[1]James C. 2012年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2013, 33(2): 1-8.James C. The development trend of global commercialized biotech/GM crops: 2012. China Biotechnology, 2013, 33(2): 1-8. (in Chinese)[2]贾士荣. 转基因作物的环境风险分析研究进展. 中国农业科学, 2004, 37(2): 175-187.Jia S R. Environmental risk assessment of GM crops: Progress in risk assessment. Scientia Agricultura Sinica, 2004, 37(2): 175-187. (in Chinese)[3]贾士荣. 未来转基因作物的环境风险分析. 中国农业科学, 2004, 37(4): 484-489.Jia S R. Environmental risk assessment of future GM crops. Scientia Agricultura Sinica, 2004, 37(4): 484-489. (in Chinese)[4]OECD (Organisation for Economic Co-operation and Development). Consensus document on the biology of Oryza sativa (rice). 1999. Paris. http://www.oecd.org/Science/biotrack/46/46815658.pdf.[5]Lu B R, Snow A A. Gene flow from genetically modified rice and its environmental consequences. BioScience, 2005, 55(8): 669-678.[6]Lu B R, Yang C. Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnology Advances, 2009, 27(6): 1083-1091.[7]Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala M M, Baldi G, Mele E. Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theoretical and Applied Genetics, 2001, 103(8): 1151-1159.[8]Rong J, Xia H, Zhu Y Y, Wang Y Y, Lu B R. Asymmetric gene flow between traditional and hybrid rice varieties (Oryza sativa) estimated by nuclear SSRs and its implication in germplasm conservation. New Phytologist, 2004, 163(2): 439-445.[9]Rong J, Song Z P, Su J, Xia H, Lu B R,Wang F. Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing. New Phytologist, 2005, 168(3): 559-566.[10]Chun Y J, Kim D I, Park K W, Kim H J, Jeong S C, An J H, Cho K H, Back K, Kim H M, Kim C G. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. Planta, 2011, 233(4): 807-815. [11]Song Z P, Lu B R, Zhu Y G, Chen J K. Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon). New Phytologist, 2002, 153(2): 289-296.[12]Song Z P, Lu B R, Zhu Y G, Chen J K. Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytologist, 2003, 157(3): 657-665.[13]Song Z P, Lu B R, Chen J K. Pollen flow of cultivated rice measured under experimental conditions. Biodiversity and Conservation, 2004, 13(3): 579-590.[14]Chen L J, Lee D S, Song Z P, Suh H S, Lu B R. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany, 2004, 93(1): 67-73.[15]FAO (Food and Agriculture Organization of the United Nations). Rice Information. 2002. http://www.fao.org/docrep/005/y4347e/y4347e00. HTM#Contents.[16]Khush G S. Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology, 1997, 35(1/2): 25-34.[17]Wang F, Yuan Q H, Shi L, Qian Q, Liu W G, Kuang B G, Zeng D L, Liao Y L, Cao B, Jia S R. A large scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli). Plant Biotechnology Journal, 2006, 4(6): 667-676.[18]Jia S R, Wang F, Shi L, Jin W J, Liu W G, Li S G, Yuan Q H, Peng H P. Transgene flow to hybrid rice and its male sterile lines. Transgenic Research, 2007, 16(4): 491-501.[19]Yuan Q H, Shi L, Wang F, Cao B, Qian Q, Lei X M, Liao Y L, Liu W G, Cheng L, Jia S R. Investigation of rice transgene flow in compass directions by using male sterile line as a pollen detector. Theoretical and Applied Genetics, 2007, 115(4): 549-560.[20]Yao K M, Hu N, Chen W L, Li R Z, Yuan Q H, Wang F, Qian Q, Jia S R. Establishment of a rice transgene flow model for predicting maximum distances of gene flow in southern China. New Phytologist, 2008, 180(1): 217-228.[21]Messeguer J, Marfà V, Català M M, Guiderdoni E, Melé E. A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Molecular Breeding, 2004, 13(1): 103-112.[22]Olguin S E, Espinoza A G G, Lobo J A, Esquivel E A M. Assessment of gene flow from a herbicide-resistant indica rice (Oryza sativa L.) to the Costa Rican weedy rice (Oryza sativa) in Tropical America: Factors affecting hybridization rates and characterization of F1 hybrids. Transgenic Research, 2009, 18(4): 633-647. [23]Song X L, Liu L L, Wang Z, Qiang S. Potential gene flow from transgenic rice (Oryza sativa L.) to different weedy rice (Oryza sativa f. spontanea) accessions based on reproductive compatibility. Pest Management Science, 2009, 65(8): 862-869.[24]Yang X, Wang F, Su J, Lu B R. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field. PLoS One, 2012, 7(7): e41220. [25]宋小玲, 强胜, 刘琳莉, 徐言红. 通过转bar基因水稻与稗草杂交的亲和性研究评价基因漂移. 中国农业科学, 2002, 35(10): 1228-1231. Song X L, Qiang S, Liu L L, Xu Y H. Assessment on gene flow through detection of sexual compatibility between transgenic rice with bar gene and Echinochloa crusgalli var. mitis. Scientia Agricultura Sinica, 2002, 35(10): 1228-1231.