中国农业科学 ›› 2021, Vol. 54 ›› Issue (2): 379-391.doi: 10.3864/j.issn.0578-1752.2021.02.013
刘强(),刘纪伟,田恬,严薇,刘兵,赵思琪,胡秋辉,丁超(
)
收稿日期:
2020-05-27
接受日期:
2020-08-18
出版日期:
2021-01-16
发布日期:
2021-02-03
通讯作者:
丁超
作者简介:
刘强,E-mail: 基金资助:
LIU Qiang(),LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao(
)
Received:
2020-05-27
Accepted:
2020-08-18
Online:
2021-01-16
Published:
2021-02-03
Contact:
Chao DING
摘要:
【目的】探讨高温胁迫下短期储藏时间内糙米气味指纹图谱变化规律性,为糙米品质劣变的快速检测提供参考。【方法】以17.0%水分含量的新鲜糙米随机等分成6组进行储藏,采用顶空进样方式,分别结合气相色谱质谱联用技术(gas chromatography-mass spectrometry,GC-MS)和气相离子迁移谱技术(gas chromatography-ion mobility spectrometry,GC-IMS),对高温储藏环境(40℃、相对湿度70%)中0、5、10、15、20和25 d的糙米挥发性化学成分及GC-IMS指纹图谱进行对比分析,并结合动态主成分和统计学方法进行数据分析。【结果】GC-MS定量分析表明,在新鲜糙米顶空气体成分中共检测出42种挥发性成分(GC-MS匹配度>85%),主要由醛类、醇类、烃类组成,含量占比超过85%。高温短期储藏15 d后,正己醛含量从初始的(81.09±0.53)μg·kg-1显著上升至(185.18±15.71)μg·kg-1,储藏25 d时,又急剧下降至(12.89±0.72)μg·kg-1(P<0.01)。部分物质如苯甲醇、1-辛烯-3-醇、苯乙烯等在储藏过程中被检出。结合GC-IMS方法,乙酸丙酯对应的气味挥发性色谱分离离子迁移信号随储藏时间延长而逐渐降低,可以作为糙米高温储藏期的重要标识物质。动态主成分降维处理后表明,基于GC-IMS气味指纹图谱可以区分不同储藏时间的糙米样品。与GC-MS相比,GC-IMS在糙米挥发性醇类、酮类等挥发性物质定性识别方面优势较为明显。【结论】GC-MS和GC-IMS技术结合气味指纹图谱的主成分分析可以对高温胁迫下短期储藏糙米的挥发特性进行有效的定性与定量分析,为高温环境下不同储藏阶段糙米样品的准确区分和糙米储藏新鲜度的判定提供技术参考。
刘强,刘纪伟,田恬,严薇,刘兵,赵思琪,胡秋辉,丁超. 高温胁迫下糙米短期储藏气味指纹图谱变化规律的动态分析[J]. 中国农业科学, 2021, 54(2): 379-391.
LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress[J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
表1
高温储藏下糙米挥发性成分及含量"
种类 Category | 名称 Name | 储藏时间 Storage time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | ||
醛类 Aldehydes | 正己醛 Hexanal | 81.09±0.53b | 71.28±1.84c | 74.48±10.69bc | 185.18±15.71a | 59.67±9.07d | 12.89±0.72e |
苯甲醛 Benzaldehyde | 136.92±28.06d | 225.64±8.43b | 176.47±5.96c | 256.75±19.55a | 126.52±17.77d | 173.18±34.83cd | |
庚醛 Heptanal | — | 18.14±0.28 | — | — | — | — | |
反-2-辛烯醛 E-2-Octenal | — | 21.82±0.86a | 22.91±1.85a | — | — | — | |
反-2-十二烯醛 E-2-Dodecenal | — | — | — | — | 15.34±2.13 | — | |
醇类 Alcohols | 己醇 Etnanol | 115.10±20.88ab | 109.93±3.36b | 97.56±17.80ab | 160.09±45.77a | 121.80±19.14ab | — |
苯甲醇 Benzyl Alcohol | — | — | 63.06±3.20b | 109.33±2.84a | 44.75±11.25c | 124.43±45.33a | |
1-辛烯-3-醇 1-Octen-3-ol | — | 17.56±0.93c | — | — | 125.97±20.45a | 63.11±3.38b | |
