中国农业科学 ›› 2019, Vol. 52 ›› Issue (5): 786-800.doi: 10.3864/j.issn.0578-1752.2019.05.002
黄升财1,王冰1,谢国强2,刘中来2,张美娟1,张树清1(),程宪国1(
)
收稿日期:
2018-11-06
接受日期:
2018-12-09
出版日期:
2019-03-01
发布日期:
2019-03-12
通讯作者:
张树清,程宪国
作者简介:
黄升财,E-mail: 基金资助:
HUANG ShengCai1,WANG Bing1,XIE GuoQiang2,LIU ZhongLai2,ZHANG MeiJuan1,ZHANG ShuQing1(),CHENG XianGuo1(
)
Received:
2018-11-06
Accepted:
2018-12-09
Online:
2019-03-01
Published:
2019-03-12
Contact:
ShuQing ZHANG,XianGuo CHENG
摘要: 【目的】 以水稻幼胚组培过程中获得的一株半矮化水稻突变体为研究对象,解析水稻半矮化突变体株高变矮及分蘖增多等表型异常的原因,为克服水稻过度矮化发育障碍因子及培育抗倒伏高产水稻品种提供科学理论依据。【方法】 首先统计分析半矮化水稻突变体与野生型的表型差异,利用体式显微镜和光学显微镜观察突变体花的结构及其细胞特征;通过转录组测序及qRT-PCR分析差异基因的表达特征,并通过外源喷施赤霉素GA3处理检测突变体对外源赤霉素的敏感性;最后利用高效液相色谱和质谱联仪检测突变体内赤霉素的含量与富集特征。【结果】 表型观测与统计结果表明,突变体水稻株高比野生型减少56.59%,有效分蘖数高出47.44%,差异均达到极显著水平。突变体的表皮毛消失且花发育迟缓,雄蕊变小。尽管突变体分蘖数较高但结实率明显降低,仅为野生型的12.62%,且种子长度和宽度均减小,差异极显著。通过显微镜观察茎的纵切切片,发现突变体细胞长度减少23%,差异极显著。外源喷施赤霉素后突变体的株高、有效分蘖、结实率、种子大小、表皮毛和茎秆细胞长度均有不同程度的恢复,说明植物体内赤霉素合成不足可能是引起水稻矮化的主要原因。转录组测序结果显示突变体中OsGA13ox 显著上调,qRT-PCR验证结果与转录组测序结果一致。由于OsGA13ox控制GA12转化为GA53,而GA12和GA53分别转化为GA4和GA1,GA4的活性高于GA1,因此,突变体中GA4减少可能是导致半矮化的主要原因。赤霉素检测结果表明突变体中GA4含量减少94.9%,与预测结果一致。此外,D14作为SL(独脚金内酯)的特异性受体,参与调控植物SL信号转导,抑制枝条分枝或者分蘖。qRT-PCR结果显示,与野生型相比,突变体中D14 显著下调,而经过GA3处理的野生型和突变体中D14 均显著上调。D14 上调可能导致有效分蘖数减少,而其下调可能致使有效分蘖数增加。统计结果表明突变体中有效分蘖显著增多,而经过GA处理之后,野生型和突变体有效分蘖数均显著低于未经GA3处理前,表明D14 在水稻中的表达可能受到GA的调控从而影响水稻分蘖。【结论】 OsGA13ox 异常表达导致活性更高的GA4在水稻中的富集减少,形成水稻半矮化突变体;赤霉素可能通过影响D14 的表达间接调控水稻的分蘖。
黄升财,王冰,谢国强,刘中来,张美娟,张树清,程宪国. 赤霉素GA4是水稻矮化特征的重要调节因子[J]. 中国农业科学, 2019, 52(5): 786-800.
HUANG ShengCai,WANG Bing,XIE GuoQiang,LIU ZhongLai,ZHANG MeiJuan,ZHANG ShuQing,CHENG XianGuo. Enrichment Profile of GA4 is an Important Regulatory Factor Triggering Rice Dwarf[J]. Scientia Agricultura Sinica, 2019, 52(5): 786-800.
