[1] |
DEMIRAL T, TÜRKAN I. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 2006,56(1):72-79.
|
[2] |
SUN C X, LI M Q, GAO X X, LIU L N, WU X F, ZHOU J H. Metabolic response of maize plants to multi-factorial abiotic stresses. Plant Biology, 2016,18(1):120-129.
|
[3] |
GUO R, SHI L X, YAN C R, ZHONG X L, GU F X, LIU Q, XIA X, Li H R. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biology, 2017,17:41.
|
[4] |
ZHANG J T, ZHANG Y, DU Y Y, CHEN S Y, TANG H R. Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Journal of Proteome Research, 2011,10(4):1904-1914.
|
[5] |
WU D Z, CAI S G, CHEN M X, YE L Z, CHEN Z H, ZHANG H T, DAI F, WU F B, ZHANG G P. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE, 2013,8(1):e55431.
|
[6] |
GUO R, YANG Z Z, LI F, YAN C R, ZHONG X L, LIU Q, XIA X, LI H R, ZHAO L. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology, 2015,15:170.
|
[7] |
KIM J K, BAMBA T, HARADA K, FUKUSAKI E, KOBAYASHI A. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 2006,58(3):415-424.
|
[8] |
倪建伟, 杨秀艳, 张华新, 倪元颖, 武海雯, 魏琦. 代谢组学在植物逆境胁迫研究中的应用. 世界林业研究, 2014,27(5):11-17.
|
|
NI J W, YANG X Y, ZHANG H X, NI Y Y, WU H W, WEI Q. Metabolimics and its application in the crop research under abiotic stress. World Forestry Research, 2014,27(5):11-17. (in Chinese)
|
[9] |
张晓磊, 张瑞英. 代谢组学及其在农作物研究中的应用. 生物技术通讯, 2018,29(3):446-450.
|
|
ZHANG X L, ZHANG R Y. Metabolimics and its application in the crop research. Letters in Biotechnology, 2018,29(3):446-450. (in Chinese)
|
[10] |
OBATA T, WITT S, LISEC J, PALACIOS-ROJAS N, FLOREZ- SARASA I, YOUSFI S, ARAUS J L, CAIRNS J E, FERNIE A R. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiology, 2015,169(4):2665-2683.
|
[11] |
DARKO E, GIERCZIK K, HUDAK O, FORGO P, PAL M, TURKOSI E, KOVACS V, DULAI S, MAJLATH I, MOLNAR I, JANDA T, MOLNAR-LANG M. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS ONE, 2017,12(3):e0174170.
|
[12] |
王玲. 转基因水稻的代谢组学研究[D]. 北京: 北京化工大学, 2013.
|
|
WANG L. Metabolimics research in transgenic rice[D]. Beijing: Beijing University of Chemical Technology, 2013. (in Chinese)
|
[13] |
MUKHERJEE S, SENGUPTA S, MUKHERJEE A, BASAK P, MAJUMDER A L. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. Planta, 2019,249(3):891-912.
|
[14] |
TANG Y, BAO X, ZHI Y, WU Q, GUO Y, YIN X, ZENG L, LI J, ZHANG J, HE W, LIU W, WANG Q, JIA C, LI Z, LIU K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Frontiers in Plant Science, 2019,10:168.
|
[15] |
ISLAM M O, KATO H, SHIMA S, TEZUKA D, MATSUI H, IMAI R. Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene, 2019,685:42-49.
|
[16] |
PAIVA A L S, PASSAIA G, LOBO A K M, JARIM-MESSEDER D, SILVEIRA J A G, MARGIS-PINHEIRO M. Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environmental and Experimental Botany, 2019,158:12-21.
|
[17] |
LI Z, FU X, TIAN Y, XU J, GAO J, WANG B, HAN H, WANG L, ZHANG F, ZHU Y, HUANG Y, PENG R, YAO Q. Overexpression of a trypanothione synthetase gene from Trypanosoma cruzi, TcTrys, confers enhanced tolerance to multiple abiotic stresses in rice. Gene, 2019,710:279-290.
