中国农业科学 ›› 2025, Vol. 58 ›› Issue (20): 4285-4304.doi: 10.3864/j.issn.0578-1752.2025.20.019

• 盐碱地生态化利用 • 上一篇    

地下水埋深和施氮对土壤水盐分布及冬小麦养分吸收利用的影响

佘映军1,2(), 周子哲1, 伍明1, 郭魏2,3, 师昌健1, 胡超3, 李平2,4,5()   

  1. 1 四川农业大学水利水电学院,四川雅安 625014
    2 中国农业科学院农田灌溉研究所,河南新乡 453002
    3 中国农业科学院河南新乡农业水土环境野外科学观测试验站,河南新乡 453002
    4 河南商丘农田生态系统国家野外科学观测研究站,河南商丘 476000
    5 国家盐碱地综合利用技术创新中心,山东东营 257347
  • 收稿日期:2025-06-11 接受日期:2025-09-18 出版日期:2025-10-16 发布日期:2025-10-14
  • 通信作者:
    李平,E-mail:
  • 联系方式: 佘映军,E-mail:sheyingjun1746@163.com。
  • 基金资助:
    中国农业科学院重大科技任务(CAAS-ZDRW202407); 中国农业科学院科技创新工程(CAAS-ASTIP)

Effects of Groundwater Depth and Nitrogen Application on the Distribution of Soil Water and Salt and the Nutrient Absorption and Utilization of Winter Wheat

SHE YingJun1,2(), ZHOU ZiZhe1, WU Ming1, GUO Wei2,3, SHI ChangJian1, HU Chao3, LI Ping2,4,5()   

  1. 1 College of Water Resource and Hydropower, Sichuan Agricultural University, Ya'an 625014, Sichuan
    2 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, Henan
    3 Environmental Field Research Station of Xinxiang, Chinese Academy of Agricultural Sciences, Xinxiang 453002, Henan
    4 National Research and Observation Station of Shangqiu Agroecology System, Shangqiu 476000, Henan
    5 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
  • Received:2025-06-11 Accepted:2025-09-18 Published:2025-10-16 Online:2025-10-14

摘要:

【目的】探究地下水埋深与施氮对包气带土壤水盐分布、氮磷分层残留和冬小麦养分吸收利用的组合效应,明确基于耕层土壤盐分平衡和作物稳产优产的浅地下水埋深施氮阈值。【方法】利用土柱模拟试验,设置4个地下水埋深梯度60、90、120和150 cm,分别标记为G1、G2、G3、G4;4个施氮梯度0、150、240和300 kg·hm-2(常规施氮),分别标记为NF0、NF150、NF240、NF300,共计16个处理,于2020—2021、2021—2022年冬小麦季开展不同地下水埋深和施氮组合下包气带土壤水盐分布、不同土层土壤氮磷含量和冬小麦氮素吸收利用的监测和分析研究。【结果】两年数据表明,增施氮肥加剧主根系层(0—60 cm土层)土壤干旱,尤其是地下水埋深大于G3条件下的NF300处理主根系层土壤水分显著降低;NF0—NF150施氮下0—20、20—60 cm土层电导率随地下水埋深增加呈降低趋势,而NF240—NF300处理下2020—2021年20—60 cm土层电导率和两年盐分累积含量随埋深增加显著上升;NF240—NF300施氮显著提升了G3、G4埋深下0—20 cm土层盐分含量,尤其是NF300处理下0—20 cm土层土壤电导率超过阈值(360.19—362.89 μs·cm-1),碱化趋势明显。NF0—NF240处理下,G3—G4处理主根系层平均土层总氮含量最高,而NF300处理下总氮、总磷含量随地下水埋深增加而显著下降,其中G1—G3处理土壤平均总氮含量比G4处理高11.90%(P<0.05);G1—G2埋深下增施氮肥有利于提升土壤总氮含量,而G4埋深下NF150—NF240施氮处理最高;G1—G4埋深下NF0—NF150处理土壤总磷含量最高;NF0—NF240施氮条件下增加地下水埋深可促进籽粒和地上部吸收氮素,但施氮量持续增加和年际叠加施氮控水后,地下水埋深加大不利于籽粒和地上部吸收氮素。增施氮肥显著促进G1—G2埋深下籽粒和地上部氮素积累量,对G3—G4埋深条件而言,籽粒和地上部氮素累积量在NF150—NF240施氮条件下最高,且2021—2022年持续施氮控水后,增施氮肥明显降低冬小麦氮素收获指数。【结论】在120—150 cm埋深下,施氮150—240 kg·hm-2有利于主根系层土壤水盐平衡、地上部和籽粒氮素积累,进而实现冬小麦氮肥减施增效和主根系层土壤盐分科学管理。