表2
突变体喷施GA前后表达相反的基因"
基因 Gene | 功能 Function |
---|---|
Os01g0115600 | 蛋白激酶功能,结合ATP Kinase function, binding with ATP |
Os01g0781700 | ATP结合功能ATP binding |
Os10g0463800 | 功能未知Unknown function |
Os03g0332100 | GA13ox,催化GA12转化为GA53,决定GA4和GA1的比例[ GA13ox, Converts GA12 into GA53, determines the ratio of GA4 and GA1[ |
Os04g0223500 | 黄素腺嘌呤二核苷酸,单加氧酶活性 FAD, monooxygenase activity |
Os04g0606000 | 酰基转移酶活性 Transferase activity, transferring acyl groups |
Os06g0364500 | 多糖结合功能Polysaccharide binding |
Os12g0231700 | 推测是转位子蛋白Transposon protein, putative |
表3
野生型和突变体共表达的12个GA应答基因"
基因 Gene | 功能 Function |
---|---|
Novel00727 | Lnc RNA,可能参与调控植物的表型Lnc RNA, probably participate in regulating the phenotype of plants |
Os01g0191200 | 磷酸激酶活性 Acid phosphatase activity |
Os01g0198900 | 功能未知 Unknow function |
Os01g0368900 | 谷胱甘肽-二硫化物氧化还原酶活性 Has a glutathione-disulfide oxidoreductase activity |
Os01g0501800 | 参与光合系统Ⅱ的组装和稳定 Involved in photosystem II assembly and stabilization |
Os01g0600900 | 光受体,捕捉光信号 The light-harvesting complex functions as a light receptor |
Os01g0948200 | 转录因子 DNA-binding transcription factor activity |
Os03g0159900 | 功能未知 Unknow function |
Os03g0196250 | 功能未知 Unknow function |
Os03g0203200 | D14蛋白参与独脚金内酯(SL)信号通路;与赤霉素竞争DELLA结合位点[ Involved in strigolactone signaling pathway; Competition with GA for DELLA binding sites[ |
Os03g0251350 | 转录因子,调控长日照开花[ |
Os03g0856500 | 与核糖体小亚基结合,负调控蛋白翻译 Ribosomal small subunit binding, negative regulation of translational elongation |
表4
OsGA13ox 启动子序列中的基序预测结果"
基因 Gene | 基序 Motif | 家族 Family | 功能 Function |
---|---|---|---|
Os03g0224200 | CAGTATCTTT | ARR-B | 参与细胞分裂素信号的转导[ Participation in the transduction of cytokinin signaling[ |
Os06g0130600 | CACTCACATTCTCTCTGCACA | BBR-BPC | 调控大麦BKn3 的表达[ Regulate the expression of BKn3 gene in barley[ |
Os10g0419200 | TTTTTTTTTTTG | C2H2 | 促进植物营养生长到生殖生长的转变[ Promote the transformation of plant vegetative growth to reproductive growth[ |
Os07g0236700 | GTATCTTTTTTTTTTTGCGCC | Dof[ | 可能参与碳水化合物代谢基因的光调节,植物防御机制 Possible involvement in light regulation of carbohydrate metabolism genes, plant defense mechanisms |
Os03g0821200 | AACAAAGCTAAAACATAAGGG | Dof[ | 参与种子萌发,发芽后糊粉中的赤霉素反应等基因的调控 Involving in seed germination, regulation of gibberellin reactions in aleurone after germination |
Os03g0324300 | GTCTAGATTCATTAC | EIL | 乙烯信号响应的正向调控因子[ Positive regulator of ethylene signal response[ |
Os03g0324200 | GTCTAGATTCATTAC | EIL | 在植物受伤时,参与乙烯信号的转导[ Participation in the transduction of ethylene signals when plants are injured[ |
Os09g0490200 | TAATGAATCTA | EIL | 参与乙烯信号转导 Participation in ethylene signal transduction |
Os11g0681200 | GAAACACGCGCGCGC | FAR1 | 参与抵抗疾病[ |
Os02g0680700 | TAGATATTA | MYB_related[ | 功能未知 Unknown function |
Os08g0157600 | TAGATATTA | MYB_related[ | 功能未知 Unknown function |
[1] |
SPIELMEYER W, ELLIS M H, CHANDLER P M . Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(13):9043-9048.
doi: 10.1073/pnas.132266399 |
[2] |
PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F . ‘Green revolution’ genes encode mutant gibberellin response modulator. Nature, 1999,400:256-261.
doi: 10.1038/22307 |
[3] |
YAMAMURO C, IHARA Y, WU X, NOGUCHI T, FUJIOKA S, TAKATSUTO S, ASHIKARI M, KITANO H, MATSUOKA M . Loss of function of a rice brassinosteroid insensitive 1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 2000,12:1591-1606.
