得预期GST-SlVQ6融合蛋白,通过体外磷酸化进一步确定SlVQ6是否是SlMPK1的下游底物;以GST-SlVQ6为诱饵蛋白固定于GST Sepharose Beads上,与番茄叶片总蛋白孵育后洗脱,收集洗脱液进行SDS-PAGE凝胶电泳验证,通过LC-MS/MS检测SlVQ6可能互作的候选蛋白,并对筛选的SIVQ6互作蛋白通过GO、KEGG和蛋白互作网络进行生物信息学分析。【结果】成功构建pGEX-4T-1-PC-SlVQ6基因重组表达质粒,并获得带有GST标签的GST-SlVQ6融合蛋白,其分子量大小约为54 kD;将GST-SlVQ6和His-SlMPK1进行体外磷酸化试验,SlMPK1能够磷酸化SlVQ6,而作为阴性对照的GST与SlMPK1无相互作用,且SlVQ6不存在自磷酸化的现象,表明GST-SlVQ6和His-SlMPK1具有相互作用,且SlVQ6是SlMPK1的下游底物;以GST-SlVQ6融合蛋白为诱饵蛋白(空GST为阴性对照),利用pull-down试验筛选番茄叶片组织蛋白中与SlVQ6蛋白结合的蛋白,经SDS-PAGE分离、液相色谱-串联质谱(LC-MS/MS)鉴定以及Mascot与蛋白数据库检索,共鉴定出37个与SlVQ6结合的蛋白,包括蛋白激酶Receptor for Activated C Kinase 1B(RACK1B),通过GO、KEGG和蛋白互作网络的生物信息学分析,表明这些蛋白参与多种信号通路,其中8个核糖体蛋白可能与高温胁迫密切相关。【结论】SlVQ6是SlMPK1的底物蛋白,且37个蛋白可能与SlVQ6互作,这些蛋白与胁迫反应有着密切的联系,可能会在提高番茄植株高温耐受性等方面发挥重要作用。
原贵波,莫双榕,钱莹,臧栋楠,杨帆,蒋红亮,武媛,丁海东. 应用GST pull-down技术筛选番茄SIVQ6互作蛋白[J]. 中国农业科学, 2020, 53(15): 3146-3157.
YUAN GuiBo,MO ShuangRong,QIAN Ying,ZANG DongNan,YANG Fan,JIANG HongLiang,WU Yuan,DING HaiDong. Screening of Interacting Protein of Tomato SIVQ6 by GST Pull-Down[J]. Scientia Agricultura Sinica, 2020, 53(15): 3146-3157.
表1
通过GST pull-down鉴定的37个SlVQ6特异性结合蛋白"
蛋白质ID UniProt ID | 拟南芥ID At ID | 基因IDa Gene ID | 描述b Description |
---|---|---|---|
R4KMW8 | ATCG00490 | 二磷酸核酮糖羧化酶大链Ribulose bisphosphate carboxylase large chain | |
K4DC90 | AT2G24200 | Solyc12g010020 | 胞质氨肽酶Cytosol aminopeptidase |
K4BQD5 | AT5G58420 | Solyc04g016350 | 40S核糖体蛋白S4 (RPS4D) 40S ribosomal protein S4 (RPS4D) |
K4CAN7 | AT2G20450 | Solyc06g083820 | 60S核糖体蛋白l14(RPL14A) 60S ribosomal protein L14 (RPL14A) |
K4ASC2 | AT1G65930 | Solyc01g005560 | 异柠檬酸脱氢酶/ NADP+异柠檬酸脱氢酶,推定 Isocitrate dehydrogenase / NADP+ isocitrate dehydrogenase, putative |
K4CPX9 | AT1G32990 | Solyc08g083350 | PRPL11;核糖体的结构组成 PRPL11; Structural constituent of ribosome |
K4BWB5 | AT5G14320 | Solyc05g005880 | 核糖体蛋白S13,叶绿体(CS13) 30S ribosomal protein S13, chloroplast (CS13) |
H1ZXA8 | AT3G12580 | 热休克蛋白70亚型2 Heat shock protein 70 isoform 2 | |
K4BEV0 | AT3G04770 | Solyc03g019780 | RPSAb;核糖体的结构组成 RPSAb; Structural constituent of ribosome |
K4CLA3 | AT4G33010 | Solyc08g065220 | AtGLDP1(拟南芥黄曲霉毒素P-蛋白1)AtGLDP1 (Arabidopsis thaliana glycine decarboxylase P-protein 1) |
K4BMD5 | AT1G74070 | Solyc03g119860 | 肽基脯氨酸顺反异构酶亲环素型家族蛋白 Eptidyl-prolyl cis-trans isomerase cyclophilin-type family protein |
