[1] |
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326(5949): 123-125.
|
[2] |
|
|
XIE R Z, MING B. Response and adaptation of maize production system to climate change. Scientia Agricultura Sinica, 2021, 54(17): 3587-3591. doi: 10.3864/j.issn.0578-1752.2021.17.003. (in Chinese)
|
[3] |
AGUILERA E, LASSALETTA L, SANZ-COBENA A, GARNIER J, VALLEJO A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems and Environment, 2013, 164: 32-52.
|
[4] |
XIAO L L, SUN Q B, YUAN H T, LIAN B. A practical soil management to improve soil quality by applying mineral organic fertilizer. Acta Geochimica, 2017, 36(2): 198-204.
|
[5] |
SONG H, WANG J, ZHANG K, ZHANG M Y, HUI R, SUI T Y, YANG L, DU W B, DONG Z R. A 4-year field measurement of N2O emissions from a maize-wheat rotation system as influenced by partial organic substitution for synthetic fertilizer. Journal of Environmental Management, 2020, 263: 110384.
|
[6] |
HUANG R, WANG Y Y, GAO X S, LIU J, WANG Z F, GAO M. Nitrous oxide emission and the related denitrifier community: a short-term response to organic manure substituting chemical fertilizer. Ecotoxicology and Environmental Safety, 2020, 192: 110291.
|
[7] |
卜容燕, 李敏, 韩上, 程文龙, 王慧, 孙志祥, 唐杉, 武际. 有机无机肥配施对双季稻轮作系统产量、温室气体排放和土壤养分的综合效应. 应用生态学报, 2021, 32(1): 145-153.
doi: 10.13287/j.1001-9332.202101.023
|
|
BU R Y, LI M, HAN S, CHENG W L, WANG H, SUN Z R, TANG S, WU J. Comprehensive effects of combined application of organic and inorganic fertilizer on yield, greenhouse gas emissions, and soil nutrient in double-cropping rice systems. Chinese Journal of Applied Ecology, 2021, 32(1): 145-153. (in Chinese)
|
[8] |
HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413(6853): 297-299.
|
[9] |
JIANG S T, AN X R, SHAO Y D, KANG Y L, CHEN T S, MEI X L, DONG C X, XU Y C, SHEN Q R. Responses of arbuscular mycorrhizal fungi occurrence to organic fertilizer: A meta-analysis of field studies. Plant and Soil, 2021, 469(1/2): 1-17.
|
[10] |
LI Y J, ZHENG Q, YANG R, ZHUANG S, LIN W, LI Y Z. Evaluating microbial role in reducing N2O emission by dual isotopocule mapping following substitution of inorganic fertilizer for organic fertilizer. Journal of Cleaner Production, 2021, 326: 129442.
|
[11] |
BUCHEN C, LEWICKA-SZCZEBAK D, FLESSA H, WELL R. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules. Rapid Communications in Mass Spectrometry, 2018, 32(13): 1053-1067.
|
[12] |
LIANG D, ROBERTSON G P. Nitrification is a minor source of nitrous oxide (N2O) in an agricultural landscape and declines with increasing management intensity. Global Change Biology, 2021, 27(21): 5599-5613.
|
[13] |
QIU Y P, JIANG Y, GUO L J, ZHANG L, BURKEY K O, ZOBEL R W, REBERG-HORTON S C, SHEW H D, HU S J. Shifts in the composition and activities of denitrifiers dominate CO2 stimulation of N2O emissions. Environmental Science and Technology, 2019, 53(19): 11204-11213.
|
[14] |
|
|
XIE J, ZHAO Y N, CHEN X J, LI D P, XU C L, WANG K, ZHANG Y Q, SHI X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943. doi: 10.3864/j.issn.0578-1752.2016.20.008. (in Chinese)
|
[15] |
赵吉霞, 禹妍彤, 周芸, 李永梅, 范茂攀. 有机肥等氮替代化肥对玉米产量和氮素吸收利用效率的影响. 水土保持研究, 2022, 29(5): 374-381.
