中国农业科学 ›› 2020, Vol. 53 ›› Issue (15): 3095-3107.doi: 10.3864/j.issn.0578-1752.2020.15.010
赵绪生1,2(),齐永志1,2(),闫翠梅1,2,甄文超2,3,4()
收稿日期:
2020-02-29
接受日期:
2020-04-02
出版日期:
2020-08-01
发布日期:
2020-08-06
通讯作者:
甄文超
作者简介:
赵绪生,E-mail: 基金资助:
ZHAO XuSheng1,2(),QI YongZhi1,2(),YAN CuiMei1,2,ZHEN WenChao2,3,4()
Received:
2020-02-29
Accepted:
2020-04-02
Online:
2020-08-01
Published:
2020-08-06
Contact:
WenChao ZHEN
摘要:
【目的】冬小麦、夏玉米一年两熟是中国北方最广泛的农作制度,中国北方小麦、玉米生产普遍采用秸秆还田的耕作方式,关于秸秆还田对小麦土传病害的影响一直存在争议。通过分析不同秸秆还田年限地块耕层土壤中的主要有机酸对小麦幼苗生长、禾谷丝核菌(Rhizoctonia cerealis)及纹枯病发生的化感作用,明确我国北方冬小麦、夏玉米一年两熟种植体系下秸秆还田对小麦纹枯病发生的影响。【方法】利用GC-MS技术分析玉米秸秆还田地块耕层土壤乙酸乙酯提取物中化学物质的种类与含量,并分别用氯化三苯基四氮唑(TTC)还原法、电导率法、氮蓝四唑光化(NBT)还原法和愈创木酚比色法测定含量较高的6种有机酸对小麦幼苗根系活力、根系细胞膜透性、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性的影响,用常规方法测定其对禾谷丝核菌和纹枯病发生的影响。【结果】秸秆还田地块耕层土壤中含有机酸、烷烃、醇、酰胺及醛类等化学物质,相对含量分别为45.45%、17.70%、17.08%、6.12%和5.44%;含量较高的有机酸类物质包括邻羟基苯甲酸(9.24%)、3-苯基-2-丙烯酸(4.12%)、对羟基苯甲酸(3.21%)、4-羟基-3,5-二甲氧基苯甲酸(2.26%)、二十一烷酸(1.88%)、4-甲氧基邻氨基苯甲酸(1.73%)、8-十八碳烯酸(0.76%)和3-(4-羟基-3-甲氧基苯基)-2-丙烯酸(0.52%)。0.08—10.0 μg·mL-1浓度的4-甲氧基邻氨基苯甲酸和3-(4-羟基-3-甲氧基苯基)-2-丙烯酸对禾谷丝核菌的菌丝生长(10.0 μg·mL-14-甲氧基邻氨基苯甲酸除外)、菌丝干重和菌核数量均表现明显促进作用,且2种物质在土壤中的含量均随秸秆还田年限延长呈增多趋势。0.4和0.08 μg·mL-1邻羟基苯甲酸对禾谷丝核菌的菌丝生长和菌核形成有明显促进作用;而50.0 μg·mL-1邻羟基苯甲酸和4-羟基-3-甲氧基-苯甲酸,以及0.4—50.0 μg·mL-1苯甲酸均表现为抑制作用。在2.0—50.0 μg·mL-1浓度范围内,随着6种有机酸浓度的提高,其对小麦幼苗生长的抑制作用越强,对羟基苯甲酸抑制作用最强,其次是邻羟基苯甲酸,4-甲氧基邻氨基苯甲酸最弱。0.4—50.0 μg·mL-1浓度的3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基邻氨基苯甲酸、邻羟基苯甲酸和对羟基苯甲酸均加重小麦纹枯病发生,其中,3-(4-羟基-3-甲氧基苯基)-2-丙烯酸助长作用最强,发病率和病情指数最高增幅分别达49.0%和46.7%;而苯甲酸和4-羟基-3-甲氧基-苯甲酸对小麦纹枯病发生无显著影响。【结论】冬小麦、夏玉米一年两熟秸秆还田土壤中含有机酸、酯、烃、酰胺及醛类等化学物质,有机酸类物质相对含量最高。3-(4-羟基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基邻氨基苯甲酸、邻羟基苯甲酸和对羟基苯甲酸在一定浓度下均可助长小麦纹枯病的发生,其中3-(4-羟基-3-甲氧基苯基)-2-丙烯酸助长作用最强,而苯甲酸和4-羟基-3-甲氧基-苯甲酸对纹枯病发生无明显影响。还田秸秆在土壤中腐解产生的有机酸类物质促进病原菌生长、抑制小麦根系生理活性和生长的化感作用,可能是中国北方小麦、玉米两熟秸秆还田条件下小麦纹枯病加重发生的主要原因之一。
赵绪生,齐永志,闫翠梅,甄文超. 小麦、玉米两熟秸秆还田土壤中6种有机酸对小麦纹枯病的化感作用[J]. 中国农业科学, 2020, 53(15): 3095-3107.
ZHAO XuSheng,QI YongZhi,YAN CuiMei,ZHEN WenChao. Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System[J]. Scientia Agricultura Sinica, 2020, 53(15): 3095-3107.