|
[18] |
ZHANG A, LIU Y, WANG F, LI T, CHEN Z, KONG D, BI J, ZHANG F, LUO X, WANG J, TANG J, YU X, LIU G, LUO L. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 2019,39(3):47.
|
[19] |
HUANG X Y, CHAO D Y, GAO J P, ZHU M Z, SHI M, LIN H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Development, 2009,23(15):1805-1817.
|
[20] |
YAN J, LIPKA A E, SCHMELZ E A, BUCKLER E S, JANDER G. Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. Journal of Experimental Botany, 2014,66(2):593-602.
|
[21] |
余璐璐, 刘杨, 徐飞. 氰化物的来源及其在植物中的功能研究进展. 生命科学, 2019,31(2):12-18.
|
|
YU L L, LIU Y, XU F. The source of cyanide and its function in plants. Chinese Bulletin of Life Sciences, 2019,31(2):12-18. (in Chinese)
|
[22] |
FORLANI G, BERTAZZINI M, CAGNANO G. Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant Biology, 2019,21(2):336-342.
|
[23] |
GERONA M E B, DEOCAMPO M P, EGDANE J A, ISMAIL A M, DIONISIO-SESE M L. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Science, 2019,26(4):207-219.
|
[24] |
LIU J, SHI D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 2010,48(1):127-134.
|
[25] |
周根友, 翟彩娇, 邓先亮, 张蛟, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响. 中国水稻科学, 2018,32(2):146-154.
|
|
ZHOU G Y, ZHAI C J, DENG X L, ZHANG J, ZHANG Z L, DAI Q G, CUI S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots. Chinese Journal of Rice Science, 2018,32(2):146-154. (in Chinese)
|
[26] |
谢黎虹, 罗炬, 唐绍清, 陈能, 焦桂爱, 邵高能, 魏祥进, 胡培松. 蛋白质影响水稻米饭食味品质的机理. 中国水稻科学, 2013,27(1):91-96.
|
|
XIE L H, LUO J, TANG S Q, CHEN N, JIAO G A, SHAO G N, WEI X J, HU P S. Proteins affect rice eating quality properties and its mechanism. Chinese Journal of Rice Science, 2013,27(1):91-96. (in Chinese)
|
[27] |
AHMAD P, ABDEL LATEF A A, HASHEM A, ABD_ALLAH E F, GUCEL S, TRAN L S P. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 2016,7:347.
|
[28] |
JOSEPH E A, RADHAKRISHNAN V V, MOHANAN K V. Variation in total polyamine content in some native rice cultivars of North Kerala, India in response to salinity stress. Biotechnology, 2016,9(5):731-738.
|
[29] |
KHUSHBOO K, SHEKHAWAT G S. Nitric oxide improved salt stress tolerance by osmolyte accumulation and activation of antioxidant defense system in seedling of B. juncea (L.) Czern. Vegetos, 2019,32:583-592.
|
[30] |
YASTREB T O, KOLUPAEV Y E, KARPETS Y V, DMITRIEV A P. Effect of nitric oxide donor on salt resistance of Arabidopsis jin1 mutants and wild-type plants. Russian Journal of Plant Physiology, 2017,64(2):207-214.
|
[31] |
MARTINEZ-REYES I, DIEBOLD L P, KONG H, SCHIEBER M, HUANG H, HENSLEY C T, MEHTA M M, WANG T, SANTOS J H, WOYCHIK R, DUFOUR E, SPELBRINK J N, WEINBERG S E, ZHAO Y, DEBERARDINIS R J, CHANDEL N S. TCA Cycle and mitochondrial membrane potential are necessary for diverse biological functions. Molecular Cell, 2016,61(2):199-209.
|
[32] |
ZHANG Y, BEARD K F M, SWART C, BERGMANN S, KRAHNERT I, NIKOLOSKI Z, GRAF A, RATCLIFFE R G, SWEETLOVE L J, FERNIE A R, OBATA T. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nature Communications, 2017,8(1):15212.
|