K4B1M5 | AT5G49840 | Solyc01g102990 | ATP结合/ATP酶/核苷三磷酸酶/核苷酸结合 ATP binding/ATPase/nucleoside-triphosphatase/ nucleotide binding |
K4DEU5 | AT1G48630 | Solyc12g040510 | RACK1B_AT;核苷酸结合 RACK1B_AT; Nucleotide binding |
P07369 | AT1G29930 | Solyc03g005780 | CAB1,AB140,CAB140,LHCB1.3 |
K4D831 | AT2G37270 | Solyc11g042610 | ATRPS5B;核糖体的结构组成ATRPS5B; Structural constituent of ribosome |
K4CP59 | AT4G11650 | Solyc08g080590 | ATOSM34|ATOSM34(渗调蛋白34)ATOSM34|ATOSM34 (osmotin 34) |
K4CAM4 | AT4G28730 | Solyc06g083690 | 谷氨酸家族蛋白 Glutaredoxin family protein |
K4C3Z3 | AT3G62410 | Solyc06g009630 | CP12-2,CP12|CP12-2;蛋白结合 CP12-2, CP12|CP12-2; protein binding |
K4BQ07 | AT2G43560 | Solyc04g015040 | 免疫亲和蛋白Immunophilin |
K4ASQ6 | AT5G06480 | Solyc01g006900 | MD-2相关脂质识别含域蛋白MD-2-related lipid recognition domain-containing protein |
Q9XGI9 | AT2G27450 | Solyc11g068540 | NLP1,ATNLP1,CPA;N-氨基甲酰腐胺酰胺酶NLP1, ATNLP1, CPA; N-carbamoylputrescine amidase |
K4C3Z6 | AT4G02080 | Solyc06g009660 | ASAR1,ATSARA1C,ATSAR2|ATSAR2;GTP结合 ASAR1, ATSARA1C, ATSAR2|ATSAR2; GTP binding |
Q8LPU1 | AT4G11650 | Solyc08g080620 | ATOSM34|ATOSM34(渗调蛋白34)ATOSM34|ATOSM34 (osmotin 34) |
K4CMN4 | AT2G35040 | Solyc08g075160 | AICARFT/IMPCHase双酶家族蛋白AICARFT/IMPCHase bienzyme family protein |
K4D621 | AT1G12050 | Solyc11g012160 | 延胡索酰乙酰乙酸酶,推定 Fumarylacetoacetase, putative |
K4B1B8 | AT2G47170 | Solyc01g100870 | ARF1A1C;GTP结合/磷脂酶激活剂/蛋白结合ARF1A1C; GTP binding / phospholipase activator/ protein binding |
K4BB24 | AT5G66530 | Solyc02g085100 | Aldose 1-变旋酶家族蛋白 Aldose 1-epimerase family protein |
K4CNE8 | AT4G17040 | Solyc08g077890 | ATP依赖的Clp蛋白酶水解亚基,推定 ATP-dependent Clp protease proteolytic subunit, putative |
Q9XG54 | AT1G76690 | Solyc10g086220 | OPR2,ATOPR2|OPR2 |
K4BG20 | AT3G49910 | Solyc03g044000 | 60S核糖体蛋白L26(RPL26A)60S ribosomal protein L26 (RPL26A) |
K4DA30 | AT5G22300 | Solyc11g068730 | NIT4;3-氰基丙氨酸水合酶/氰基丙氨酸腈水解酶NIT4; 3-cyanoalanine hydratase/cyanoalanine nitrilase |
K4C952 | AT3G11710 | Solyc06g073330 | ATP结合/氨酰基-tRNA连接酶/赖氨酸-tRNA连接酶ATP binding/aminoacyl-tRNA ligase/lysine-tRNA ligase |
K4D3M1 | AT3G09630 | Solyc10g084350 | 60S核糖体蛋白L4/L1(RPL4A)60S ribosomal protein L4/L1 (RPL4A) |
K4CJ96 | AT2G44050 | Solyc08g015660 | COS1;6,7-二甲基-8-核苷鲁嗪合酶COS1; 6,7-dimethyl-8-ribityl lumazine synthase |
K4CSE1 | AT3G25530 | Solyc09g018790 | GHBDH,ATGHBDH;3-羟丁酸脱氢酶GHBDH, ATGHBDH; 3-hydroxybutyrate dehydrogenase |