正十三烷-1-醇 n-Tridecan-1-ol | — | 1.99±0.19 | — | — | — | — | |
酯类 Esters | 丙位己内酯 4-Hexanolide | 3.41±1.06 | — | — | — | — | — |
丙位壬内酯 γ-Nonanolactone | — | — | 7.61±1.29 | — | — | — | |
甲酸辛酯 Octyl Formate | — | — | — | — | 17.58±0.78 | — | |
酮类 Ketones | 苯乙酮 Acetophenone | — | — | — | 4.01±2.29 | — | — |
烃类 Hydrocarbons | 十二烷 Dodecane | 13.88±6.73c | 19.22±1.22b | 14.50±2.25c | 24.09±7.28ab | 24.43±1.50a | 3.23±0.93d |
葵环戊烷 Anemone | 2.14±0.50b | 5.42±0.19a | — | — | — | — | |
正十四烷 Tetradecane | 7.90±1.25c | 10.48±0.12b | 14.75±3.56ab | 9.38±2.95bc | 18.25±0.91a | 4.15±0.55d | |
长叶烯 d-Longifolene | 13.16±3.92a | 8.26±0.53b | 15.87±0.11a | 7.58±3.32b | 14.29±2.89a | 16.46±2.22a | |
环十四烷 Cyclotetradecane | 6.43±1.98b | 6.35±0.29b | — | 7.74±2.25b | 12.04±2.71a | — | |
8-己基十五烷 8-Hexylpentadecane | 1.67±0.43b | — | — | 2.87±0.79a | — | — | |
苯乙烯 Styrene | — | 14.83±0.28a | 6.97±5.34b | — | — | 3.21±0.10b | |
3,7-二甲基葵烷 3,7-Dimethyldecane | — | 5.62±0.22 | — | — | — | — | |
3,8-二甲基葵烷 3,8-Dimethyldecane | — | 11.67±1.1+ | — | — | — | — | |
壬基环丙烷 Nonylcyclopropane | — | 10.37±0.69a | — | — | — | 3.91±0.01b | |
二十烷 Eicosane | — | 4.19±1.70 | — | — | — | — | |
7-己基二十二烷 7-Hexyldocosane | — | 1.44±0.59 | — | — | — | — | |
1-十一烯 1-Undecene | — | — | 7.25±0.69 | — | — | — | |
十五烷 Pentadecane | — | — | — | 1.10±0.20 | — | — | |
十六烷 Hexadecane | — | — | — | 10.01±4.79 | — | — | |
十一烷 Undecane | — | — | — | 15.38±6.81 | — | — | |
1-戊烯 1-Pentene | — | — | — | 2.73±0.68 | — | — | |
9-甲基壬烷 9-Methylnonane | — | — | — | 14.41±1.95 | — | — | |
三十四烷 Tetradecane | — | — | — | — | 3.70±1.94 | — | |
其他 Others | 氯乙酸十一酯 Undecyl Chloroacetate | 6.12±5.12 | — | — | — | — | — |
邻二氯苯 1,2-Dichlorobenzene | — | 4.29±1.61 | — | — | — | — | |
1,3-二氯苯 1,3-Dichlorobenzene | — | — | — | 4.95±0.01 | — | — | |
三氟乙酸十六烷 Hexadecyl Trifluoroacetate | — | 4.87±1.10 | — | — | — | — | |
(甲氧基乙基)-基硫脲 4 - (Methoxyethyl) - Thiourea | — | — | — | — | 1.19±0.05 | — | |
酚类 Phenols | 2,4-二叔丁基苯酚2,4-Di-Tert-Butylphenol | 20.32±4.62e | 40.07±2.57cd | 36.42±4.30d | 51.38±9.86c | 212.01±12.56a | 88.62±3.51b |
2-叔丁基苯酚 o-Tert-Butyl Phenol | — | — | 18.55±3.90 | — | — | — | |
