中国农业科学 ›› 2021, Vol. 54 ›› Issue (5): 980-991.doi: 10.3864/j.issn.0578-1752.2021.05.010
李旭(),董炜灵,宋阿琳,李艳玲,卢玉秋,王恩召,刘雄舵,王萌,范分良()
收稿日期:
2020-06-21
接受日期:
2020-12-16
出版日期:
2021-03-01
发布日期:
2021-03-09
通讯作者:
范分良
作者简介:
李旭,E-mail:基金资助:
Xu LI(),WeiLing DONG,ALin SONG,YanLing LI,YuQiu LU,EnZhao WANG,XiongDuo LIU,Meng WANG,FenLiang FAN()
Received:
2020-06-21
Accepted:
2020-12-16
Online:
2021-03-01
Published:
2021-03-09
Contact:
FenLiang FAN
摘要:
【目的】研究不同秸秆添加量对土壤固氮速率及固氮菌群落结构的影响,为我国秸秆还田及化肥减施增效提供支持。【方法】采用室内培养试验,除对照(C0: 0)外共设5个秸秆添加梯度(C1:0.2 mg·g-1;C2:1.0 mg·g-1;C3:2.0 mg·g-1;C4:4.0 mg·g-1;C5:10.0 mg·g-1),采用15N2标记的方法,在黑暗条件下培养28 d后收集土壤样品,进而对生物固氮速率进行定量,利用Illumina PE250高通量测序和荧光定量PCR技术分析固氮功能基因nifH的丰度及群落特征。【结果】随着秸秆添加量的增加,土壤硝态氮含量显著下降,铵态氮含量无显著变化,土壤pH有下降趋势。同时,生物固氮速率显著增加,C3、C4及C5处理在培养期间(28 d)潜在固氮速率为87—96 kg N·hm-2·a-1,相比于对照提高了38.1%—52.4%。各处理固氮微生物nifH基因拷贝数变化范围为5.48×107—9.20×107 copies/(g soil),其中,相比于C0,C4及C5处理固氮微生物nifH基因拷贝数均显著提高(P<0.05)。随着秸秆添加量的增加,C4、C5水平的香农-威尔指数显著低于其他4个处理(P<0.05),其他4个处理多样性无显著差异。主成分分析(PCoA)结果显示土壤固氮微生物群落结构主要因秸秆添加量差异而聚集为不同组别。固氮微生物在门水平上分为变形杆菌(Proteobacteria),蓝细菌(Cyanobacteria),厚壁菌(Firmicutes)和放线菌(Actinobacteria)和螺旋体菌(Spirochaetes)。随着秸秆添加量的增加,蓝细菌相对丰度有先增加再降低的趋势;在属水平上,不同优势菌属对秸秆添加量的响应存在明显差异,慢生根瘤菌(Bradyrhizobium)为数量最丰富菌属,随着秸秆添加量的增加,C5相较于C0、C1、C2、C3水平相对丰度差异显著(P<0.05),显著增加了12.07%—14.13%。与生物固氮速率呈正相关的贺氏伪枝藻属(Scytonema hofmanni)随着秸秆添加量的增加其相对丰度逐渐增加,但当秸秆添加量达C5水平其相对丰度反而降低(P<0.05)。同时,最小偏二乘路径分析(PLS-PM),冗余分析(RDA)及相关性分析表明生物固氮速率和土壤固氮微生物群落受秸秆添加量和NO3--N含量影响较大。【结论】土壤生物固氮速率随着秸秆添加量的增加而增加,秸秆对固氮的促进作用主要源于秸秆添加降低了土壤NO3--N含量,进而促进慢生根瘤菌(Bradyrhizobium)、贺氏伪枝藻属(Scytonema hofmanni)和固氮螺菌属(Azospirillum)等固氮菌属微生物的生长。根据本试验结果计算,相比于不添加秸秆,添加秸秆4.0 mg·g-1后,土壤生物固氮速率约增加26 kg N·hm-2·a-1,可显著降低我国氮肥需求。
李旭,董炜灵,宋阿琳,李艳玲,卢玉秋,王恩召,刘雄舵,王萌,范分良. 秸秆添加量对土壤生物固氮速率和固氮菌群落特征的影响[J]. 中国农业科学, 2021, 54(5): 980-991.