doi: 10.2307/3871176 pmid: 11006334 |
[4] | HONG Z, UEGUCHI-TANAKA M, FUJIOKA S, TAKATSUTO S, YOSHIDA S, HASEGAWA Y, ASHIKARI M, KITANOH, MATSUOKA M . The Rice brassinosteroid-deficient dwarf2 mutant defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. The Plant Cell , 2005,17:2243-2254. |
[5] |
ARITE T, IWATA H, OHSHIMA K, MAEKAWA M, NAKAJIMA M, KOJIMA M, SAKAKIBARA H, KYOZUKA J . DWARF10, an RMsI/MAX4/DAD1 ortholog, controls lateral bud out-growth in rice. The Plant Journal, 2007,51(6):1019-1029.
doi: 10.1111/j.1365-313X.2007.03210.x pmid: 17655651 |
[6] |
ISHIKAWA S, MAEKAWA M, ARITE T, ONISHI K, TAKAMURE I, KYOZUKA J . Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiology, 2005,46(1):79-86.
doi: 10.1093/pcp/pci022 pmid: 15659436 |
[7] |
FLEET C M, SUN T P . A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology, 2005,8(1):77-85.
doi: 10.1016/j.pbi.2004.11.015 pmid: 15653404 |
[8] |
谈心, 马欣荣 .赤霉素生物合成途径及其相关研究进展. 应用与环境生物学报, 2008,14(4):571-577.
doi: 10.3321/j.issn:1006-687X.2008.04.028 |
TAN X, MA X R . Advance in research of gibberellin biosynthesis pathway. Chinese Journal of Applied and Environmental Biology , 2008,14(4):571-577. (in Chinese)
doi: 10.3321/j.issn:1006-687X.2008.04.028 |
|
[9] |
THOMAS S G, SUN T P . Update on gibberellin signaling. A tale of the tall and the short. Plant Physiology, 2004,135:668-676.
doi: 10.1104/pp.104.040279 |
[10] | YAMAGUCHI S, SUN T P, KAWAIDE H, KAMIYA Y . The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology , 1998,116:1271-1278. |
[11] |
HELLIWELL CA, POOLE A, PEACOCK W J, DENNIS E S .Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiology , 1999,119(2):507-510.
doi: 10.1104/pp.119.2.507 pmid: 9952446 |
[12] |
MARGIS-PINHEIRO M, ZHOU X R, ZHU Q H, DENNIS E S, UPADHYAYA N M . Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Reports , 2005,23(12):19-33.
doi: 10.1007/s00299-004-0896-6 pmid: 15668792 |
[13] |
ITOH H, TATSUMI T, SAKAMOTO T, OTOMO K, TOYOMASU T, KITANO H, ASHIKARI M, ICHIHARA S, MATSUOKA M . A rice semi-dwarf gene, Tan-ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Molecular Biology, 2004,54(4):533-547.
doi: 10.1023/B:PLAN.0000038261.21060.47 |
[14] |
UEGUCHI-TANAKA M, ASHIKARI M, NAKAJIMA M, ITOH H, KATOH E, KOBAYASHI M, CHOW TY, HSING YI, KITANO H, YAMAGUCHI I, MATSUOKA M . GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005,437(7059):693-698.
doi: 10.1038/nature04028 pmid: 16193045 |
[15] |
GOMI K, SASAKI A, ITOH H, UEGUCHI-TANAKA M, ASHIKARI M, KITANO H, MATSUOKA M . GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. The Plant Journal, 2004,37(4):626-634.
doi: 10.1111/j.1365-313X.2003.01990.x pmid: 14756772 |
[16] |
SUN T P . Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiology, 2010,154(2):567-570.
doi: 10.1104/pp.110.161554 pmid: 20921186 |
[17] | 尹昌喜 .细胞质雄性不育水稻包穗的激素调控[D].南京: 南京农业大学, 2007: 6. |
YIN C X .Plant hormone regulation on panicle enclosure in cytoplasmic male sterile rice[D].Nanjing: Nanjing Agricultural University, 2007: 6. (in Chinese) | |
[18] | 张玲 .水稻矮化并花发育异常突变体dwarf and deformed flower 2 (ddf2 )的基因定位与候选基因分析[D].重庆: 西南大学, 2015: 6. |
ZHANG L .Gene mapping and candidate gene analysis of dwarf and deformed flower 2 (ddf2 )mutants in rice (Oryza sativa )[D].Chongqing: Southwestern University, 2015: 6. (in Chinese) | |
[19] | WANG Y P, TANG S Q, WU Z F, SHI Q H, WU Z M . Phenotypic analysis of a dwarf and deformed flower 3 (ddf3 ) mutant in rice( Oryza sativa L.) and characterization of candidate genes. Journal of Integrative Agriculture , 2018,5(17):1057-1065. |
[20] |
SOREFAN K, BOOKER J, HAUROGNÉ K, GOUSSOT M, BAINBRIDGE K, FOO E, CHATFIELD S, WARD S, BEVERIDGE C, RAMEAU C, LEYSER O . MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes & Development , 2003,17:1469-1474.