3-叔丁基苯酚 3-Tert-Butylphenol | — | — | — | 8.91±1.80b | 22.98±0.91a | — | |
4-叔丁基苯酚 4-Tert-Butylphenol | — | — | 8.00±0.99 | — | — | — | |
杂环 Heterocyclic | 2,6-二叔丁基苯醌2,6-Di-Tert-Butyl-p-Benzoquinone | 11.41±2.93c | 11.36±0.86c | 25.86±4.22b | 38.80±6.99a | 44.20±2.97a | 21.00±2.43b |
表2
样品特征峰对应的化合物及相对含量"
序号Sequence | 化合物 Compound | 储藏时间 Storage time (d) | |||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | ||
1 | 乙醇Etnanol | 8.79±0.30 | 9.15±0.24 | 9.12±0.08 | 9.51±0.28 | 12.09±0.21 | 13.19±0.14 |
2 | 3-甲基-3-丁烯-1-醇3-Methyl-3-buten-1-ol | 2.21±0.09 | 2.39±0.05 | 2.62±0.09 | 2.77±0.16 | 3.54±0.06 | 4.49±0.21 |
3 | 2-甲基丁醇2-Methybutanol | 1.17±0.05 | 1.27±0.03 | 1.45±0.04 | 1.53±0.03 | 1.92±0.05 | 2.39±0.06 |
4 | 戊醇1-Pentanol | 2.80±0.15 | 2.89±0.10 | 2.80±0.08 | 1.80±0.07 | 1.42±0.06 | 1.26±0.10 |
5 | 3-甲基-1-戊醇3-Methyl-1-Pentanol | 0.36±0.02 | 0.38±0.04 | 0.40±0.01 | 0.35±0.10 | 0.36±0.02 | 0.43±0.04 |
6 | 2-己醇2-Hexanol | 2.77±0.07 | 3.09±0.10 | 3.19±0.12 | 3.50±0.10 | 4.66±0.02 | 5.15±0.11 |
7 | 叶醇Z-3-Hexen-1-ol | 0.52±0.02 | 0.60±0.05 | 0.61±0.02 | 0.46±0.02 | 0.37±0.03 | 0.34±0.05 |
8 | 己醇1-Hexanol | 0.44±0.04 | 0.42±0.05 | 0.44±0.01 | 0.43±0.03 | 0.44±0.05 | 0.48±0.05 |
9 | 甲基丙醇2-Methylpropanol | 0.62±0.04 | 0.58±0.04 | 0.62±0.04 | 0.81±0.03 | 1.04±0.04 | 0.87±0.12 |
10 | 1-辛烯-3-醇1-Octen-3-ol | 3.04±0.19 | 3.03±0.09 | 2.49±0.10 | 4.93±0.04 | 5.79±0.20 | 6.63±0.37 |
11 | 2-己基己醇2-Ethylhexanol | 1.91±0.12 | 2.22±0.07 | 2.35±0.16 | 1.39±0.11 | 0.94±0.03 | 0.89±0.05 |
12 | 壬醇1-Nonanol | 0.46±0.04 | 0.50±0.04 | 0.52±0.02 | 0.55±0.04 | 0.62±0.05 | 0.72±0.07 |
13 | 丁醇1-Butanol | 0.60±0.03 | 0.64±0.02 | 0.70±0.03 | 1.02±0.06 | 0.92±0.05 | 1.02±0.07 |
14 | 2-甲基丙醇2-Methylpropanol | 0.54±0.03 | 0.53±0.04 | 0.57±0.05 | 0.82±0.03 | 0.85±0.03 | 0.78±0.16 |
15 | 2-丁酮2-Butanone | 2.87±0.06 | 3.07±0.08 | 3.03±0.08 | 1.99±0.11 | 2.05±0.03 | 2.31±0.24 |
16 | 2-戊酮2-Bentanone | 2.80±0.04 | 3.01±0.04 | 2.97±0.18 | 2.84±0.08 | 3.09±0.04 | 2.86±0.29 |
17 | 2-己酮2-Bexanone | 0.72±0.07 | 0.73±0.06 | 0.73±0.04 | 0.66±0.04 | 0.57±0.00 | 0.45±0.04 |
18 | 2-庚酮2-Beptanone | 1.68±0.10 | 1.74±0.11 | 1.70±0.03 | 1.00±0.05 | 0.82±0.17 | 0.85±0.18 |