Xu LI,WeiLing DONG,ALin SONG,YanLing LI,YuQiu LU,EnZhao WANG,XiongDuo LIU,Meng WANG,FenLiang FAN. Effects of Straw Addition on Soil Biological N2-Fixation Rate and Diazotroph Community Properties[J]. Scientia Agricultura Sinica, 2021, 54(5): 980-991.
表1
不同处理的土壤理化性质及生物固氮"
处理 Treatment | pH | NO3--N (mg·kg-1) | NH4+-N (mg·kg-1) | TN (g·kg-1) | 生物固氮量 Biological N2-fixation (μg N·g-1DW) |
---|---|---|---|---|---|
C0 | 7.07±0.01ab | 15.33±0.26a | 11.81±1.07a | 1.18±0.01e | 2.00±0.18d |
C1 | 7.10±0.01a | 14.44±0.14b | 11.98±0.93a | 1.21±0.00cd | 2.25±0.05cd |
C2 | 7.03±0.02b | 13.80±0.09c | 11.53±0.77a | 1.20±0.01de | 2.50±0.11bc |
C3 | 7.06±0.03ab | 11.25±0.14d | 11.77±0.66a | 1.24±0.01b | 2.78±0.10ab |
C4 | 6.96±0.03c | 5.97±0.30e | 11.13±0.14a | 1.23±0.00bc | 2.71±0.15ab |
C5 | 6.93±0.03c | 3.46±0.24f | 11.85±0.81a | 1.28±0.00a | 3.05±0.13a |
表2
环境因子与土壤固氮微生物丰度、多样性和固氮速率的相关性分析"
nifH基因拷贝数 nifH copy numbers | 固氮速率 N2-fixation rate | 香农-威尔指数 Shannon-Wiener index | ||||
---|---|---|---|---|---|---|
R | P | R | P | R | P | |
秸秆添加Straw addition | 0.708 | 0.000 | 0.804 | 0.000 | -0.634 | 0.002 |
NO3--N | -0.737 | 0.000 | -0.828 | 0.000 | 0.621 | 0.002 |
NH4+-N | -0.166 | 0.508 | 0.019 | 0.929 | 0.054 | 0.851 |
TN | 0.483 | 0.027 | 0.598 | 0.003 | -0.340 | 0.144 |
pH | -0.623 | 0.002 | -0.410 | 0.073 | 0.678 | 0.001 |
[1] |
VITOUSEK P M, MENGE D N, REED S C, CLEVELAND C C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013,368(1621):20130119.
doi: 10.1098/rstb.2013.0119 |
[2] |
CLEVELAND C C, TOWNSEND A R, SCHIMEL D S, FISHER H, HOWARTH R W, HEDIN L O, PERAKIS S S, LATTY E F, VON FISCHER J C, ELSEROAD A, WASSON M F, Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999,13(2):623-645.
doi: 10.1029/1999GB900014 |
[3] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z, FRENEY J R, MARTINELLI L A, SEITZINGER S P, SUTTON M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008,320(5878):889-892.
doi: 10.1126/science.1136674 pmid: 18487183 |
[4] |
HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 2008,311(1/2):1-18.
doi: 10.1007/s11104-008-9668-3 |
[5] |
LADHA J K, TIROL-PADRE A, REDDY C K, CASSMAN K G, VERMA S, POWLSON D S, VAN KESSEL C, DE B R D, CHAKRABORTY D, PATHAK H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Scientific Reports, 2016,6(1):1-9.
doi: 10.1038/s41598-016-0001-8 pmid: 28442746 |
[6] |
ROPER M M, GUPTA V V S R. Enhancing non-symbiotic N2 fixation in agriculture. The Open Agriculture Journal, 2016,10(1):7-27.
doi: 10.2174/1874331501610010007 |
[7] |
GOOD A G, BEATTY P H. Fertilizing nature: a tragedy of excess in the commons. PLoS Biology, 2011,9(8):e1001124.
doi: 10.1371/journal.pbio.1001124 pmid: 21857803 |
[8] |
ZENG J, LIU X J, SONG L, LIN X G, ZHANG H Y, SHEN C C, CHU H Y. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology & Biochemistry, 2016,92:41-49.
doi: 10.1016/j.soilbio.2015.09.018 |
[9] |
BEATTY P H, GOOD A G. Plant science. Future prospects for cereals that fix nitrogen. Science, 2011,333(6041):416-417.