K4C8R4 | AT3G04120 | Solyc06g071920 | GAPC,GAPC-1,GAPC1|GAPC1 |
K4D3F2 | AT3G52960 | Solyc10g083650 | 2类过氧化物酶,推定Peroxiredoxin type 2, putative |
[1] |
MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat? Trends in Biochemical Sciences, 2012,37:118-125.
pmid: 22236506 |
[2] | BOKSZCZANIN K L, FRAGKOSTEFANAKIS S, BOSTAN H. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front in Plant Science, 2013,4:315. |
[3] | DINAR M, RUDICH J. Effect of heat stress on assimilate metabolism in tomato flower buds. Annals of Botany, 1985,56(2):249-257. |
[4] |
PRESSMAN E, PEET M, PHARR M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 2002,90(5):631-636.
pmid: 12466104 |
[5] |
DING H D, YUAN G B, MO S R, QIAN Y, WU Y, CHEN Q, XU X Y, WU X X, GE C L. Genome-wide analysis of the plant-specific VQ motif-containing proteins in tomato (Solanum lycopersicum) and characterization of SlVQ6 in thermotolerance. Plant Physiology and Biochemistry, 2019,143:29-39.
pmid: 31479880 |
[6] |
XIE Y D, LI W, GUO D, DONG J, ZHANG Q, FU Y, REN D, PENG M, XIA Y. The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses. Plant Cell Environ, 2010,33:828-839.
pmid: 20040062 |
[7] |
CHENG Y, ZHOU Y, YANG Y, CHI Y J, ZHOU J, CHEN J Y, WANG F, FAN B F, SHI K, ZHOU Y H, YU J Q, CHEN Z X. Structural and functional analysis of VQ motif containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiology, 2012,159:810-825.
pmid: 22535423 |
[8] |
JING Y J, LIN R C. The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiology, 2015,169:371-378.
doi: 10.1104/pp.15.00788 pmid: 26220951 |
[9] |
KLAUS P, QIU J L, JURY L, BERTHE K F, SIDSEL H, JOHN M, MORTEN P. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS ONE, 2010,5:e14364.
pmid: 21203436 |
[10] |
WANG A H, DAMIEN G, ZHANG H Y, FENG K, ABED C, FRED B, WILLIAM J P, ELIZABETH S D, LUO M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal, 2010,63:670-679.
doi: 10.1111/j.1365-313X.2010.04271.x pmid: 20545893 |
[11] |
LAI Z B, LI Y, WANG F, CHENG Y, FAN B F, YU J Q, CEHN Z X. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. The Plant Cell, 2011,23:3824-3841.
doi: 10.1105/tpc.111.090571 pmid: 21990940 |
[12] |
HU P, ZHOU W, CHENG Z W, FAN M, WANG L, XIE D X. JAV1 controls jasmonate-regulated plant defense. Molecular Cell, 2013,50:504-515.