19 | 甲基己基甲酮2-Octanone | 2.79±0.15 | 2.72±0.11 | 2.63±0.05 | 2.46±0.17 | 2.61±0.11 | 3.19±0.17 |
20 | 2-己酮2-Hexanone | 0.25±0.03 | 0.32±0.04 | 0.28±0.02 | 0.34±0.04 | 0.47±0.03 | 0.62±0.10 |
21 | 丙酮Acetone | 18.61±0.76 | 18.66±0.59 | 19.99±0.44 | 21.30±0.57 | 23.81±0.13 | 26.10±1.78 |
22 | 正己醛Hexanal | 14.50±0.45 | 14.53±0.57 | 14.63±0.13 | 12.79±0.06 | 8.28±0.49 | 3.72±0.25 |
23 | 苯甲醛Benzaldehyde | 7.91±0.21 | 7.90±0.25 | 7.66±0.29 | 9.19±0.02 | 10.51±0.21 | 8.95±0.58 |
24 | 辛醛Octanal | 3.87±0.22 | 4.02±0.39 | 4.39±0.11 | 2.62±0.22 | 1.46±0.04 | 1.11±0.05 |
25 | 正壬醛n-Nonanal | 5.23±3.37 | 3.25±0.41 | 3.02±0.07 | 3.49±0.08 | 3.51±0.36 | 3.69±0.43 |
26 | 戊醛Pentanal | 0.88±0.07 | 0.79±0.14 | 0.80±0.06 | 0.48±0.04 | 0.21±0.04 | 0.14±0.01 |
27 | 反-2-辛烯醛E-2-Octenal | 0.84±0.06 | 0.74±0.04 | 0.61±0.03 | 0.48±0.06 | 0.35±0.04 | 0.44±0.11 |
28 | 庚醛Heptanal | 2.23±0.06 | 2.15±0.26 | 2.23±0.04 | 1.19±0.05 | 0.58±0.05 | 0.51±0.04 |
29 | 苯乙醛Phenylacetaldehyde | 0.38±0.01 | 0.39±0.04 | 0.39±0.05 | 0.28±0.02 | 0.23±0.02 | 0.23±0.02 |
30 | 丁内酯Butyrolactone | 0.13±0.03 | 0.15±0.01 | 0.12±0.01 | 0.11±0.02 | 0.14±0.03 | 0.13±0.02 |
31 | 乙酸丙酯Propyl acetate | 0.49±0.08 | 0.36±0.06 | 0.27±0.03 | 0.20±0.02 | 0.20±0.01 | 0.14±0.03 |
32 | 2-戊基呋喃2-Pentylfuran | 0.93±0.02 | 0.97±0.08 | 1.10±0.05 | 0.85±0.01 | 0.78±0.07 | 0.78±0.03 |
33 | 邻苯甲酚o-Cresol | 6.49±0.29 | 6.62±0.54 | 5.32±0.19 | 7.66±0.18 | 5.26±0.39 | 5.02±0.55 |
34 | 对氯苯氧异丁酸p-Chlorophenoxyisobutyric acid | 0.19±0.04 | 0.19±0.04 | 0.23±0.02 | 0.18±0.00 | 0.14±0.01 | 0.14±0.02 |
表3
两种检测方式下定性物质差异对比"
序号 Sequence | 物质 Substance | GC-MS | GC-IMS |
---|---|---|---|
1 | 正己醛Hexanal | + | + |
2 | 苯甲醛Benzaldehyde | + | + |
3 | 庚醛Heptanal | + | + |
4 | 反-2-辛烯醛E-2-Octenal | + | + |
5 | 反-2-十二烯醛E-2-Dodecenal | + | - |
6 | 辛醛Octanal | - | + |
7 | 正壬醛n-Nonanal | - | + |
8 | 戊醛Pentanal | - | + |
9 | 苯乙醛Phenylacetaldehyde | - | + |
10 | 乙醇Etnanol | - | + |
11 | 3-甲基-3-丁烯-1-醇3-Methyl-3-buten-1-ol | - | + |
12 | 2-甲基丁醇2-Methybutanol | - | + |
13 | 戊醇1-Pentanol | - | + |
14 | 3-甲基-1-戊醇3-Methyl-1-Pentanol | - | + |
15 | 2-己醇2-Hexanol | - | + |
16 | 叶醇Z-3-Hexen-1-ol | - | + |
17 | 己醇1-Hexanol | + | + |