doi: 10.1126/science.1209090 pmid: 21778391 |
[10] | 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响. 土壤学报, 2014,51(1):150-157. |
YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities. Acta Pedologica Sinica, 2014,51(1):150-157. (in Chinese) | |
[11] |
GUPTA V V S R, ROPER M M, ROGET D K. Potential for non-symbiotic N2-fixation in different agroecological zones of southern Australia. Soil Research, 2006,44(4):343-354.
doi: 10.1071/SR05122 |
[12] | 赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015,26(6):1785-1792. |
ZHAO Y L, GUO H B, XUE Z W, MU X Y, LI C H. Effects of tillage and straw returning on microorganism quantity,enzyme activities in soils and grain yield. Chinese Journal of Applied Ecology, 2015,26(6):1785-1792. (in Chinese) | |
[13] | 潘剑玲, 代万安, 尚占环, 郭瑞英. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013,21(5):526-535. |
PAN J L, DAI W A, SHANG Z H, GUO R Y. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. Chinese Journal of Eco-Agriculture, 2013,21(5):526-535. (in Chinese) | |
[14] |
NELSON D R, MELE P M. The impact of crop residue amendments and lime on microbial community structure and nitrogen-fixing bacteria in the wheat rhizosphere. Soil Research, 2006,44(4):319-329.
doi: 10.1071/SR06022 |
[15] |
HSU S F, BUCKLEY D H. Evidence for the functional significance of diazotroph community structure in soil. The ISME Journal, 2009,3(1):124-136.
doi: 10.1038/ismej.2008.82 pmid: 18769458 |
[16] |
TENG Q, SUN B, FU X, LI S, CUI Z, CAO H. Analysis of nifH gene diversity in red soil amended with manure in Jiangxi, South China. The Journal of Microbiology, 2009,47(2):135-141.
pmid: 19412595 |
[17] |
LINDSAY E A, COLLOFF M J, GIBB N L, WAKELIN S A. The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion. Applied and Environmental Microbiology, 2010,76(16):5547-5555.
doi: 10.1128/AEM.03054-09 pmid: 20601513 |
[18] |
REED S C, CLEVELAND C C, TOWNSEND A R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology, Evolution, and Systematics, 2011,42(1):489-512.
doi: 10.1146/annurev-ecolsys-102710-145034 |
[19] |
REED S C, TOWNSEND A R, CLEVELAND C C, NEMERGUT D R. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia, 2010,164(2):521-531.
pmid: 20454976 |
[20] |
WAKELIN S A, GUPTA V V S R, FORRESTER S T. Regional and local factors affecting diversity, abundance and activity of free-living, N2-fixing bacteria in Australian agricultural soils. Pedobiologia, 2010,53(6):391-399.
doi: 10.1016/j.pedobi.2010.08.001 |
[21] |
ROPER M. Field measurements of nitrogenase activity in soils amended with wheat straw. Australian Journal of Agricultural Research, 1983,34(6):725-739.
doi: 10.1071/AR9830725 |
[22] |
PÉREZ C A, CARMONA M R, ARMESTO J J. Non-symbiotic nitrogen fixation during leaf litter decomposition in an old-growth temperate rain forest of Chiloé Island, southern Chile: Effects of singleversusmixed species litter. Austral Ecology, 2010,35(2):148-156.
doi: 10.1111/aec.2010.35.issue-2 |
[23] |
CUSACK D F, SILVER W, MCDOWELL W H. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems, 2009,12(8):1299-1315.
doi: 10.1007/s10021-009-9290-0 |
[24] |
WAKELIN S A, COLLOFF M J, HARVEY P R, MARSCHNER P, GREGG A L, ROGERS S L. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiology Ecology, 2007,59(3):661-670.
doi: 10.1111/j.1574-6941.2006.00235.x pmid: 17116166 |
[25] |
FORBES M, BROOS K, BALDOCK J, GREGG A, WAKELIN S. Environmental and edaphic drivers of bacterial communities involved in soil N-cycling. Soil Research, 2009,47(4):380-388.
doi: 10.1071/SR08126 |
[26] |
POLY F, RANJARD L, NAZARET S, GOURBIERE F, MONROZIER L J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Applied and Environmental Microbiology, 2001,67(5):2255-2262.