表1
不同年度土壤乙酸乙酯提取物中检测出的有机物质"
保留时间a Retention time (min) | 化合物名称b Compound name | 峰面积cArea (%) | |||
---|---|---|---|---|---|
2012 | 2015 | 2018 | 平均Average | ||
6.33 | 间二甲苯Xylene | 0.83 | 0.92 | 1.02 | 0.92 |
6.49 | N-乙基乙酰胺N-ethyl-acetamide | 7.33 | 8.04 | 9.03 | 8.13 |
6.72 | 苯酚Phenol | - | 0.25 | 0.31 | 0.28 |
7.34 | N,N-二乙基甲酰胺N,N-diethyl formamide | 1.31 | 0.45 | 1.61 | 1.12 |
7.57 | 2,3-二甲基环氮乙烷2,3-dimethyl-ring nitrogen oxide | 1.51 | 1.68 | 1.86 | 1.68 |
7.97 | 碳酸Carbonic acid | 1.07 | 1.19 | 1.32 | 1.19 |
8.24 | N,N-二乙基乙酰胺N,N-diethyl acetamide | 4.31 | 4.78 | 5.31 | 4.80 |
8.78 | N-乙基丙胺N-ethyl-propylamine | 0.61 | - | 0.75 | 0.68 |
9.23 | 2-甲氧基苯酚2-methoxyphenol | 1.93 | 1.14 | 2.38 | 1.82 |
10.33 | 己酸Hexanoate | 1.57 | 1.74 | 1.93 | 1.75 |
10.57 | 2-甲基-3-羟基-4-吡喃酮2-methyl-3-hydroxy-4-pyrone | 0.23 | 0.26 | 0.20 | 0.23 |
12.97 | 苯并噻唑Benzothiazole | 0.25 | 0.28 | 0.31 | 0.28 |
13.76 | 3,5-二甲基苯甲醛3,5-dimethyl-benzaldehyde | 6.83 | 7.58 | 7.42 | 7.28 |
14.23 | 对羟基苯甲酸P-hydroxybenzoic acid | 3.11 | 3.20 | 3.31 | 3.21 |
15.36 | 邻羟基苯甲酸O-hydroxybenzoic acid | 8.29 | 9.20 | 10.22 | 9.24 |
15.89 | 十四烷Tetradecane | 0.23 | 0.26 | 0.08 | 0.19 |
16.13 | 3-羟基- 4-甲氧基-苯甲醛 3-hydroxy-4-methoxy-benzaldehyde | 0.13 | 0.14 | - | 0.14 |
17.77 | 4-羟基- 3-甲氧基-苄基醇 4-hydroxy-3-methoxy-benzyl alcohol | 0.15 | 0.17 | 0.18 | 0.17 |
19.87 | 二十一烷酸Heneicosanoic acid | 1.87 | 2.14 | 1.63 | 1.88 |
20.20 | 4-羟基-3-甲氧基-苯甲酸4-hydroxy-3-methoxy-benzoic acid | 0.85 | 0.94 | 1.05 | 0.95 |
20.37 | 2,3,8-三甲基萘2,3,8-trimethylnaphtho | 0.37 | 0.41 | 0.16 | 0.31 |
20.92 | 2,6,10-三甲基十五烷2,6,10-trimethyl-pentadecane | 1.21 | - | 1.49 | 1.35 |
21.86 | 4-羟基-3,5-二甲氧基苯甲酸 4-hydroxy-3,5-dimethoxybenzoic acid | 2.03 | 2.25 | 2.50 | 2.26 |
22.80 | 1-(4-羟基-3,5-二甲氧基苯基)-乙酮1-(4-hydroxy-3,5-dimethoxy-phenyl)-ethanone | 0.73 | 0.41 | 0.90 | 0.68 |
23.78 | 3-苯基-2-丙烯酸3-phenyl-2-acrylic acid | 3.60 | 4.10 | 4.66 | 4.12 |
23.82 | 3-(4-羟基-3-甲氧基苯基)-2-丙烯酸3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid | 0.30 | 0.42 | 0.83 | 0.52 |
25.57 | 2-氨基-5-甲氧基苯甲酸2-amino-5-methoxybenzoic acid | 0.92 | 1.02 | 1.13 | 1.02 |
25.71 | 6-甲氧基-2-苯并恶唑酮6-methoxy-2-benzoxazolone | 0.71 | 0.49 | 0.87 | 0.69 |
26.81 | 2-甲基戊基-邻苯二甲酸异二丁酯2-methyl-pentyl-isobutylphthalate dibutyl | 5.77 | 6.11 | 7.11 | 6.33 |
27.28 | 9-十六碳烯酸Palmitoleic acid | 0.35 | 0.39 | 0.43 | 0.39 |
27.63 | 三十一烷Hentriacontane | 0.47 | 0.52 | 0.58 | 0.52 |
28.27 | 8-十八碳烯酸8-octadecenoic acid | 0.65 | 0.75 | 0.87 | 0.76 |
29.75 | 三十四烷Thirty-four alkyl | 9.34 | 10.37 | 11.51 | 10.41 |
32.21 | 乙酸三十酯Thirty acetate ester | - | 0.26 | 0.28 | 0.27 |
32.35 | 三十六烷Thirty-six alkyl | 0.14 | - | 0.16 | 0.15 |
32.62 | 甲酸癸酯Carboxylic acid decyl ester | 8.75 | 9.41 | 8.18 | 8.78 |
33.79 | 四十三烷Forty-three alkyl | 0.22 | 0.24 | 0.27 | 0.24 |
34.76 | 十九酸Nineteen acid | 0.25 | 0.18 | 0.31 | 0.25 |
34.88 | 4-甲氧基邻氨基苯甲酸4-methoxy-anthranilic acid | 1.72 | 1.73 | 1.75 | 1.73 |
36.69 | 邻苯二甲酸二丁酯Dibutyl phthalate | 6.25 | 6.44 | 7.70 | 6.80 |
36.87 | 二十七醇Twenty-seven alcohol | 0.23 | - | 0.28 | 0.26 |
37.79 | 邻苯二甲酸异戊酯Isopentyl acetate phthalate | 0.61 | 0.48 | 0.75 | 0.61 |
表2
不同年度土壤乙酸乙酯提取物中检测出的各类有机物质所占比例"
年 Year | 酸 Acid | 醇 Alcohol | 烷烃 Alkanes | 酰胺 Amide | 醛 Aldehyde | 酯 Ester | 萘 Naphthalene | 烯烃 Olefins | 苯酸盐 Benzoate | 其他 Others |
---|---|---|---|---|---|---|---|---|---|---|
2012 | 42.86 | 15.65 | 10.96 | 4.76 | 5.76 | 7.63 | 0.35 | 5.38 | - | 15.61 |
2015 | 43.11 | 17.93 | 27.38 | 7.28 | 4.22 | 0.79 | - | - | - | 12.29 |