18 | 甲基丙醇2-Methylpropanol | - | + |
19 | 1-辛烯-3-醇1-Octen-3-ol | + | + |
20 | 2-己基己醇2-Ethylhexanol | - | + |
21 | 壬醇1-Nonanol | - | + |
22 | 丁醇1-Butanol | - | + |
23 | 2-甲基丙醇2-Methylpropanol | - | + |
24 | 正十三烷-1-醇n-Tridecan-1-ol | + | - |
25 | 2-甲基丙醇2-Methylpropanol | - | + |
26 | 2-丁酮2-Butanone | - | + |
27 | 2-戊酮2-Bentanone | - | + |
28 | 2-己酮2-Bexanone | - | + |
29 | 2-庚酮2-Beptanone | - | + |
30 | 甲基己基甲酮2-Octanone | - | + |
31 | 2-己酮2-Hexanone | - | + |
32 | 丙酮Acetone | - | + |
33 | 苯乙酮Acetophenone | + | - |
[1] | 吴绍洪, 刘路路, 刘燕华, 高江波, 戴尔阜, 冯爱青. “一带一路”陆域地理格局与环境变化风险. 地理学报, 2018,73(7):1214-1225. |
WU S H, LIU L L, LIU Y H, GAO J B, DAI E F, FENG A Q. Geographical patterns and environmental change risks in terrestrial areas of the Belt and Road. Acta Geographica Sinica, 2018,73(7):1214-1225. (in Chinese) | |
[2] |
MAHATHEERANONT S, KEAWSA-ARD S, DUMRI K. Quantification of the rice aroma compound, 2-acetyl-1-pyrroline, in Uncooked Khao Dawk Mali 105 brown rice. Journal of Agricultural and Food Chemistry, 2001,49(2):773-779.
doi: 10.1021/jf000885y pmid: 11262027 |
[3] |
SHI Y, WANG L L, FANG Y, WANG H P, TAO H L, PEI F, LI P, XU B C, HU Q H. A comprehensive analysis of aroma compounds and microstructure changes in brown rice during roasting process. LWT-Food Science and Technology, 2018,98:613-621.
doi: 10.1016/j.lwt.2018.09.018 |
[4] |
宋伟, 刘璐, 支永海, 陈瑞. 电子鼻判别不同储藏条件下糙米品质的研究. 食品科学, 2010,31(24):360-365.
doi: 10.7506/spkx1002-6630-201024079 |
SONG W, LIU L, ZHI Y H, CHEN R. Discriminating the quality of brown rice stored at different conditions by electronic nose. Food Science, 2010,31(24):360-365. (in Chinese)
doi: 10.7506/spkx1002-6630-201024079 |
|
[5] |
王立峰, 王红玲, 姚轶俊, 张怡一, 陈静宜, 汪海峰, 石嘉怿, 鞠兴荣. 不同包装方式对大米储藏品质及挥发性成分的影响. 中国农业科学, 2017,50(13):2576-2591.
doi: 10.3864/j.issn.0578-1752.2017.13.016 |
WANG L F, WANG H L, YAO Y J, ZHANG Y Y, CHEN J Y, WANG H F, SHI J Y, JU X R. Effects of different packages on edible quality and volatile components of rice during storage. Scientia Agricultura Sinica, 2017,50(13):2576-2591. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.13.016 |
|
[6] |
林家永, 高艳娜, 吴胜芳, 王松雪. 顶空固相微萃取-气质联用法分析稻谷挥发性成分. 食品科学, 2009,30(20):277-282.