(in Chinese)[26]Rong J, Song Z, de Jong T J, Zhang X, Sun S, Xu X, Xia H, Liu B, Lu B R. Modelling pollen-mediated gene flow in rice: risk assessment and management of transgene escape. Plant Biotechnology Journal, 2010, 8(4): 1-13.[27]Di-Giovanni F, Beckett P M. On the mathematical modeling of pollen dispersal and deposition. Journal of Applied Meteorology, 1990, 29(12): 1352-1357.[28]Loos C, Seppelt R, Meier-Bethke S, Schiemann J, Richter O. Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. Journal of Theoretical Biology, 2003, 225(2): 241-255.[29]Menteith J L, Unsworth M H. Principles of Environmental Physics. 2nd ed. London: Edward Arnold, 1990.[30]蒋维楣, 孙鉴泞, 曹文俊, 蒋瑞宾. 空气污染气象学教程. 第二版. 北京: 气象出版社, 2004: 53-200.Jiang W M, Sun J N, Cao W J, Jiang R B. Air Pollution Meteorology Tutorial. 2nd ed. Beijing: China Meteorological Press, 2004: 53-200. (in Chinese)[31]Erisman J W, van Pul A, Wyers P. Parameterization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmospheric Environment, 1994, 28: 2595-2607. [32]王志兴, 王旭静, 贾士荣. 主要农作物转基因飘流频率和距离的数据调研与分析Ⅰ.背景、调研目的及所考虑的问题. 中国农业科技导报, 2011, 13(3): 26-29.Wang Z X, Wang X J, Jia S R. Data survey and analysis of the tansgene flow frequencies and distances in major cropsⅠ. The background, aim and general consideration. Journal of Agricultural Science and Technology, 2011, 13(3): 26-29. (in Chinese)[33]MOA. 中华人民共和国国家标准, 农作物种子质量标准: 辛景树、柏长青、赵建宗、吴毓谦、李洪建、苏菊萍. GB4404.1-2008, 粮食作物种子,第1部分: 禾谷类. 北京: 中国标准出版社, 2008.MOA. National Standards of the People's Republic of China, Quality Standards for Agricultural Seed: Xin J S, Bai C Q, Zhao J Z, Wu Y Q, Li H J, Su J P. GB4404.1-2008, Seed of Food Crops-Part 1: Cereals. Beijing: China Standard Press, 2008.[34]Daniell H. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology, 2002, 20(6): 581-586.[35]Luo K M, Duan H, Zhao D G, Zheng X L, Deng W, Chen Y Q, Stewart Jr C N, McAvoy R, Jiang X N, Wu Y H, He A G, Pei Y, Li Y. “GM-gene-deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seeds of tobacco plants. Plant Biotechnology Journal, 2007, 5(2): 263-274.[36]Moon H S, Abercrombie L L, Eda S, Blanvillain R, Thomson J G, Ow D W, Stewart Jr C N. Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Molecular Biology, 2011, 75(6): 621-631.[37]Maliga P. Plastid transformation in higher plants. Annual Review of Plant Biology, 2004, 55: 289-313.[38]Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. Plant Physiology, 2007, 145(4): 1129-1143.[39]Kempe K M, Rubtsova M, Gils M. Intein-mediated protein assembly in transgenic wheat: Production of active barnase and cetolactate synthase from split genes. Plant Biotechnology Journal, 2009, 7(3): 283-297.[40]Yang J J, Fox G C Jr, Henry-Smith T V. Intein-mediated assembly of a functional beta-glucuronidase in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(6): 3513-3518.[41]Huang F C, Klaus S M, Herz S, Zou Z, Koop H U, Golds T J. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Molecular Genetics and Genomics, 2002, 268(1): 19-27.[42]Lee S M, Kang K, Chung H, Yoo S H, Xu X M, Lee S B, Cheong J J, Daniell H, Kim M. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Moleculars and Cells, 2006, 21(3): 401-410.[43]Kumar S, Dhingra A, Daniell H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology, 2004, 56(2): 203-216. [44]Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Molecular Biology, 2005, 58(5): 659-668.[45]Lin C Y, Fang J, Xu X L, Zhao T, Cheng J A, Tu J M, Ye G Y, Shen Z C. A built-In strategy for containment of transgenic plants: Creation of selectively terminable transgenic rice. PLoS One, 2008, 3(3): e1818.[46]Liu C Y, Li J J, Gao J H, Shen Z C, Lu B R, Lin C Y. A built-in mechanism to mitigate the spread of insect-resistance and herbicide- tolerance transgenes into weedy rice populations. PLoS One, 2012, 7(2): e31625.[47]Chen L, Pradhan S, Evans Jr T C. Herbicide resistance from a divided EPSPS protein: the split Synechocystis DnaE intein as an in vivo affinity domain. Gene, 2001, 263(1/2): 39-48.[48]Raupach M R. A practical lagrangian method for relating scalar concentration to source distributions in vegetation canopies. Quarterly Journal of the Royal Meteorological Society, 1989, 115(487): 609-632.[49]Raupach M R. Applying lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agricultural and Forest Meteorology, 1989, 47(2/4): 85-108. |