2018 | 50.37 | 17.65 | 14.75 | 6.33 | 6.33 | 0.60 | - | - | 3.09 | 18.78 |
平均Average | 45.45 | 17.08 | 17.70 | 6.12 | 5.44 | 3.01 | 0.35 | 5.38 | 3.09 | 15.56 |
表3
6种有机酸对禾谷丝核菌菌丝生长和菌核形成的影响"
有机酸 Organic acid | 浓度 Concentration (μg·mL-1) | 菌落直径 Diameter of colony (cm) | 菌丝干重 Dry weight of mycelium (g per dish) | 菌核数 Number of sclerotium (per dish) | 菌核干重 Dry weight of sclerotium (mg per dish) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean±SD | RI | Mean±SD | RI | Mean±SD | RI | Mean±SD | RI | ||
邻羟基苯甲酸 O-hydroxybenzoic acid | 50.0 | 3.4±0.1d | -0.11 | 0.41±0.20c | -0.07 | 20.6±1.2d | -0.10 | 13.9±0.6c | -0.05 |
10.0 | 3.8±0.1c | 0.00 | 0.50±0.10ab | 0.12 | 21.6±1.3cd | -0.06 | 14.8±0.5ab | 0.01 | |
2.0 | 3.9±0.1b | 0.03 | 0.51±0.10a | 0.14 | 22.8±0.5c | 0 | 15.7±1.2a | 0.06 | |
0.4 | 4.0±0.2b | 0.05 | 0.52±0.10a | 0.15 | 25.5±0.5b | 0.10 | 15.7±1.2a | 0.06 | |
0.08 | 4.5±0.2a | 0.16 | 0.56±0.10a | 0.21 | 27.7±0.5a | 0.17 | 16.5±1.3a | 0.11 | |
对羟基苯甲酸 P-hydroxybenzoic acid | 50.0 | 3.5±0.3cd | -0.08 | 0.45±0.20ab | 0.02 | 19.3±1.6de | -0.16 | 13.0±0.4c | -0.12 |
10.0 | 3.6±0.2cd | -0.05 | 0.47±0.10ab | 0.06 | 20.2±0.8d | -0.12 | 13.9±0.2c | -0.05 | |
2.0 | 3.6±0.1cd | -0.05 | 0.47±0.10ab | 0.06 | 21.4±1.5d | -0.07 | 14.6±1.2ab | -0.01 | |
0.4 | 3.7± 0.1cd | -0.03 | 0.48±0.10ab | 0.08 | 23.0±1.6c | 0 | 14.8±1.3ab | 0.01 | |
0.08 | 3.9±0.2bc | 0.03 | 0.50±0.20a | 0.12 | 26.1±2.0b | 0.12 | 14.8±1.2a | 0.01 | |
苯甲酸 Benzoic acid | 50.0 | 3.0±0.1e | -0.21 | 0.34±0.10d | -0.23 | 17.0±2.4f | -0.26 | 11.5±0.2d | -0.22 |
10.0 | 3.1±0.2de | -0.18 | 0.41±0.10c | -0.07 | 17.8±2.1ef | -0.22 | 12.2±1.3cd | -0.17 | |
2.0 | 3.2±0.2de | -0.16 | 0.41±0.10c | -0.07 | 18.8±1.5e | -0.18 | 13.0±1.5c | -0.12 | |
0.4 | 3.3±0.1d | -0.13 | 0.41±0.20c | -0.07 | 20.2±1.6d | -0.12 | 13.0±0.5c | -0.12 | |
0.08 | 3.4±0.1d | -0.11 | 0.40±0.10c | -0.09 | 22.9±1.5c | 0.00 | 13.2±0.3c | -0.10 | |
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸3-(4-hydroxy-3- methoxyphenyl)- 2-acrylic acid | 50.0 | 3.9±0.2bc | 0.03 | 0.44±0.10b | 0.00 | 22.0±2.3d | -0.04 | 14.8±1.2ab | 0.01 |
10.0 | 4.0±0.1b | 0.05 | 0.53±0.20a | 0.17 | 24.8±1.6b | 0.08 | 15.7±2.1a | 0.06 | |
2.0 | 4.0±0.3b | 0.05 | 0.54±0.20a | 0.19 | 25.3±1.4b | 0.09 | 16.8±1.5a | 0.13 | |
0.4 | 4.2±0.1a | 0.10 | 0.55±0.10a | 0.20 | 26.1±1.5b | 0.12 | 16.8±1.2a | 0.13 | |
0.08 | 4.5±0.1a | 0.16 | 0.57±0.20a | 0.23 | 29.6±0.6a | 0.23 | 17.1±1.0a | 0.14 | |
4-羟基-3-甲氧基-苯甲酸 4-hydroxy-3- methoxy- benzoic acid | 50.0 | 3.4±0.1d | -0.11 | 0.38±0.20cd | -0.14 | 19.0±0.8d | -0.17 | 12.8±1.0cd | -0.13 |
10.0 | 3.5±0.2cd | -0.08 | 0.46±0.10b | 0.04 | 20.9±1.3c | -0.09 | 13.6±0.9bc | -0.10 | |
2.0 | 3.6±0.1cd | -0.05 | 0.47±0.20ab | 0.06 | 21.1±2.4c | -0.08 | 14.5±0.7b | -0.01 | |
0.4 | 3.7±0.1c | -0.03 | 0.48±0.10ab | 0.08 | 22.6±1.6c | -0.01 | 14.5±0.5b | -0.01 | |
0.08 | 3.9±0.2bc | 0.03 | 0.49±0.20ab | 0.10 | 25.7±1.4b | 0.11 | 14.8±0.6ab | 0.01 | |
4-甲氧基邻氨基苯甲酸 4-methoxy- anthranilic acid | 50.0 | 3.8±0.1c | 0 | 0.42±0.20b | -0.05 | 21.2±1.6d | -0.07 | 14.3±0.2b | -0.03 |
10.0 | 3.9±0.1bc | 0.03 | 0.51±0.10a | 0.14 | 24.9±1.7b | 0.08 | 15.2±0.4a | 0.03 | |
2.0 | 4.0±0.2b | 0.05 | 0.52±0.10a | 0.15 | 25.5±1.5b | 0.10 | 16.2±1.0a | 0.09 | |
0.4 | 4.1±0.1b | 0.07 | 0.53±0.10a | 0.17 | 25.2±0.3b | 0.09 | 16.2±1.0a | 0.09 | |
0.08 | 4.3±0.2ab | 0.05 | 0.55±0.10a | 0.20 | 28.6±1.2a | 0.20 | 16.5±1.2a | 0.11 | |
CK | 0 | 3.8±0.1c | 0.44±0.10b | 22.9±1.6c | 14.7±1.1ab |