|
|
ZHAO J X, YU Y T, ZHOU Y, LI Y M, FAN M P. Effect of organic manure replacing chemical nitrogenous fertilizer on main yield and nitrogen uptake and utilization efficiency. Research of Soil and Water Conservation, 2022, 29(5): 374-381. (in Chinese)
|
[16] |
ZHANG X Y, FANG Q C, ZHANG T, MA W Q, VELTHOF G L, HOU Y, OENEMA O, ZHANG F S. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology, 2020, 26(2): 888-900.
doi: 10.1111/gcb.14826
pmid: 31495039
|
[17] |
LUO G W, LI L, FRIMAN V P, GUO J J, GUO S W, SHEN Q R, LING N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, 2018, 124: 105-115.
|
[18] |
ZHANG Y R, NIE Y, LIU Y L, HUANG X C, YANG Y H, XIONG H, ZHU H Q, LI Y. Characteristics of greenhouse gas emissions from yellow paddy soils under long-term organic fertilizer application. Sustainability, 2022, 14(19): 12574.
|
[19] |
孟磊, 蔡祖聪, 丁维新. 长期施肥对华北典型潮土N分配和N2O排放的影响. 生态学报, 2008, 28(12): 6197-6203.
|
|
MENG L, CAI Z C, DING W X. Effects of long-term fertilization on N distribution and N2O emission in fluvo-aquci soil in North China. Acta Ecologica Sinica, 2008, 28(12): 6197-6203. (in Chinese)
|
[20] |
JIA J X, LI B, CHEN Z Z, XIE Z B, XIONG Z Q. Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Science and Plant Nutrition, 2012, 58(4): 503-509.
|
[21] |
GUI H, GAO Y, WANG Z H, SHI L L, YAN K, XU J C. Arbuscular mycorrhizal fungi potentially regulate N2O emissions from agricultural soils via altered expression of denitrification genes. The Science of the Total Environment, 2021, 774: 145133.
|
[22] |
ZHANG X L, QIU Y P, GILLIAM F S, GILLESPIE C J, TU C, REBERG-HORTON S C, HU S J. Arbuscular mycorrhizae shift community composition of N-cycling microbes and suppress soil N2O emission. Environmental Science and Technology, 2022, 56(18): 13461-13472.
|
[23] |
CHEN H, ZHOU J, LI B, XIONG Z Q. Yield-scaled N2O emissions as affected by nitrification inhibitor and overdose fertilization under an intensively managed vegetable field: A three-year field study. Atmospheric Environment, 2019, 206: 247-257.
|
[24] |
XU F, LIU Y L, DU W C, LI C L, XU M L, XIE T C, YIN Y, GUO H Y. Response of soil bacterial communities, antibiotic residuals, and crop yields to organic fertilizer substitution in North China under wheat-maize rotation. Science of the Total Environment, 2021, 785: 147248.
|
[25] |
|
|
LI X L, HE T Q, ZHANG C X, TIAN M H, WU M, LI C H, YANG Q H, ZHANG X L. Effect of organic fertilizer replacing chemical fertilizers on greenhouse gas emission under the conditions of same nitrogen fertilizer input in maize farmland. Scientia Agricultura Sinica, 2022, 55(5): 948-961. doi: 10.3864/j.issn.0578-1752.2022.05.009. (in Chinese)
|
[26] |
|
|
WEN Y C, ZHANG Y D, YUAN L, LI W, LI Y Q, LIN Z, ZHAO B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142. doi: 10.3864/j.issn.0578-1752.2018.11.011. (in Chinese)
|
[27] |
刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响. 植物营养与肥料学报, 2011, 17(1): 38-47.
|
|
LIU J Z, XIE J G, ZHANG K, WANG X F, HOU Y P, YIN C X, LI S T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin province. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 38-47. (in Chinese)
|
[28] |
米国华, 陈范骏, 吴秋平, 赖宁薇, 袁力行, 张福锁. 玉米高效吸收氮素的理想根构型. 中国科学:生命科学, 2010, 40(12): 1112-1116.