关键词: 水盐分布, 冬小麦, 养分利用, 包气带, 盐分阈值

Abstract:

【Objective】This study aimed to explore the combined effects of groundwater depth (GWD) and nitrogen application on soil water and salt distribution, stratified residues of nitrogen and phosphorus, and nutrient absorption and utilization of winter wheat, and to determine the nitrogen (N) application threshold for shallow groundwater depth based on the salt balance of cultivated soil and stable crop yield. 【Method】A soil column simulation experiment was conducted with four GWD gradients (60, 90, 120, and 150 cm, labeled as G1, G2, G3, and G4) and four N application rates (0, 150, 240, and 300 kg·hm-2, labeled as NF0, NF150, NF240, and NF300), resulting in 16 treatments. The experiment was carried out during the 2020-2021 and 2021-2022 winter wheat growing seasons to monitor and analyze the distribution of soil water and salt, the nitrogen and phosphorus content in different soil layers, and the nitrogen uptake and utilization of winter wheat under different GWD and N application combinations. 【Result】 Two years of data showed that increased application of N fertilizer exacerbated soil drought in the main root zone (0-60 cm soil layer, MRZ), especially, when the GWD was greater than G3, the soil moisture in the MRZ of the NF300 treatment was significantly reduced. Under N application of NF0-NF150, the electrical conductivity of the 0-20 cm and 20-60 cm soil layers showed a decreasing trend with increasing GWD, whereas under treatment of NF240-NF300, the electrical conductivity of the 20-60 cm soil layer in 2021-2022 and two-year salt accumulation significantly enlarged with increasing GWD. The N application of NF240-NF300 significantly augmented the salt content in the 0-20 cm soil layer at the depth of G3-G4, especially in the NF300 treatment where the soil conductivity of 0-20 cm soil layer exceeded the threshold (360.19-362.89 μs·cm-1) and showed an obvious trend of alkalization. At the NF0-NF240 treatment, the average soil total nitrogen content under the MRZ of G3 and G4 treatments was the highest, while the total nitrogen and total phosphorus content were significantly reduced with increasing GWD under NF300 treatment. Among them, the average soil total nitrogen content under G1-G3 treatment was significantly higher than that under G4 treatment by 11.90% (P<0.05). Growing N fertilizer under G1-G2 depth was beneficial for increasing soil total nitrogen content, while soil total nitrogen content under NF150-NF240 treatment was the highest at the G4 depth. The soil total phosphorus content was the highest under the NF0-NF150 treatment with the G1-G4 depth. Increasing the GWD could promote the absorption of nitrogen by grains and the aboveground parts of plants under the NF0-NF240 treatment. However, with the continuous increase in N application rate and the superimposition of N application for groundwater control between years, the increase in the GWD was not conducive to the absorption of nitrogen by grains and the aboveground parts. Increased application of N fertilizer significantly promoted the N accumulation in grains and aboveground parts at the GWD of G1-G2. However, for the GWD of G3-G4, the N accumulation in grains and aboveground parts was the highest under the N application condition of NF150-NF240. Moreover, after continuous N application and groundwater control in 2021-2022, increased N fertilizer significantly reduced the nitrogen harvest index of winter wheat. 【Conclusion】 In conclusion, under the GWD of 120-150 cm, N application rate of 150-240 kg·hm-2 was conducive to maintaining soil water-salt balance in the MRZ, enhancing N accumulation in aboveground parts and grains, and achieving both reduced N fertilizer input and improved efficiency while ensuring scientific management of the main root zone salinity.

Key words: distribution of water and salt, winter wheat, nutrient utilization, vadose zone, salt threshold