表4
6种有机酸对小麦幼苗生长的作用"
有机酸 Organic acid | 浓度 Concentration (μg·mL-1) | 根数 Number of root | 根长 Length of root (cm) | 根鲜重 Fresh weight of root (g) | 地上部鲜重 Fresh weight of shoot (g) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean±SD | RI | Mean±SD | RI | Mean±SD | RI | Mean±SD | RI | ||
邻羟基苯甲酸 O-hydroxybenzoic acid | 50.0 | 2.1±0.1e | -0.60 | 3.4±0.5j | -0.84 | 0.1±0g | -0.98 | 0j | -1.00 |
10.0 | 2.6±0.1d | -0.51 | 6.4±0.6f | -0.70 | 0.9±0.1f | -0.84 | 1.9±0.1i | -0.82 | |
2.0 | 2.8±0.1d | -0.47 | 13.5±0.2d | -0.37 | 2.0±0.1e | -0.64 | 3.4±0.2g | -0.67 | |
0.4 | 2.9±0.1d | -0.45 | 17.7±0.3b | -0.17 | 2.0±0.2e | -0.64 | 5.0±0.6ef | -0.52 | |
0.08 | 3.4±0.2c | -0.36 | 19.7±0.4b | -0.08 | 3.3±0.2cd | -0.41 | 6.8±0.3d | -0.35 | |
对羟基苯甲酸 P-hydroxybenzoic acid | 50.0 | - | -1.00 | - | -1.00 | - | -1.00 | - | -1.00 |
10.0 | 2.1±0.1e | -0.60 | 2.1±0.1j | -0.90 | 0.3±0.1g | -0.95 | 1.2±0.2i | -0.88 | |
2.0 | 2.9±0.1d | -0.45 | 7.8±0.4f | -0.64 | 1.1±0.2f | -0.80 | 2.1±0.1h | -0.80 | |
0.4 | 4.1±0.1b | -0.23 | 11.1±0.8d | -0.48 | 2.5±0.3e | -0.55 | 5.1±0.2f | -0.51 | |
0.08 | 4.2±0.1b | -0.21 | 18.1±0.5b | -0.15 | 3.1±0.2d | -0.45 | 6.4±0.3de | -0.38 | |
苯甲酸 Benzoic acid | 50.0 | 3.0±0.1cd | -0.43 | 9.1±1.1ef | -0.57 | 1.7±0.1e | -0.70 | 2.7±0.2h | -0.74 |
10.0 | 3.0±0.1cd | -0.43 | 10.5±1.4e | -0.51 | 2.1±0.1e | -0.63 | 3.7±0.2g | -0.64 | |
2.0 | 3.2±0.1c | -0.40 | 15.4±0.8d | -0.28 | 2.2±0.1e | -0.61 | 5.4±0.1e | -0.48 | |
0.4 | 3.7±0.1c | -0.30 | 17.7±0.9c | -0.17 | 3.6±0.2c | -0.36 | 7.4±0.3d | -0.29 | |
0.08 | 4.7±0.1b | -0.11 | 19.7±1.1b | -0.08 | 4.7±0.3b | -0.16 | 9.2±0.4b | -0.12 | |
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸 3-(4-hydroxy-3- methoxyphenyl)- 2-acrylic acid | 50.0 | 2.8±0.1d | -0.47 | 8.8±0.0f | -0.59 | 1.0±0.0f | -0.82 | 2.0±0.1h | -0.81 |
10.0 | 3.0±0.1cd | -0.43 | 10.4±0.1e | -0.51 | 2.1±0.1e | -0.63 | 3.7±0.1g | -0.64 | |
2.0 | 3.2±0.1cd | -0.40 | 12.5±0.2d | -0.42 | 2.2±0.1e | -0.61 | 5.3±0.2e | -0.49 | |
0.4 | 3.7±0.1c | -0.30 | 13.7±0.6cd | -0.36 | 3.6±0.2c | -0.36 | 7.4±0.2d | -0.29 | |
0.08 | 4.6±0.1b | -0.13 | 15.5±0.7c | -0.28 | 4.7±0.1b | -0.16 | 9.2±0.2b | -0.12 | |
4-羟基-3-甲氧基-苯甲酸 4-hydroxy-3- methoxy- benzoic acid | 50.0 | 2.9±0.1d | -0.45 | 8.8±0.1f | -0.59 | 1.0±0.1f | -0.82 | 2.1±0.1h | -0.80 |
10.0 | 3.1±0.1cd | -0.42 | 10.5±0.2e | -0.51 | 2.2±0.1e | -0.61 | 3.8±0.2g | -0.63 | |
2.0 | 3.3±0.1c | -0.38 | 12.7±0.4d | -0.41 | 2.3±0.1e | -0.59 | 5.6±0.3e | -0.46 | |
0.4 | 3.8±0.1c | -0.28 | 15.8±0.9c | -0.26 | 3.8±0.2c | -0.32 | 7.7±0.2c | -0.26 | |
0.08 | 4.8±0.1b | -0.09 | 18.8±0.4b | -0.12 | 4.9±0.3b | -0.13 | 9.6±0.2ab | -0.08 | |
4-甲氧基邻氨基苯甲酸 4-methoxy- anthranilic acid | 50.0 | 3.8±0.1c | -0.28 | 8.9±0.5f | -0.58 | 3.1±0.2d | -0.45 | 7.3±0.1d | -0.30 |
10.0 | 3.8±0.1c | -0.28 | 10.6±0.7e | -0.50 | 3.4±0.1cd | -0.39 | 7.1±0.5d | -0.32 | |
2.0 | 4.6±0.1b | -0.13 | 14.9±0.3c | -0.30 | 4.5±0.1b | -0.20 | 8.0±0.2c | -0.23 | |
0.4 | 5.1±0.1ab | -0.04 | 16.1±0.5c | -0.25 | 5.0±0.2ab | -0.11 | 9.3±0.1b | -0.11 | |
0.08 | 5.2±0.1a | -0.02 | 19.2±0.7b | -0.10 | 5.3±0.3a | -0.05 | 10.6±0.3a | 0.02 | |
CK | 0 | 5.3±0.1a | 21.4±0.2a | 5.6±0.2a | 10.4±0.5a |
表5
6种有机酸对小麦幼苗根系生理活性的影响"
有机酸 Organic acid | 浓度 Concentration (μg·mL-1) | 根活性 Root activity (μg·g-1·h-1) | 相对电导率 Relative conductivity (%) | SOD活性 SOD activity (OD·g-1 FW) | POD活性 POD activity (U·g-1 FW·min-1) |
---|---|---|---|---|---|
邻羟基苯甲酸 O-hydroxybenzoic acid | 50.0 | - | - | - | - |