|
|
MI G H, CHEN F J, WU Q P, LAI N W, YUAN L X, ZHANG F S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China: Life Sciences, 2010, 53(12): 1369-1373. (in Chinese)
|
[29] |
HATI K M, MANDAL K G, MISRA A K, GHOSH P K, BANDYOPADHYAY K K. Effect HATI K M, MANDAL K G, MISRA A K, GHOSH P K, BANDYOPADHYAY K K. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresource Technology, 2006, 97(16): 2182-2188.
doi: 10.1016/j.biortech.2005.09.033
pmid: 16289791
|
[30] |
郭喜军, 谢军红, 李玲玲, 王嘉男, 康彩睿, 彭正凯, 王进斌, Setorkwami Fudjoe, 王林林. 氮肥用量及有机无机肥配比对陇中旱农区玉米光合特性及产量的影响. 植物营养与肥料学报, 2020, 26(5): 806-816.
|
|
GUO X J, XIE H J, LI L L, WANG J N, KANG C R, PENG Z K, WANG J B, FUDJOE S, WANG L L. Appropriate nitrogen fertilizer rate and organic N ratio for satisfactory photosynthesis and yield of maize in dry farming area of Longzhong, Gansu Province. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 806-816. (in Chinese)
|
[31] |
WEI Z B, YING H, GUO X W, ZHUANG M H, CUI Z L, ZHANG F S. Substitution of mineral fertilizer with organic fertilizer in maize systems: A meta-analysis of reduced nitrogen and carbon emissions. Agronomy, 2020, 10(8): 1149-1163.
|
[32] |
VERBRUGGEN E, RÖLING W F M, GAMPER H A, KOWALCHUK G A, VERHOEF H A, VAN DER HEIJDEN M G A. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 2010, 186(4): 968-979.
doi: 10.1111/j.1469-8137.2010.03230.x
pmid: 20345633
|
[33] |
BI Y L, QIU L, ZHAKYPBEK Y, JIANG B, CAI Y, SUN H. Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China. Agricultural Water Management, 2018, 201: 278-286.
|
[34] |
BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1(1): 48-59.
|
[35] |
HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759.
|
[36] |
LIU S W, LIN F, WU S, JI C, SUN Y, JIN Y G, LI S Q, LI Z F, ZOU J W. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Global Change Biology, 2017, 23(6): 2520-2532.
|
[37] |
SENBAYRAM M, CHEN R, BUDAI A, BAKKEN L, DITTERT K. N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems and Environment, 2011, 147(1): 4-12.
|
[38] |
YANG Y D, NIE J W, WANG S, SHI L L, LI Z Z, ZENG Z H, ZANG H D. Differentiated responses of nirS- and nirK-type denitrifiers to 30 years of combined inorganic and organic fertilization in a paddy soil. Archives of Agronomy and Soil Science, 2021, 67(1): 79-92.
|
[39] |
STORER K, COGGAN A, INESON P, HODGE A. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytologist, 2018, 220(4): 1285-1295.
|
[40] |
BENDER S F, PLANTENGA F, NEFTEL A, JOCHER M, OBERHOLZER H R, KÖHL L, GILES M, DANIELL T J, VAN DER HEIJDEN M G A. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME Journal, 2014, 8(6): 1336-1345.
|
[41] |
WU Q S, SRIVASTAVA A K, ZOU Y N. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164: 77-87.
|
[42] |
BARRETT G, CAMPBELL C D, FITTER A H, HODGE A. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 2011, 48(1): 102-105.
|
[43] |
VERESOGLOU S D, SEN R, MAMOLOS A P, VERESOGLOU D S. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. Journal of Ecology, 2011, 99(6): 1339-1349.
|
[44] |
CHEN Y L, CHEN B D, HU Y J, LI T, ZHANG X, HAO Z P, WANG Y S. Direct and indirect influence of arbuscular mycorrhizal fungi on abundance and community structure of ammonia oxidizing bacteria and archaea in soil microcosms. Pedobiologia, 2013, 56(4/5/6): 205-212.
|