doi: 10.1101/gad.256603 pmid: 12815068 |
[21] |
JIANG L, LIU X, XIONG G, LIU H, CHEN F, WANG L, MENG X, LIU G, YU H, YUAN Y, YI W, ZHAO L, MA H, HE Y, WU Z, MELCHER K, QIAN Q, XU H E, WANG Y, LI J . DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013,504(7480):401-405.
doi: 10.1038/nature12870 pmid: 24336200 |
[22] |
YOUNG M D, WAKEFIELD M J, SMYTH G K, OSHLACK A . Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 2010,11(2):R14.
doi: 10.1186/gb-2010-11-2-r14 pmid: 20132535 |
[23] |
KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M, ITOH M, KATAYAMA T, KAWASHIMA S, OKUDA S, TOKIMATSU T, YAMANISHI Y . KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008,36:D480-D484.
doi: 10.1093/nar/gkm882 pmid: 18077471 |
[24] |
MAGOME H, NOMURA T, HANADA A, TAKEDA-KAMIYA N, OHNISHI T, SHINMA Y, KATSUMATA T, KAWAIDE H, KAMIYA Y, YAMAGUCHI S . CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(5):1947-1952.
doi: 10.1073/pnas.1215788110 pmid: 23319637 |
[25] |
ITO S, YAMAGAMI D, ASAMI T . Effects of gibberellin and strigolactone on rice tiller bud growth. Journal of Pesticide Science, 2018,43(3):220-223.
doi: 10.1584/jpestics.D18-013 |
[26] | ZOU J, ZHANG S, ZHANG W, LI G, CHEN Z, ZHAI W, ZHAO X, PAN X, XIE Q, ZHU L . The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. The Plant Journal , 2006,48:687-698. |
[27] |
NAKAMURA H, XUE Y L, MIYAKAWA T, HOU F, QIN H M, FUKUI K, SHI X, ITO E, ITO S, PARK S H, MIYAUCHI Y, ASANO A, TOTSUKA N, UEDA T, TANOKURA M, ASAMI T. Molecular mechanism of strigolactone perception by DWARF14. Nature Publishing Group, 2013,4:2613.
doi: 10.1038/ncomms3613 pmid: 24131983 |
[28] |
KIM S K, PARK H Y, JANG Y H, LEE K C, CHUNG Y S, LEE J H, KIM J K . OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice. Planta, 2016,243(3):563-576.
doi: 10.1007/s00425-015-2426-x pmid: 26542958 |
[29] |
ITOH H, UEGUCHI-TANAKA M, SENTOKU N, KITANO H, MATSUOKA M, KOBAYASHI M . Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(15):8909-8914.
doi: 10.1073/pnas.141239398 |
[30] |
LO S F, YANG S Y, CHEN K T, HSING YI, ZEEVAART JA, CHEN L J, YU S M . A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell, 2008,20(10):2603-2618.
doi: 10.1105/tpc.108.060913 |
[31] |
PETER H, VALERIE S . A century of gibberellin research. Journal of Plant Growth Regulation, 2015,34:740-760.
doi: 10.1007/s00344-015-9546-1 pmid: 4622167 |
[32] |
COWLING R J, KAMIYA Y, SETO H, HARBERD N P . Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis . Plant Physiology , 1998,117(4):1195-1203.
doi: 10.1104/pp.117.4.1195 pmid: 9701576 |
[33] |
TALON M, KOORNNEEF M, ZEEVAART J A . Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf GA4 and GA5 mutants. Proceedings of the National Academy of Sciences of the United States of America , 1990,87(20):7983-7987.
doi: 10.1073/pnas.87.20.7983 pmid: 2236013 |
[34] |
UEGUCHI-TANAKA M, NAKAJIMA M, KATOH E, OHMIYA H, ASANO K, SAJI S, HONGYU X, ASHIKARI M, KITANO H, YAMAGUCHI I, MATSUOKA M . Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. The Plant Cell, 2007,19(7):2140-2155.