10.0 | 36.9±0.8d | 89.1±3.1a | 14.4±0.9c | 148.7±13.3d | |
2.0 | 52.4±1.2c | 85.7±1.7a | 16.5±0.5b | 175.3±11.3c | |
0.4 | 81.6±0.6b | 74.5±2.4b | 18.3±0.6a | 226.7±10.1b | |
0.08 | 88.8±2.0b | 64.5±3.1c | 20.2±2.0a | 260.7±8.4a | |
对羟基苯甲酸 P-hydroxybenzoic acid | 50.0 | - | - | - | - |
10.0 | 37.8±0.7d | 91.2±2.6a | 14.5±0.8c | 182.9±8.6c | |
2.0 | 53.6±0.4c | 87.7±3.5a | 16.8±0.4b | 228.6±5.6b | |
0.4 | 83.5±1.2b | 76.3±2.4b | 16.9±0.5b | 242.3±12.3b | |
0.08 | 90.9±2.6b | 66.0±2.1c | 18.7±0.7a | 266.8±16.4a | |
苯甲酸 Benzoic acid | 50.0 | 37.2±3.2d | 97.7±2.0a | 15.2±1.2c | 159.5±13.5d |
10.0 | 39.6±2.8d | 95.5±3.5a | 17.6±0.5b | 191.6±12.6c | |
2.0 | 56.2±0.6c | 91.9±2.6a | 17.7±0.3b | 239.5±8.4b | |
0.4 | 87.5±3.5b | 79.9±2.7b | 18.6±0.4b | 243.8±10.3b | |
0.08 | 95.2±4.5a | 69.2±2.4c | 21.7±0.2a | 279.6±12.3a | |
3-(4-羟基-3-甲氧基苯基)-2-丙烯酸 3-(4-hydroxy-3-methoxyphenyl)- 2-acrylic acid | 50.0 | 36.4±2.3d | 95.4±3.5a | 14.9±0.4c | 155.8±10.4d |
10.0 | 38.7±2.4d | 93.3±2.7a | 17.2±0.3b | 187.2±8.6c | |
2.0 | 54.9±3.5c | 89.8±2.1a | 17.3±1.2b | 233.9±9.3b | |
0.4 | 85.5±3.7b | 78.1±1.8b | 19.2±0.2a | 248.0±11.2a | |
0.08 | 93.0±5.4a | 67.6±3.7c | 21.2±0.6a | 273.1±13.2a | |
4-羟基-3-甲氧基-苯甲酸 4-hydroxy-3- methoxy- benzoic acid | 50.0 | 38.1±3.5d | 100.0±1.2a | 17.6±0.4b | 163.2±15.4d |
10.0 | 40.5±2.6d | 97.8±2.5a | 18.0±0.3b | 196.1±20.3c | |
2.0 | 57.5±3.5c | 94.1±3.8a | 18.1±0.4b | 245.1±12.3b | |
0.4 | 89.6±3.5b | 81.8±10.2ab | 20.1±0.3a | 259.8±15.6a | |
0.08 | 97.5±5.1a | 70.8±2.5b | 22.2±0.2a | 286.2±17.2a | |
4-甲氧基邻氨基苯甲酸 4-methoxy-anthranilic acid | 50.0 | 39.0±2.7d | 102.3±3.0a | 16.0±0.1c | 167.1±15.4d |
10.0 | 41.5±1.6d | 100.1±2.8a | 18.4±0.3b | 200.8±11.6c | |
2.0 | 58.9±1.1c | 96.3±2.7a | 18.5±0.4ab | 250.9±13.2b | |
0.4 | 91.7±2.4b | 83.7±3.2ab | 20.6±0.2a | 265.9±11.5b | |
0.08 | 99.8±3.4a | 72.5±1.5b | 22.7±0.6a | 292.9±13.4a | |
CK | 0 | 99.5±2.9a | 71.8±1.7b | 21.4±0.5a | 291.4±11.3a |
表6
6种有机酸对不同品种小麦纹枯病发生的影响"
有机酸 Organic acid | 浓度 Concentration (μg·mL-1) | 发病率Incidence rate (%) | 病情指数Disease index | ||||
---|---|---|---|---|---|---|---|
良星66 Liangxing 66 | 石新 828 Shixin 828 | 邯6172 Han 6172 | 良星66 Liangxing 66 | 石新 828 Shixin 828 | 邯6172 Han 6172 | ||
邻羟基苯甲酸 O-hydroxybenzoic acid | 0.08 | 41.3±1.2b | 24.7±1.3c | 27.5±1.1c | 15.4±1.2c | 12.2±0.4b | 13.4±0.3b |
0.4 | 41.8±0.3b | 25.8±1.4c | 27.9±1.3c | 16.0±0.9c | 12.3±0.5b | 13.5±0.4b | |
2.0 | 41.4±1.5b | 27.2±1.6bc | 31.5±2.3c | 17.7±0.9c | 12.6±0.3b | 13.4±0.5b | |
10.0 | 42.6±0.4b | 29.1±1.2b | 39.7±1.5b | 18.2±0.6bc | 12.4±0.5b | 16.9±0.3a | |
50.0 | 44.8±2.1ab | 30.1±2.1ab | 42.1±1.6a | 19.1±0.7a | 13.6±0.7a | 18.0±0.5a | |
对羟基苯甲酸 P-hydroxybenzoic acid | 0.08 | 39.0±1.3b | 26.2±1.3c | 27.4±1.3c | 14.7±0.6d | 12.3±0.6c | 13.1±0.5b |
0.4 | 39.6±1.6b | 26.4±1.5c | 27.5±2.1c | 14.3±0.7d | 12.8±0.7b | 13.1±0.6b | |
2.0 | 42.4±1.3b | 27.8±2.1b | 32.2±1.5c | 18.1±1.1bc | 12.9±0.1b | 13.8±0.4b | |
10.0 | 43.6±0.8b | 29.8±2.3ab | 40.6±2.1ab | 18.6±0.6b | 12.7±0.2b | 17.3±0.5a | |
50.0 | 45.9±0.7a | 30.8±1.5a | 43.1±1.8a | 19.6±0.2a | 13.2±0.4a | 18.4±0.4a | |
苯甲酸 Benzoic acid | 0.08 | 32.8±1.0d | 23.8±1.4d | 23.6±1.2e | 14.0±0.4d | 10.2±0.3d | 10.1±0.5de |
0.4 | 34.4±1.1d | 24.0±1.6d | 25.2±1.3d | 14.7±0.9cd | 11.5±0.3c | 12.0±0.6c | |
2.0 | 33.4±1.0d | 25.5±2.4c | 23.0±1.6de | 18.5±1.2b | 12.2±0.5b | 11.3±0.3c | |
10.0 | 34.6±0.9c | 24.5±1.9cd | 25.6±1.2d | 18.1±0.7b | 12.0±0.4b | 11.8±0.5c | |