pmid: 11319109 |
[27] | TANAKA H, KYAW K M, TOYOTA K, MOTOBAYASHI T. Influence of application of rice straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial biomass N, and mineral N in a model paddy microcosm. Biology and Fertility of Soils, 2005,42(6):501-505. |
[28] | ROPER M M, SMITH N A. Straw decomposition and nitrogenase activity (C2H2 reduction) by free-living microorganisms from soil: Effects of pH and clay content. Soil Biology and Biochemistry, 1991,23(3):275-283. |
[29] | KEELING A A, COOK J A, WILCOX A. Effects of carbohydrate application on diazotroph populations and nitrogen availability in grass swards established in garden waste compost. Bioresource Technology, 1998,66(2):89-97. |
[30] | ROPER M M, TURPIN J E, THOMPSON J P. Nitrogenase activity (C2H2 reduction) by free-living bacteria in soil in a long-term tillage and stubble management experiment on a vertisol. Soil Biology and Biochemistry, 1994,26(8):1087-1091. |
[31] | UNKOVICH M, BALDOCK J. Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biology and Biochemistry, 2008,40(12):2915-2921. |
[32] | KEUTER A, VELDKAMP E, CORRE M D. Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices. Soil Biology and Biochemistry, 2014,70:38-46. |
[33] | CHALK P M, HE J Z, PEOPLES M B, CHEN D. 15N2 as a tracer of biological N2 fixation: A 75-year retrospective. Soil Biology and Biochemistry, 2017,106:36-50. |
[34] |
GABY J C, BUCKLEY D H. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE, 2012,7(7):e42149.
doi: 10.1371/journal.pone.0042149 pmid: 22848735 |
[35] | FAN F, YIN C, TANG Y, LI Z, SONG A, WAKELIN S A, ZOU J, LIANG Y. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA- SIP. Soil Biology and Biochemistry, 2014,70:12-21. |
[36] |
DABUNDO R, LEHMANN M F, TREIBERGS L, TOBIAS C R, ALTABET M A, MOISANDER P H, GRANGER J. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE, 2014,9(10):e110335.
doi: 10.1371/journal.pone.0110335 pmid: 25329300 |
[37] | OHYAMA T, KUMAZAWA K. A simple method for the preparation, purification and storage of 15N2 gas for biological nitrogen fixation studies. Soil Science and Plant Nutrition, 1981,27(2):263-265. |
[38] |
GABY J C, RISHISHWAR L, VALDERRAMA-AGUIRRE L C, GREEN S J, VALDERRAMA-AGUIRRE A, JORDAN I K, KOSTKA J E. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Applied and Environmental Microbiology, 2018,84(4):e01512-17.
doi: 10.1128/AEM.01512-17 pmid: 29180374 |
[39] |
HERBOLD C W, PELIKAN C, KUZYK O, HAUSMANN B, ANGEL R, BERRY D, LOY A. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Frontiers in Microbiology, 2015,6:731.
doi: 10.3389/fmicb.2015.00731 pmid: 26236305 |
[40] |
VAITOMAA J, RANTALA A, HALINEN K, ROUHIAINEN L, TALLBERG P, MOKELKE L, SIVONEN K. Quantitative real-time PCR for determination of microcystin synthetase e copy numbers for microcystis and anabaena in lakes. Applied and Environmental Microbiology, 2003,69(12):7289-7297.
doi: 10.1128/aem.69.12.7289-7297.2003 pmid: 14660378 |
[41] | 苟永刚, 余玲玲, 许霞, 王建武. DNA-SIP鉴定甘蔗//大豆间作土壤15N-DNA富集位置的氮循环功能基因qPCR方法. 农业环境科学学报, 2019,38(1):140-147. |
GOU Y G, XU L L, XU X, WANG J W. Identification of 15N-DNA enrichment sites in DNA-SIP to reveal functional genes by qPCR from sugarcanesoybean intercropping soil. Journal of Agro-Environment Science, 2019,38(1):140-147. (in Chinese) | |
[42] |
GABY J C, BUCKLEY D H. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database, 2014, 2014: bau001. https://doi.org/10.1093/database/bau001.