pmid: 23706819 |
[13] |
LI Y L, JING Y J, LI J J, XU G, LIN R C. Arabidopsis VQ MOTIF-CON-TAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiology, 2014,164:2068-2080.
pmid: 24569844 |
[14] |
PAN J J, WANG H P, HU Y R, YU D Q. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. The Plant Journal, 2018,95:529-544.
pmid: 29771466 |
[15] |
WANG H P, HU Y R, PAN J J, YU D Q. Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea. Scientific Reports, 2015,5:14185.
doi: 10.1038/srep14185 pmid: 26394921 |
[16] |
MARTIN W, LENNARD E, PASCAL P. Ménage à trois the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins. Plant Signaling & Behavior, 2014,9(8):e29519.
pmid: 25763630 |
[17] |
LEI R H, LI X L, MA Z B, LV Y, HU Y R, YU D Q. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. The Plant Journal, 2017,91:962-976.
pmid: 28635025 |
[18] |
QIU J L, FIIL B K, PETERSEN K, NIELSEN H B, BOTANGA C J, THORGRIMSEN S, PALMA K, SUAREZ R M C, SANDBECH C S, LICHOTA J, QIU J L, FIIL B K, PEETRSEN K. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. The EMBO Journal, 2008,27:2214-2221.
pmid: 18650934 |
[19] |
GARGUL J M, MIBUS H, SEREK M. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant Biotechnology Journal, 2015,13:51-61.
pmid: 25082411 |
[20] |
KIM D Y, KWON S I, CHOI C. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene, 2013,529:208-214.
doi: 10.1016/j.gene.2013.08.023 pmid: 23958655 |
[21] |
SONG W B, ZHAO H M, ZHANG X B, LEI L, LAI J S. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Frontiers in Plant Science, 2016,6:1177.
pmid: 26779214 |
[22] |
WANG X B, ZHANG H W, SUN G L, JIN Y, QIU L J. Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. Gene, 2014,543(2):237-243.
pmid: 24727126 |
[23] |
WANG M, VANNOZZI A, WANG G, ZHONG Y, CORSO M, CAVALLINI E, CHENG Z M. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Frontiers in Plant Science, 2015,6:417.
pmid: 26124765 |
[24] |
ZHANG G Y, WANG F D, LI J J, DING Q, ZHANG Y H, LI H Y, ZHANG J N, GAO J W. Genome-wide identification and analysis of the VQ motif- containing protein family in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). International Journal of Molecular Sciences, 2015,16(12):28683-28704.
doi: 10.3390/ijms161226127 pmid: 26633387 |
[25] |
DONG Q L, ZHAO S, DUAN D Y, TIAN Y, WANG Y P, MAO K, ZHOU Z S, MA F W. Structural and functional analyses of genes encoding VQ proteins in apple. Plant Science, 2018,272:208-219.
pmid: 29807593 |
[26] | 何洁. 番茄SlMPK1的互作蛋白筛选及初步功能分析[D]. 扬州: 扬州大学, 2016. |
HE J. Screening and preliminary functional analysis of interaction proteins of tomato SlMPK1[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
[27] | KANEHISA M, SATO Y, FURUMICHI M, MORISHIMA K, TANABE M. New approach for understanding genome variations in KEGG. Nucleic Acids Research, 2018,47:590-595. |
[28] |
SZKLARCZYK D, MORRIS J H, COOK H, KUHN M, WYDER S, SIMONOVIC M, SANTOS A, DONCHEVA N T, ROTH A, BORK P, JENSEN L J, VON M C. The STRING database in 2017: Quality- controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 2017,45(D1):D362-D368.
pmid: 27924014 |
[29] |
CHANG S J, HSIAO J C, SONNBERG S. Poxvirus host range protein CP77 Contains an F-Box-like domain that is necessary to suppress NF-κB activation by tumor necrosis factor alpha but is independent of its host range function. Journal of Virology, 2009,83(9):4140-4152.