50.0 | 36.9±1.4bc | 25.5±2.4c | 25.1±1.4d | 18.0±0.6b | 12.5±0.6b | 11.8±0.6c | |
3-(4-羟基-3-甲氧基 苯基)-2-丙烯酸3-(4-hydroxy-3- methoxyphenyl)- 2-acrylic acid | 0.08 | 33.6±1.4d | 24.3±2.4d | 24.1±1.2d | 14.3±0.3d | 10.4±0.4cd | 10.3±0.4d |
0.4 | 38.2±1.2b | 27.7±1.7b | 28.8±1.5c | 15.0±0.6c | 12.8±0.3b | 13.3±0.2b | |
2.0 | 44.4±1.6ab | 29.2±0.6b | 33.8±1.1bc | 19.0±0.4b | 12.9±0.2b | 14.4±0.3b | |
10.0 | 45.7±1.5a | 31.2±1.3a | 42.6±1.2a | 19.5±0.7a | 13.3±0.4a | 18.2±0.4a | |
50.0 | 48.0±1.7a | 32.3±1.4a | 45.1±1.3a | 20.5±0.8a | 13.8±0.2a | 19.3±0.4a | |
4-羟基-3-甲氧基- 苯甲酸 4-hydroxy-3-methoxy- benzoic acid | 0.08 | 34.4±2.3cd | 24.9±1.2c | 24.7±1.8d | 14.7±0.6d | 10.6±0.5c | 11.5±0.2c |
0.4 | 36.0±2.1bc | 25.3±0.7c | 25.5±1.4d | 15.4±0.7c | 12.1±0.5bc | 12.6±0.3c | |
2.0 | 35.4±2.0c | 24.9±1.3c | 26.6±1.3cd | 15.4±0.5c | 12.7±0.4b | 12.8±0.3c | |
10.0 | 36.8±1.8bc | 26.9±0.5c | 27.6±2.1c | 16.0±0.9c | 12.6±0.3b | 12.6±0.2c | |
50.0 | 39.2±1.9b | 26.0±0.8c | 27.2±0.9c | 15.5±0.5c | 14.1±0.4a | 12.7±0.6c | |
4-甲氧基邻氨基苯甲酸 4-methoxy-anthranilic acid | 0.08 | 35.2±1.3c | 25.5±0.7c | 25.3±2.4d | 14.5±0.3d | 10.9±0.5c | 10.8±0.7d |
0.4 | 36.9±2.1bc | 29.0±1.4b | 30.2±1.6c | 15.7±0.9c | 12.4±0.2b | 12.9±0.5bc | |
2.0 | 46.5±2.8a | 30.6±1.6a | 35.4±2.1b | 19.9±0.7a | 13.0±0.5a | 15.1±0.4b | |
10.0 | 47.9±1.8a | 32.7±1.6a | 44.6±1.6a | 20.4±0.7a | 14.0±0.4a | 19.0±0.6a | |
50.0 | 50.3±1.9a | 33.8±2.3a | 47.3±1.1a | 21.5±0.3a | 14.4±0.4a | 20.2±0.4a | |
CK | 0 | 35.4±2.4c | 24.4±1.3c | 25.2±1.6d | 14.4±0.9d | 10.5±0.2c | 11.6±0.3cd |
[1] | WITT C, CASSMAN K G, OLK D C, BIKER U, LIBOON S P, SAMSON M I, OTTOW J C. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil, 2000,225(1):263-278. |
[2] | SHARMA P, ABROL V, SHARMA R K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rainfed subhumid inceptions, India. European Journal of Agronomy, 2011,34:46-51. |
[3] | 陈延熙, 唐文华, 张敦华, 简小鹰. 我国小麦纹枯病病原学的初步研究. 植物保护学报, 1986,13(1):39-44. |
CHEN Y X, TANG W H, ZHANG D H, JIAN X Y. A preliminary study on etiology of sharp eyespot of wheat in China. Acta Phytophylacica Sinica, 1986,13(1):39-44. (in Chinese) | |
[4] |
KUMAR J, SCHÄFER P, HÜCKELHOVEN R, LANGEN G, BALTRUSCHAT H, STEIN E, NAGARAJAN S, KOGEL K H. Bipolaris sorokiniana, a cereal pathogen of global concern: Cytological and molecular approaches towards better control. Molecular Plant Pathology, 2002,3(4):185-195.
doi: 10.1046/j.1364-3703.2002.00120.x pmid: 20569326 |
[5] |
DAVAL S, LEBRETON L, GAZENGEL K, BOUTIN M, GUILLERM-ERCKELBOUDT A Y, SARNIGUET A. GThe biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Molecular Plant Pathology, 2011,12:839-854.
pmid: 21726382 |
[6] |
LU L, RONG W, ZHOU R, HUO N, ZHANG Z. TaCML36, a wheat calmodulin-like protein, positively participates in an immune response to Rhizoctonia cerealis. The Crop Journal, 2019,7(5):608-618.
doi: 10.1016/j.cj.2019.02.001 |
[7] |
HAMADA M S, YIN Y N, CHEN H G, MA Z H. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Management Science, 2011,67(11):1411-1419.
pmid: 21726039 |
[8] |
YANG M M, MAVRODI D V, MAVRODI O V, BONSALL R F, PAREJKO J A, PAULITZ T C, THOMASHOW L S, YANG H T, WELLER D M, GUO J H. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology, 2011,101(12):1481-1491.
doi: 10.1094/PHYTO-04-11-0096 pmid: 22070279 |
[9] |
QU T L, ZHANG J L, MENG Z L, LIU X L, CAO Y S, LI J Q, HAO J J. Metabolism of fungicide 2-allylphenol in Rhizoctonia cerealis. Ecotoxicology and Environmental Safety, 2014,102:136-141.