doi: 10.7506/spkx1002-6300-200920059 |
LIN J Y, GAO Y N, WU S F, WANG X S. Headspace solid phase microextraction coupled to gc-ms for analyzing volatile components in paddy. Food Science, 2009,30(20):277-282. (in Chinese)
doi: 10.7506/spkx1002-6300-200920059 |
|
[7] | 严松, 林颢. 基于嗅觉可视化技术和气相色谱-质谱联用鉴别霉变小麦. 食品科学, 2019,40(2):283-288. |
YAN S, LIN H. GC-MS of volatile organic compounds for identification of moldy wheat based on olfactory visualization. Food Science, 2019,40(2):283-288. (in Chinese) | |
[8] | 姜雯翔, 赵黎平, 史晓媛, 陈沁滨, 韩永斌. HS-SPME-GC-MS分析发芽糙米储藏过程中挥发性成分的变化. 中国粮油学报, 2013,28(10):123-128. |
JIANG W X, ZHAO L P, SHI X Y, CHEN Q B, HAN Y B. Analysis of volatile compounds changes in germinated brown rice during storage by headspace solid phase micro-extraction and gas chromatography-mass spectrometry. Journal of the Chinese Cereals and Oil Association, 2013,28(10):123-128. (in Chinese) | |
[9] | 康文翠, 林颢, 满忠秀. 基于GC-MS与多变量分析方法的不同储藏期大米挥发特征气味的分析. 中国粮油学报, 2018,33(5):94-101. |
KANG W C, LIN H, MAN Z X. Analysis for volatile gases of rice with different storage periods based on gc-ms and multivariate analysis method. Journal of the Chinese Cereals and Oil Association, 2018,33(5):94-101. (in Chinese) | |
[10] |
WANG S Q, CHEN H T, SUN B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chemistry, 2020,315:126158.
doi: 10.1016/j.foodchem.2019.126158 pmid: 32014672 |
[11] | 谷航, 陈通, 陈明杰, 陆道礼, 陈斌. 气相-离子迁移谱联用技术评定大米霉变程度的应用研究. 中国粮油学报, 2019,34(9):118-124. |
GU H, CHEN T, CHEN M J, LU D L, CHEN B. Application of gas chromatography-ion migration spectrometry (GC-IMS) to evaluate the degree of mildew in rice. Journal of the Chinese Cereals and Oil Association, 2019,34(9):118-124. (in Chinese) | |
[12] |
LI M Q, YANG R W, ZHANG H, WANG S L, CHEN D, LIN S Y. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chemistry, 2019,290:32-39.
doi: 10.1016/j.foodchem.2019.03.124 pmid: 31000053 |
[13] |
NATALIE GERHARDT, MARKUS BIRKENMEIER, SEBASTIAN SCHWOLOW, SASCHA ROHN, PHILIPP WELLER. Volatile- compound fingerprinting by headspace-gas-chromatography ion- mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey. Analytical Chemistry, 2018,90(3):1777-1785.
doi: 10.1021/acs.analchem.7b03748 pmid: 29298045 |
[14] | LIU K L, LI Y, CHEN F S, FANG Y. Lipid oxidation of brown rice stored at different temperatures. International Journal of Food Science & Technology, 2017,52(1):188-195. |
[15] | 王熠瑶, 张烝彦, 孙俊, 常亚飞, 吕飞, 丁玉庭, 周绪霞. 基于GC-IMS技术分析糙米储藏过程中风味物质变化. 食品与发酵工业, 2020,46(6):250-255. |
WANG Y Y, ZHANG Z Y, SUN J, CHANG Y F, LYU F, DING Y T, ZHOU X X. Analysis of flavor changes of brown rice during storage based on gas chromatography-ion mobility spectrometry. Food and Fermentation Industries, 2020,46(6):250-255. (in Chinese) | |
[16] | CHEN J H, LIU K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 2002,57(1):63-75. |
[17] | 王辉, 田寒友, 李文采, 邹昊, 刘飞, 白京, 李家鹏, 陈文华, 乔晓玲. 基于顶空气相色谱-离子迁移谱技术的冷冻猪肉贮藏时间快速判别方法. 食品科学, 2019,40(2):269-274. |
WANG H, TIAN H Y, LI W C, ZOU H, LIU F, BAI J, LI J P, CHEN W H, QIAO X L. Fast discrimination of frozen pork stored for different periods using Headspace-Gas Chromatography-Ion Mobility Spectroscopy (HS-GC-IMS). Food Science, 2019,40(2):269-274. (in Chinese) | |
[18] | CHEN H, SIEBENMORGEN T J, GRIFFIN K. Quality characteristics of long-grain rice milled in two commercial systems. Cereal Chemistry, 1998,75(4):560-565. |
[19] |
TAUSZ M, JIMÉNEZ M S, GRILLE D. Antioxidative defence and photoprotection in pine needles under field conditions. A multivariate approach to evaluate patterns of physiological responses at natural sites. Physiologia Plantarum, 1998,104(4):760-764.