doi: 10.1128/JVI.01835-08 pmid: 19211746 |
[30] |
DING H D, HE J, WU Y, WU X X, GE C L, WANG Y J, ZHONG S L, PEITER E, LIANG J S, XU W F. The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high temperature stress response. Plant Physiology, 2018,177(2):633-651
pmid: 29678861 |
[31] |
MORIKAWA K, SHIINA T, MURAKAMI S, TOYOSHIMA Y. Novel nuclear encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Letters, 2002,514:300-304.
doi: 10.1016/s0014-5793(02)02388-8 pmid: 11943170 |
[32] |
PERRUC E, CHARPENTEAU M, RAMIREZ B C, JAUNEAU A, GALAUD J P, RAOUL R, RANTY B. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. The Plant Journal, 2004,38:410-420.
doi: 10.1111/j.1365-313X.2004.02062.x pmid: 15086802 |
[33] |
HU Y R, CHEN L G, WANG H P, ZHANG L P, WANG F, YU D Q. Arabidopsis transcription factor WRKY8 function agonistically with its interacting partner VQ9 to modulates salinity stress tolerance. The Plant Journal, 2013,74(5):730-745.
doi: 10.1111/tpj.12159 pmid: 23451802 |
[34] |
PECHER P, ESCHENLIPPOLD L, HERKLOTZ S. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of 'VQ-motif'-containing proteins to regulate immune responses. New Phytologist, 2014,203(2):592-606.
doi: 10.1111/nph.12817 pmid: 24750137 |
[35] |
ISLAS-FLORES T, RAHMAN A, ULLAH H, VILLANUEVA M A. The receptor for activated C kinase in plant signaling: Tale of a promiscuous little molecule. Frontiers in Plant Science, 2015,6:1090.
pmid: 26697044 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[3] | 王梦蕊, 刘淑梅, 侯丽霞, 王施慧, 吕宏君, 苏晓梅. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 2022, 55(4): 707-718. |
[4] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
[5] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[6] | 崔青青, 孟宪敏, 段韫丹, 庄团结, 董春娟, 高丽红, 尚庆茂. 断根与打顶对番茄嫁接愈合的抑制作用[J]. 中国农业科学, 2022, 55(2): 365-377. |
[7] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[8] | 李依镁,王娇,王萍,师恺. 番茄糖转运蛋白SlSTP2在防御细菌性叶斑病中的功能[J]. 中国农业科学, 2022, 55(16): 3144-3154. |
[9] | 方瀚墨,胡璋健,马巧梅,丁淑婷,王萍,王安然,师恺. 番茄SlβCA3在防御丁香假单胞菌番茄致病变种中的功能[J]. 中国农业科学, 2022, 55(14): 2740-2751. |
[10] | 李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738. |
[11] | 孟宪敏,季延海,孙旺旺,武占会,储昭胜,刘明池. 两个番茄品种叶绿体超微结构及光合生理对弱光胁迫的响应[J]. 中国农业科学, 2021, 54(5): 1017-1028. |
[12] | 王萍,郑晨飞,王娇,胡璋健,邵淑君,师恺. 番茄转录因子SlNAC29在调控植株衰老中的作用及机理[J]. 中国农业科学, 2021, 54(24): 5266-5276. |
[13] | 刘昌云,李欣羽,田绍锐,王靖,裴悦宏,马小舟,樊光进,汪代斌,孙现超. 番茄SlN-like的克隆、表达与抗病毒功能[J]. 中国农业科学, 2021, 54(20): 4348-4357. |
[14] | 张桂芬,张毅波,刘万学,张帆,冼晓青,万方浩,冯晓东,赵静娜,刘慧,刘万才,张晓明,李庆红,王树明. 诱捕器颜色和悬挂高度对番茄潜叶蛾诱捕效果的影响[J]. 中国农业科学, 2021, 54(11): 2343-2354. |
[15] | 张继峯,王振华,张金珠,窦允清,侯裕生. 滴灌下氮盐交互对加工番茄荧光特性及产量品质的影响[J]. 中国农业科学, 2020, 53(5): 990-1003. |
|