doi: 10.1105/tpc.106.043729 pmid: 17644730 |
[35] |
ZHANG Z L, XIE Z, ZOU X, CASARETTO J, HO T H, SHEN Q J . A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology, 2004,134(4):1500-1513.
doi: 10.1104/pp.103.034967 pmid: 15047897 |
[36] |
ZHANG Z L, SHIN M, ZOU X, HUANG J, HO T H, SHEN Q J . A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. Plant Molecular Biology, 2009,70(1/2):139-151.
doi: 10.1007/s11103-009-9463-4 pmid: 19199048 |
[37] |
GUO X, HOU X, FANG J, WEI P, XU B, CHEN M, FENG Y, CHU C . The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. The Plant Journal, 2013,75(3):403-416.
doi: 10.1111/tpj.2013.75.issue-3 |
[38] |
HEINRICH M, HETTENHAUSEN C, LANGE T , WÜNSCHE H, FANG J, BALDWIN I T, WU J. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. The Plant Journal , 2013,73(4):591-606.
doi: 10.1111/tpj.12058 pmid: 23190261 |
[39] |
ITO Y, KURATA N . Identification and characterization of cytokinin-signalling gene families in rice. Gene, 2006,382:57-65.
doi: 10.1016/j.gene.2006.06.020 pmid: 16919402 |
[40] |
SANTI L, WANG Y, STILE M R, BERENDZEN K, WANKE D, ROIG C, POZZI C MÜLLER K,MÜLLER J,ROHDE W,SALAMINI F,. The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. The Plant Journal, 2003,34(6):813-826.
doi: 10.1046/j.1365-313X.2003.01767.x pmid: 12795701 |
[41] |
WU C, YOU C, LI C, LONG T, CHEN G, BYRNE M E, ZHANG Q . RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(35):12915-12920.
doi: 10.1073/pnas.0806019105 |
[42] | LIJAVETZKY D, CARBONERO P, VICENTE-CARBAJOSA J . Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evolutionary Biology , 2003,1:17. |
[43] | MAO C, WANG S, JIA Q, WU P . OsEIL1, a rice homolog of the Arabidopsis EIN3 regulates the ethylene response as a positive component. Plant Molecular Biology , 2006,61(1):141-152. |
[44] |
HIRAGA S, SASAKI K, HIBI T, YOSHIDA H, UCHIDA E, KOSUGI S, KATO T, MIE T, ITO H, KATOU S, SEO S, MATSUI H, OHASHI Y, MITSUHARA I . Involvement of two rice ETHYLENE INSENSITIVE3-LIKE genes in wound signaling. Molecular Genetics and Genomics, 2009,282(5):517-529.
doi: 10.1007/s00438-009-0483-1 pmid: 19798512 |
[45] | RICE CHROMOSOMES 11 AND 12 SEQUENCING CONSORTIA. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biology, 2005,3:20. |
[46] |
KIRIK V, BAUMLEIN H . A novel leaf-specific MYB-related protein with a single binding repeat. Gene, 1996,183(1/2):109-113.
doi: 10.1016/S0378-1119(96)00521-5 pmid: 8996094 |
[47] |
LI W Q, WU J G, WENG S L, ZHANG Y, ZHANG D, SHI C . Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta, 2010,232(6):1383-1396.
doi: 10.1007/s00425-010-1263-1 pmid: 20830595 |
[48] |
UMEHARA M, HANADA A, YOSHIDA S, AKIYAMA K, ARITE T, TAKEDA-KAMIYA N, MAGOME H, KAMIYA Y, SHIRASU K, YONEYAMA K, KYOZUKA J, YAMAGUCHI S . Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008,455(7210):195-200.
doi: 10.1038/nature07272 pmid: 18690207 |
[49] |
ITO S, YAMAQAMI D, UMEHARA M, HANADA A, YOSHIDA S, SASAKI Y, YAJIMA S, KYOZUKA J, UEGUCHI-TANAKA M, MATSUOKA M, SHIRASU K, YAMAGUCHI S, ASAMI T . Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiology, 2017,174(2):1250-1259.
doi: 10.1104/pp.17.00301 pmid: 28404726 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[4] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[5] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[6] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[7] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[8] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[9] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[10] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[11] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[12] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[13] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[14] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[15] | 逄洪波, 程露, 于茗兰, 陈强, 李玥莹, 吴隆坤, 王泽, 潘孝武, 郑晓明. 栽培稻芽期耐低温全基因组关联分析[J]. 中国农业科学, 2022, 55(21): 4091-4103. |
|