doi: 10.1034/j.1399-3054.1998.1040435.x |
[20] | MOTTRAM D S. Flavour formation in meat and meat products: A review. Food Chemistry, 1998,62(4):415-424. |
[21] | FRANKEL E N. Lipid oxidation: mechanisms, products and biological significance. Journal of the American Oil Chemists’ Society, 1984,61(12):1908-1917. |
[22] |
ZHAO C J, XIE J Q, LI L, CAO C J. Comparative transcriptomic analysis in paddy rice under storage and identification of differentially regulated genes in response to high temperature and humidity. Journal of Agricultural and Food Chemistry, 2017,65(37):8145-8153.
doi: 10.1021/acs.jafc.7b03901 |
[23] |
ZHOU Z K, ROBARDS K, HELLIWELL S, BLANCHARD C. Effect of rice storage on pasting properties of rice flour. Food Research International, 2003,36(6):625-634.
doi: 10.1016/S0963-9969(03)00013-9 |
[24] |
CHOI S, KIM H, KIM Y, KIM B S, BEUCHAT L R, RYU J H. Fate of Bacillus cereus and naturally occurring microbiota on milled rice as affected by temperature and relative humidity. Food Microbiology, 2014,38:122-127.
doi: 10.1016/j.fm.2013.08.016 |
[25] |
JELEŃ H H, MAJCHER M, DZIADAS M. Microextraction techniques in the analysis of food flavor compounds: A review. Analytica Chimica Acta, 2012,738:13-26.
doi: 10.1016/j.aca.2012.06.006 |
[26] | CHEN J L, YAN S J, FENG Z S, XIAO L X, HU X S. Changes in the volatile compounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld) during storage. Food Chemistry, 2006,97(2):248-255. |
[27] | 胡吟. 稻谷加速陈化期间脂质变化的研究[D]. 长沙: 中南林业科技大学, 2018. |
HU Y. Study on the changes of lipid during accelerated aging of rice[D]. Changsha: Central South University of Forestry Science and Technology, 2018. (in Chinese) | |
[28] |
LIM D K, MO C, LEE D K, LONG N P, LIM J, KWON S W. Non- destructive profiling of volatile organic compounds using HS-SPME/ GC-MS and its application for the geographical discrimination of white rice. Journal of Food and Drug Analysis, 2018,26(1):260-267.
doi: 10.1016/j.jfda.2017.04.005 pmid: 29389563 |
[29] | ROWAN D D, LANE H P, ALLEN J M, FIELDER S, HUNT M B. Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium- labeled substrates. Journal of Agricultural and Food Chemistry, 1996,44(10):3276-3285. |
[30] | PETERSEN M A, POLL L, LARSEN L M. Changes in flavor- affecting aroma compounds during potato storage are not associated with lipoxygenase activity. American Journal of Potato Research, 2003,80(6):397-402. |
[31] |
GRIGLIONE A, LIBERTO E, CORDERO C, BRESSANELLO D, CAGLIERO C, RUBIOLO P, BICCHI C, SGORBINI B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chemistry, 2015,172:305-313.
doi: 10.1016/j.foodchem.2014.09.082 pmid: 25442558 |
[32] | PAN L Q, ZHANG W, ZHU N, MAO S B, TU K. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry. Food Research International, 2014,62:162-168. |
[33] | 陈银基, 蒋伟鑫, 曹俊, 戴炳业, 董文. 温湿度动态变化过程中不同含水量稻谷的储运特性. 中国农业科学, 2016,49(1):163-175. |
CHEN Y J, JIANG W X, CAO J, DAI B Y, DONG W. Storage and transportation characteristic of different moisture paddy rice dealt with dynamic temperature and humidity. Scientia Agricultura Sinica, 2016,49(1):163-175. (in Chinese) | |
[34] |
LIN C J, LI C Y, LIN S K, YANG F H, HUANG J J, LIU Y H, LUR H S, LIN C J. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2010,58(19):10545-10552.