doi: 10.1016/j.ecoenv.2014.01.025 |
[10] | 董金皋. 农业植物病理学. 2版. 北京: 中国农业出版社, 2007. |
DONG J G. Agricultural Plant Pathology. 2nd ed. Beijing: China Agriculture Press, 2007. (in Chinese) | |
[11] | 张雪松, 曹永胜, 曹克强. 保护性耕作与小麦主要土传病害问题和治理对策. 西北农林科技大学学报(自然科学版), 2005,33(增刊):47-48. |
ZHANG X S, CAO Y S, CAO K Q. Management of wheat soil-borne diseases under the conservative farming system. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2005,33(Suppl.):47-48. (in Chinese) | |
[12] |
LEMAŃCZYK G, KWAŚNA H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. European Journal of Plant Pathology, 2013,135:187-200.
doi: 10.1007/s10658-012-0077-3 |
[13] |
BAILEY K L, LAZAROVITS G. Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 2003,72(2):169-180.
doi: 10.1016/S0167-1987(03)00086-2 |
[14] |
GILL J S, SIVASITHAMPARAM K, SMETTEM K R J. Soil moisture affects disease severity and colonisation of wheat roots by Rhizoctonia solani AG-8. Soil Biology and Biochemistry, 2001,33(10):1363-1370.
doi: 10.1016/S0038-0717(01)00041-4 |
[15] |
CHOU C H, LIN H J. Autointoxication mechanism of Oryza sative. I. Phytotoxic effects of decomposing rice residues in soil. Journal of Chemical Ecology, 1976,2(3):353-367.
doi: 10.1007/BF00988282 |
[16] | 张玉铭, 马永清. 麦秸覆盖夏玉米对其苗期生长发育的生化他感作用研究初报. 生态学杂志, 1994,13(3):70-72. |
ZHANG Y M, MA Y Q. Alleopathic effect of wheat straw mulching on seedling growth and development of summer corn. Chinese Journal of Ecology, 1994,13(3):70-72. (in Chinese) | |
[17] | 谢瑞芝, 李少昆, 李小君, 金亚征, 王克如, 初震东, 高世菊. 中国保护性耕作研究分析——保护性耕作与作物生产. 中国农业科学, 2007,40(9):1914-1924. |
XIE R Z, LI S K, LI X J, JIN Y Z, WANG K R, CHU Z D, GAO S J. The analysis of conservation tillage in China—conservation tillage and crop production: Reviewing the evidence. Scientia Agricultura Sinica, 2007,40(9):1914-1924. (in Chinese) | |
[18] |
QI Y Z, ZHEN W C, LI H Y. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS. Journal of Integrative Agriculture, 2015,14(1):88-97.
doi: 10.1016/S2095-3119(14)60795-4 |
[19] |
VILLAGRASA M, GUILLAMON M, LABANDEIRA A, TABERNER A, ELJARRAT E, BARCELO D. Benzoxazinoid allelochemicals in wheat: Distribution among foliage, roots and seeds. Journal of Agricultural and Food Chemistry, 2006,54(4):1009-1015.
pmid: 16478210 |
[20] |
QIAN H F, XU X Y, CHEN W, JIANG H, JIN Y X, LIU W P, FU Z W. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere, 2009,75(3):368-375.
pmid: 19171365 |
[21] |
KHAMSSI N N, NAJAPHY A. Physiological and biochemical responses of durum wheat under mild terminal drought stress. Cellular and Molecular Biology, 2018,64(4):59-63.
pmid: 29631684 |
[22] |
TIAN X Y, HE M R, WANG Z L, ZHANG J W, SONG Y L, HE Z L, DONG Y J. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regulation, 2015,77(3):343-356.
doi: 10.1007/s10725-015-0069-3 |
[23] |
WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: Measuring treatment responses with independent controls. Journal of Chemical Ecology, 1988,14(1):181-187.
doi: 10.1007/BF01022540 pmid: 24277003 |
[24] | GONZALEZ T, RUÍZ Y, PÉREZ R, GARCÍA Y, FRANCO I, NOGUEIRAS C. Allelopathic activity of Sesbania rostrata Brem. before black glume weedy (red) rice (Oryza sativa L). Allelopathy Journal, 2006,18(2):134-137. |
[25] |
NAKANO H, MORITA S, SHIGEMORI H, HASEGAWA K. Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regulation, 2006,48(3):215-219.
doi: 10.1007/s10725-006-0006-6 |
[26] |
YE S F, ZHOU Y H, SUN Y, ZOU L Y, YU J Q. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 2006,56:255-262.
doi: 10.1016/j.envexpbot.2005.02.010 |
[27] |
WANG X J, PETER S, LIU Z Q, ARMSTRONG R, ROCHFORT S, TANG C X. Allelopathic effects account for the inhibitory effect of field-pea (Pisum sativum L.) shoots on wheat growth in dense clay subsoils. Biology and Fertility of Soils, 2019,55(7):649-659.
doi: 10.1007/s00374-019-01384-5 |
[28] |
ZHAO X S, ZHEN W C, QI Y Z, LIU X J, YIN B Z. Coordinated effects of root autotoxic substances and Fusarium oxysporum Schl. f. sp. fragariae on the growth and replant disease of strawberry. Frontiers of Agriculture in China, 2009,3(1):34-39.
doi: 10.1007/s11703-009-0006-1 |
[29] | 齐永志. 玉米秸秆还田的微生态效应及对小麦纹枯病的适应性控制技术[D]. 保定: 河北农业大学, 2014. |
QI Y Z. Micro-ecological effect of maize straw returning to field and the adaptive control technology on wheat sheath blight[D]. Baoding: Hebei Agricultural University, 2014. (in Chinese) | |
[30] |
HE C N, GAO W W, YANG J X, BI W, ZHANG X S, ZHAO Y J. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant and Soil, 2009,318(1/2):63-72.
doi: 10.1007/s11104-008-9817-8 |
[31] |
GOSWAMI R S, PUNJA Z K. Molecular and biochemical characterization of defense responses in ginseng (Panax quinquefolius) roots challenged with Fusarium equiseti. Physiological and Molecular Plant Pathology, 2008,72(1):10-20.
doi: 10.1016/j.pmpp.2008.04.006 |
[32] |
NICOL R W, YOUSEF L, TRAQUAIR J A, BERNARDS M A. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry, 2003,64(1):257-264.