doi: 10.1093/database/baaa102 pmid: 33306802 |
[43] | WAKELIN S A, GREGG A L, SIMPSON R J, LI G D, RILEY I T, MCKAY A C. Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia, 2009,52(4):237-251. |
[44] | TANG Y, ZHANG M, CHEN A, ZHANG W, WEI W, SHENG R. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems & Environment, 2017,247:1-8. |
[45] | LIAO H, LI Y, YAO H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. Journal of Soils and Sediments, 2017,18(3):1076-1086. |
[46] | SCHUTTER M, DICK R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biology and Biochemistry, 2001,33(11):1481-1491. |
[47] |
HALSALL D M, TURNER G L, GIBSON A H. Straw and xylan utilization by pure cultures of nitrogen-fixing Azospirillum spp. Applied and Environmental Microbiology, 1985,49(2):423-428.
doi: 10.1128/AEM.49.2.423-428.1985 pmid: 16346730 |
[48] |
BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 2006,38(8):2219-2232.
doi: 10.1016/j.soilbio.2006.01.022 |
[49] | ANTOUN H, BEAUCHAMP C J, GOUSSARD N, CHABOT R, LALANDE R. Potential of rhizobium and bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Molecular Microbial Mcology of the Soil, 1998,204:57-67. |
[50] |
BURGER M, JACKSON L E. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry, 2003,35(1):29-36.
doi: 10.1016/S0038-0717(02)00233-X |
[51] | ZHAO Y, WANG M, HU S, ZHANG X, OUYANG Z, ZHANG G, HUANG B, ZHAO S, WU J, XIE D, ZHU B, YU D, PAN X, XU S, SHI X. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the USA, 2018,115(16):4045-4050. |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 王良,刘元元,钱欣,张慧,代红翠,刘开昌,高英波,方志军,刘树堂,李宗新. 单季麦秸还田促进小麦-玉米周年碳效率和经济效益协同提高[J]. 中国农业科学, 2022, 55(2): 350-364. |
[3] | 马立晓,李婧,邹智超,蔡岸冬,张爱平,李贵春,杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析[J]. 中国农业科学, 2021, 54(9): 1913-1925. |
[4] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[5] | 王新媛,赵思达,郑险峰,王朝辉,何刚. 秸秆还田和氮肥用量对冬小麦产量和氮素利用的影响[J]. 中国农业科学, 2021, 54(23): 5043-5053. |
[6] | 柴如山,徐悦,程启鹏,王擎运,马超,叶新新,章力干,郜红建. 安徽省主要作物秸秆养分资源量及还田利用潜力[J]. 中国农业科学, 2021, 54(1): 95-109. |
[7] | 杨欣润,许邶,何治逢,吴婧,庄睿花,马超,柴如山,YusefKianpoorKalkhajeh,叶新新,朱林. 整合分析中国农田腐秆剂施用对秸秆腐解和作物产量的影响[J]. 中国农业科学, 2020, 53(7): 1359-1367. |
[8] | 朱晓晴,安晶,马玲,陈松岭,李嘉琦,邹洪涛,张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977-989. |
[9] | 王士超,闫志浩,王瑾瑜,槐圣昌,武红亮,邢婷婷,叶洪龄,卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响[J]. 中国农业科学, 2020, 53(4): 782-794. |
[10] | 贾立国,石晓华,苏亚拉其其格,秦永林,于静,陈杨,樊明寿. 我国春麦区小麦化肥有机替代潜力分析[J]. 中国农业科学, 2020, 53(23): 4855-4865. |
[11] | 殷文,柴强,于爱忠,赵财,樊志龙,胡发龙,范虹,郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响[J]. 中国农业科学, 2020, 53(23): 4764-4776. |
[12] | 高洪军,彭畅,张秀芝,李强,朱平,王立春. 秸秆还田量对黑土区土壤及团聚体有机碳变化特征和 固碳效率的影响[J]. 中国农业科学, 2020, 53(22): 4613-4622. |
[13] | 杨竣皓,骆永丽,陈金,金敏,王振林,李勇. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析[J]. 中国农业科学, 2020, 53(21): 4415-4429. |
[14] | 邹文秀,韩晓增,陆欣春,陈旭,郝翔翔,严君. 秸秆还田后效对玉米氮肥利用率的影响[J]. 中国农业科学, 2020, 53(20): 4237-4247. |
[15] | 姜英,王峥宇,廉宏利,王美佳,苏业涵,田平,隋鹏祥,马梓淇,王英俨,孟广鑫,孙悦,李从锋,齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响[J]. 中国农业科学, 2020, 53(15): 3071-3082. |
|