[1]王宝山. 植物生理学. 北京: 科学出版社, 2003: 264-269, 286-288, 298-302.Wang B S. Plant Physiology. Beijing: Science Press, 2003: 264-269, 286-288, 298-302. (in Chinese)[2]Bernier J, Atlin G N, Serraj R, Kumar A, Spaner D. Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 2008, 88: 927-939.[3]Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 2004, 50: 11-18.[4]Liang Y, Sun W, Zhu Y G, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 2007, 147: 422-428.[5]Gong H J, Randall D P, Flowers T J. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell and Environment, 2006, 29: 1970-1979.[6]Farooq M, Wahid A, Lee D J, Ito O, Siddique K H M. Advances in drought resistance of rice. Critical Reviews in Plant Science, 2009, 28: 199-217.[7]Ming D F, Pei Z F, Naeem M S, Gong H J, Zhou W J. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. Journal of Agronomy and Crop Science, 2012, 198: 14-26.[8]Isa M, Bai S, Yokoyama T, Ma J F, Ishibashi Y, Yuasa T, Iwaya-Inoue M. Silicon enhances growth independent of sílica deposition in a low-silica rice mutant, lsi1. Plant and Soil, 2010, 331: 361-375.[9]Yoshida S, Forno D A, Cock J H, Gomez K. Laboratory Manual for Physiological Studies of Rice. 3rd Edition. Manila Philippines: The International Rice Research Institute, 1976: 62-63.[10]Dai W M, Zhang K Q, Duan B W, Sun C X, Zheng K L, Cai R, Zhuang J Y. Rapid determination of silicon content in rice. Rice Science, 2005, 12: 145-147.[11]Zabadal T J. A water potential threshold for the increase of abscisic acid in leaves. Plant Physiology, 1974, 53: 125-127.[12]张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 4版. 北京: 高等教育出版社, 2009: 3, 80, 125, 207, 221-227, 236-244. Zhang Z L, Qu W J, Li X F. Experimental Guide of Plant Physiology. 4th Edition. Beijing: Higher Education Press, 2003: 3, 80, 125, 207, 221-227, 236-244. (in Chinese)[13]Liu D, Pei Z F, Naeem M S, Ming D F, Liu H B, Khan F, Zhou W J. 5-aminolevulinic acid activates antioxidative defence system and seedling growth in Brassica napus L. under water-deficit stress. Journal of Agronomy and Crop Science, 2011, 197: 284-295.[14]Zhang W F, Zhang F, Raziuddin R, Gong H J, Yang Z M, Lu L, Ye Q F, Zhou W J. Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. Journal of Plant Growth Regulation, 2008, 27: 159-169.[15]Zhou W J, Leul M. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regulation, 1998, 26: 41-47.[16]Noodén L D, Guiamet J J, John I. Senescence mechanisms. Physiologia Plantarum, 1997, 101: 746-753.[17]Dat J, van Denabeele S, Vranová E, van Montagu M, Inzé D, Van Breusegem F. Dual action for the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 2000, 57: 779-795. [18]Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S M A. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, 2009, 1: 153-188.[19]Pei Z F, Ming D F, Liu D, Wan G L, Geng X X, Gong H J, Zhou W J. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation, 2010, 29: 106-115.[20]Sonobe K, Hattori T, An P, Tsuji W, Eneji A, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S. Effect of silicon application on sorghum root responses to water stress. Journal of Plant Nutrition, 2011, 34: 71-82.[21]Ahmed M, Fayyaz H, Khurshid Y. Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agricultural Water Management, 2011, 98: 1808-1812.[22]马廷臣, 余蓉蓉, 陈荣军, 曾汉来, 张端品. PEG-6000模拟干旱对水稻幼苗期根系的影响. 中国生态农业学报, 2010, 18(6): 1206-1211.Ma T C, Yu R R, Chen R J, Zeng H L, Zhang D P. Effect of drought stress simulated with PEG-6000 on root system in rice seedling. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1206-1211. (in Chinese)[23]Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman P B. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1998, 1: 96-103.[24]钱琼秋, 宰文姗, 何 勇, 王永传, 朱祝军. 外源硅和辅酶Q10对盐胁迫下黄瓜根系线粒体的保护作用. 中国农业科学, 2006, 39(6): 1208-1214.Qian Q Q, Zai W S, He Y, Wang Y C, Zhu Z J. Protection of exogenous silicon and CoQ10 on itochondria in cucumber (Cucumis sativus L.) roots under salt stress. Scientia Agricultura Sinica, 2006, 39(6): 1208-1214. (in Chinese)[25]Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 2010, 33: 453-467.[26]Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta, 2002, 215: 645-652.[27]Lee S K, Sohn E Y, Hamayun M, Yoon J Y, Lee I J. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest Systems, 2010, 80: 333-340.[28]Pierce M, Raschke K. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta, 1980, 148: 174-182.[29]Shen X, Zhou Y, Duan L, Li Z, Eneji A E, Li J. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 2010, 167: 1248-1252.[30]Verslues P E, Ober E S, Sharp R E. Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiology, 1998, 116: 1403-1412.[31]Tamai K, Ma J F. Characterization of silicon uptake by rice roots. New Phytologist, 2003, 158: 431. |