pmid: 12946424 |
[33] |
WANG J L, LI X L, ZHANG J L, YAO T, WEI D, WANG Y F, WANG J G. Effect of root exudates on beneficial microorganisms— Evidence from a continuous soybean monoculture. Plant Ecology, 2012,213(12):1883-1892.
doi: 10.1007/s11258-012-0088-3 |
[34] |
杨瑞秀, 高增贵, 姚远, 刘限, 孙淑清, 王莹. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应. 应用生态学报, 2014,25(8):2355-2360.
pmid: 25509089 |
YANG R X, GAO Z G, YAO Y, LIU X, SUN S Q, WANG Y. Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f. sp. melonis. Chinese Journal of Applied Ecology, 2014,25(8):2355-2360. (in Chinese)
pmid: 25509089 |
|
[35] | 郝文雅, 冉炜, 沈其荣, 任丽轩. 西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响. 中国农业科学, 2010,43(12):2443-2452. |
HAO W Y, RAN W, SHEN Q R, REN L X. Effects of root exudates from watermelon, rice plants and phenolic acids on Fusarium oxysporum f. sp. niveum. Scientia Agricultura Sinica, 2010,43(12):2443-2452. (in Chinese) | |
[36] | LIU P, LIU Z H, WANG C B, GUO F, WANG M, ZHANG Y F, DONG L, WAN S B. Effects of three long-chain fatty acids present in peanut (Arachis hypogaea L.) root exudates on its own growth and the soil enzymes activities. Allelopathy Journal, 2012,29(1):13-24. |
[37] |
CASPERSEN S, ALSANIUS B W, SUNDIN P, JENSÉN P. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (Lactuca sativa L.). Soil Biology and Biochemistry, 2000,32(8/9):1063-1070.
doi: 10.1016/S0038-0717(00)00014-6 |
[38] |
CASPERSEN S, SUNDIN P, MUNRO M, AÐALSTEINSSON S, HOOKER J E, JENSÉN P. Interactive effects of lettuce (Lactuca sativa L.), irradiance, and ferulic acid in axenic, hydroponic culture. Plant and Soil, 1999,210(1):115-126.
doi: 10.1023/A:1004682018888 |
[39] |
CHEN L C, WANG S L, WANG P, KONG C H. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata ) plantations. Plant and Soil, 2014,374(1/2):793-801.
doi: 10.1007/s11104-013-1914-7 |
[40] |
SCHMIDT S K. Degradation of juglone by soil bacteria. Journal of Chemical Ecology, 1988,14(7):1561-1571.
pmid: 24276429 |
[41] | DONG L L, XU J, LI Y, FANG H L, NIU W H, LI X W, ZHANG Y J, DING W L, CHEN S L. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biology and Biochemistry, 2018,125:64-74. |
[42] |
LIU S, QIN F, YU S. Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals. Applied Soil Ecology, 2018,127:1-7.
doi: 10.1016/j.apsoil.2018.02.028 |
[43] |
CHEN S Y, GUO L Y, BAI J G, ZHANG Y, ZHANG L, WANG Z, CHEN J X, YANG H X, WANG X J. Biodegradation of p-hydroxybenzoic acid in soil by Pseudomonas putida CSY-P1 isolated from cucumber rhizosphere soil. Plant and Soil, 2014,389(1):197-210.
doi: 10.1007/s11104-014-2360-x |
[44] |
CHEN A W, ZENG G M, CHEN G Q, FAN J Q, ZOU Z J, LI H, HU X J, LONG F. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2011,91(3):811-821.
doi: 10.1007/s00253-011-3313-4 pmid: 21556917 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 王良,刘元元,钱欣,张慧,代红翠,刘开昌,高英波,方志军,刘树堂,李宗新. 单季麦秸还田促进小麦-玉米周年碳效率和经济效益协同提高[J]. 中国农业科学, 2022, 55(2): 350-364. |
[3] | 张英强,张水勤,李燕婷,赵秉强,袁亮. 不同含羧基有机酸改性尿素在石灰性潮土中的转化特征[J]. 中国农业科学, 2022, 55(17): 3355-3364. |
[4] | 谭凤玲,詹萍,王鹏,田洪磊. 基于感官评价及GC-MS结合OPLS-DA分析热杀菌对蟠桃汁呈香品质的影响[J]. 中国农业科学, 2022, 55(12): 2425-2435. |
[5] | 马立晓,李婧,邹智超,蔡岸冬,张爱平,李贵春,杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析[J]. 中国农业科学, 2021, 54(9): 1913-1925. |
[6] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[7] | 李旭,董炜灵,宋阿琳,李艳玲,卢玉秋,王恩召,刘雄舵,王萌,范分良. 秸秆添加量对土壤生物固氮速率和固氮菌群落特征的影响[J]. 中国农业科学, 2021, 54(5): 980-991. |
[8] | 张桂云,朱静雯,孙明法,严国红,刘凯,宛柏杰,代金英,朱国永. 盐胁迫条件下长白10号水稻籽粒中差异代谢物的分析[J]. 中国农业科学, 2021, 54(4): 675-683. |
[9] | 王新媛,赵思达,郑险峰,王朝辉,何刚. 秸秆还田和氮肥用量对冬小麦产量和氮素利用的影响[J]. 中国农业科学, 2021, 54(23): 5043-5053. |
[10] | 刘强,刘纪伟,田恬,严薇,刘兵,赵思琪,胡秋辉,丁超. 高温胁迫下糙米短期储藏气味指纹图谱变化规律的动态分析[J]. 中国农业科学, 2021, 54(2): 379-391. |
[11] | 柴如山,徐悦,程启鹏,王擎运,马超,叶新新,章力干,郜红建. 安徽省主要作物秸秆养分资源量及还田利用潜力[J]. 中国农业科学, 2021, 54(1): 95-109. |
[12] | 杨欣润,许邶,何治逢,吴婧,庄睿花,马超,柴如山,YusefKianpoorKalkhajeh,叶新新,朱林. 整合分析中国农田腐秆剂施用对秸秆腐解和作物产量的影响[J]. 中国农业科学, 2020, 53(7): 1359-1367. |
[13] | 朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977-989. |
[14] | 王士超,闫志浩,王瑾瑜,槐圣昌,武红亮,邢婷婷,叶洪龄,卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响[J]. 中国农业科学, 2020, 53(4): 782-794. |
[15] | 殷文,柴强,于爱忠,赵财,樊志龙,胡发龙,范虹,郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响[J]. 中国农业科学, 2020, 53(23): 4764-4776. |
|