doi: 10.1021/jf101575j pmid: 20839801 |
[1] | 车大璐,赵俐辰,程素彩,刘爱瑜,李晓宇,赵寿培,王健诚,王媛,高玉红,孙新胜. 垫料床对育肥羔羊生长性能和臭气排放的影响[J]. 中国农业科学, 2022, 55(24): 4943-4956. |
[2] | 姜晓婷,黄高翔,熊小英,黄芸培,丁昌峰,丁明军,王鹏. 秧苗富锌对不同水稻品种镉积累及相关转运基因的影响[J]. 中国农业科学, 2022, 55(17): 3267-3277. |
[3] | 陈焱芳,张名位,张雁,邓媛元,魏振承,唐小俊,刘光,李萍. 发芽及挤压膨化对糙米挥发性风味物质的影响[J]. 中国农业科学, 2021, 54(1): 190-202. |
[4] | 陈敬师,黄玉洋,向杰,郭清华,李世贵,顾金刚. 非洲哈茨木霉产抑菌挥发性有机物碳源代谢机制[J]. 中国农业科学, 2020, 53(22): 4601-4612. |
[5] | 王恩召,范分良,李艳玲,刘雄舵,卢玉秋,宋阿琳. 水稻根系细菌挥发性有机物对小孢根霉的非接触性抑制作用[J]. 中国农业科学, 2020, 53(10): 1986-1996. |
[6] | 王静, 曹建敏, 陈德鑫, 邱军, 王晓强, 冯超, 王文静. 短小芽孢杆菌AR03挥发性有机物的抑菌活性及其组分分析[J]. 中国农业科学, 2018, 51(10): 1908-1919. |
[7] | 方勇,王红盼,杨文建,裴斐,刘俊飞,汤晓智,马宁,胡秋辉. 金针菇复配发芽糙米挤压膨化工艺及产品品质特性[J]. 中国农业科学, 2016, 49(4): 727-738. |
[8] | 张娜,王国祥,Abacar Jose Daniel,刘正辉,丁承强,唐设,李刚华,王绍华,丁艳锋. 超高效液相色谱法分析稻米酚酸化合物组分及其含量[J]. 中国农业科学, 2015, 48(9): 1718-1726. |
[9] | 张冬媛,邓媛元,张名位,马永轩,张雁,魏振承,张瑞芬,刘磊,唐小俊,遆慧慧. 发芽-挤压-淀粉酶协同处理对速食糙米粉品质特性的影响[J]. 中国农业科学, 2015, 48(4): 759-. |
[10] | 张路,张锡洲,李廷轩,戢林,郑陶. 水稻镉安全亲本材料对镉的吸收分配特性[J]. 中国农业科学, 2015, 48(1): 174-184. |
[11] | 汤晓智, 扈战强, 周剑敏, 方勇, 沈新春, 胡秋辉. 糙米粉对小麦面团流变学及饼干品质特性的影响[J]. 中国农业科学, 2014, 47(8): 1567-1576. |
[12] | 陈银基1, 陈霞1, 蒋伟鑫1, 董文2, 陈兆波2, 戴炳业2. 60Co-γ辐照处理对低温储藏糙米品质及微结构的影响[J]. 中国农业科学, 2014, 47(11): 2214-2223. |
[13] | 蒋冬月, 李永红, 何昉, 林启鹏, 潘会堂. 黄兰开花过程中挥发性有机成分及变化规律[J]. 中国农业科学, 2012, 45(6): 1215-1225. |
[14] | 姚 森,杨特武,赵莉君,熊善柏 . 发芽糙米中γ-氨基丁酸含量的品种基因型差异分析[J]. 中国农业科学, 2008, (12): 3974-3982 . |
[15] | 李君霞,张洪亮,严衍禄,闵顺耕,李自超. 水稻蛋白质近红外定量模型的创建及在育种中的应用[J]. 中国农业科学, 2006, 39(04): 836-841 . |
|