中国农业科学 ›› 2023, Vol. 56 ›› Issue (3): 405-415.doi: 10.3864/j.issn.0578-1752.2023.03.001
刘刚1(), 夏快飞2, 吴艳1, 张明永2, 张再君1, 杨金松1, 邱东峰1(
)
收稿日期:
2022-09-08
接受日期:
2022-11-08
出版日期:
2023-02-01
发布日期:
2023-02-14
通信作者:
邱东峰,Tel:18672779158;E-mail:qdflcp@163.com
联系方式:
刘刚,Tel:18627862923;E-mail:liug1112@163.com。
基金资助:
LIU Gang1(), XIA KuaiFei2, WU Yan1, ZHANG MingYong2, ZHANG ZaiJun1, YANG JinSong1, QIU DongFeng1(
)
Received:
2022-09-08
Accepted:
2022-11-08
Published:
2023-02-01
Online:
2023-02-14
摘要:
【目的】全球气候变暖导致水稻抽穗开花期受到高温热害的影响日益严重。鉴定抽穗期耐高温水稻种质,创制耐热新种质,为培育实用性耐热水稻新品种,降低高温热害对水稻生产的影响,保障中国乃至世界的粮食安全奠定基础。【方法】以广恢128(七桂早/测64//明恢63)为耐热亲本,通过杂交、复交以及系谱法,选育过程中连续多代筛选抽穗开花期处于高温阶段结实率较高且变异较小的株系,在高世代,利用人工气候室进行抽穗开花期耐热鉴定(处理盆栽于开花当天移入人工气候室,高温处理时间段为每日09:00—15:00,设置恒温38℃,15:01—次日08:59设置恒温28℃,相对湿度均为75%,处理7 d),结合农艺性状分析方法创制水稻耐热新种质。【结果】创制的新种质R203具有较好的耐热性,在正常条件下和高温条件下都有较高的结实率(常温结实率为94.5%、高温结实率为81.9%、相对结实率为86.7%),其对三系不育系恢复能力强,综合抗性好,稻米品质优,具有配制实际应用价值的耐热新组合的潜力。在自然高温条件下,以R203为父本、7个三系不育系为母本配制的杂交组合结实率为83.4%—99.4%,耐热性均表现较好。其中,育成的三系杂交中籼新品种泰优203的结实率为87.9%,综合相对耐热系数为1.11,耐热性达到1级,生产试验中,其产量比对照增加5.36%,增产点占85.71%,具有很好的丰产和稳产性,稻米品质达部标二级,具有较好的推广应用价值。【结论】当前耐热基础研究不足以支撑实用型耐热新品种选育,以高温湿热易发地区的种质为材料,通过表型选择创制了耐热新种质R203,并利用杂种优势,培育出实用型耐热水稻新品种泰优203。
刘刚, 夏快飞, 吴艳, 张明永, 张再君, 杨金松, 邱东峰. 水稻耐热新种质R203的创制与应用[J]. 中国农业科学, 2023, 56(3): 405-415.
LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203[J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
表1
R203与不同三系不育系配组的产量及相关性状"
序号 No. | 组合名称 Name of combination | 有效穗数 Effective panicle number (万/hm2) | 每穗颖花数 <BOLD>S</BOLD>pikelets per panicle | 结实率 Seed setting rate (%) | 千粒重 Thousand grain weight (g) | 单株重 Yield per plant (g) | 理论产量 Theoretical yield (t·hm-2) |
---|---|---|---|---|---|---|---|
1 | 641A×R203 | 264 | 290.59 | 82.47 | 20.80 | 44.30 | 13.16** |
2 | 泰优203 Taiyou203 | 264 | 175.76 | 89.03 | 23.80 | 33.20 | 9.83** |
3 | 1803A×R203 | 252 | 170.63 | 89.44 | 25.50 | 32.70 | 9.81** |
4 | 2280A×R203 | 255 | 206.49 | 89.04 | 20.80 | 33.10 | 9.75** |
5 | 扬籼9A×R203 Yangxian9 A×R203 | 249 | 181.45 | 84.38 | 25.30 | 32.90 | 9.64** |
6 | 663A×R203 | 279 | 190.99 | 77.44 | 23.00 | 32.10 | 9.49** |
7 | 泰香A×R203 Taixiang A×R203 | 276 | 200.35 | 83.11 | 20.30 | 31.70 | 9.33* |
8 | 1070A×R203 | 276 | 157.70 | 90.24 | 23.60 | 31.40 | 9.27* |
9 | 丰两优四号 Fengliangyousihao | 270 | 144.17 | 83.58 | 27.60 | 26.60 | 8.98 |
10 | 平A×R203 Ping A×R203 | 294 | 146.33 | 81.59 | 25.30 | 30.10 | 8.88 |
11 | 282A×R203 | 255 | 190.32 | 81.10 | 21.20 | 28.10 | 8.34** |
12 | 畅A×R203 Chang A×R203 | 216 | 181.46 | 84.40 | 24.90 | 28.00 | 8.24** |
13 | 2361A×R203 | 315 | 149.98 | 86.12 | 19.80 | 26.90 | 8.06** |
14 | 229A×R203 | 246 | 190.94 | 85.28 | 19.80 | 32.50 | 7.93** |
15 | 1511A×R203 | 276 | 141.79 | 83.15 | 24.10 | 26.90 | 7.84** |
16 | 广福A×R203 Guangfu A×R203 | 225 | 187.56 | 78.66 | 23.60 | 26.80 | 7.83** |
17 | 667A×R203 | 231 | 190.32 | 76.77 | 23.00 | 26.40 | 7.76** |
18 | 沪旱7A×R203 Huhan7 A×R203 | 276 | 138.73 | 84.95 | 23.60 | 25.90 | 7.68** |
表2
R203的部分功能基因列表"
序号 Order No. | 基因 <BOLD>G</BOLD>ene | 类型 Type | 染色体 Chromosome | 代表品种 Representative cultivar | 表型 Phenotype |
---|---|---|---|---|---|
1 | Gn1a | 产量 Yield | 1 | 9311 | 每穗粒数增加 Increased grains per spike |
2 | OsSPL16 | 产量 Yield | 8 | HJX74 | 高产 High yield |
3 | SKC1 | 抗非生物逆境 Anti abiotic stress | 1 | Nona Bokra | 耐盐 Salt tolerance |
4 | NRT1.1B | 抗非生物逆境 Anti abiotic stress | 10 | 9311 | 增强氮吸收 Enhanced nitrogen absorption |
5 | Rymv1 | 抗生物逆境 Anti biotic stress | 4 | 日本晴 Nipponbare | 抗黄色斑驳病毒病 Resistance to yellow mottle virus disease |
6 | STV11 | 抗生物逆境 Anti biotic stress | 11 | Kasalath | 抗水稻条叶枯病毒 Resistance to rice stripe virus |
7 | Pi5 | 抗生物逆境 Anti Biotic Stress | 9 | 抗稻瘟病 Resistance to rice blast | |
8 | Pia | 抗生物逆境 Anti biotic stress | 11 | 抗稻瘟病 Resistance to rice blast | |
9 | Pid2 | 抗生物逆境 Anti biotic stress | 6 | 抗稻瘟病 Resistance to rice blast | |
10 | Pid3 | 抗生物逆境 Anti biotic stress | 6 | 抗稻瘟病 Resistance to rice blast | |
11 | Xa21 | 抗生物逆境 Anti biotic stress | 11 | 抗白叶枯 Resistance to rice bacterial blight | |
12 | OsAAP6 | 品质 Quality | 1 | 9311 | 高蛋白 High protein |
13 | GW2 | 品质 Quality | 2 | Oochikara | 大粒 Large grain |
14 | GS3/TT2 | 品质 Quality | 3 | 明恢63 Minghui63 | 长粒、耐热 Long grain, thermos-tolerance |
15 | OsCYP704A3 | 品质 Quality | 4 | IR 24 | 长粒 Long grain |
16 | Chalk5 | 品质 Quality | 5 | H94 | 垩白度低,高质量 Low chalkiness, Good quality |
17 | Waxy | 品质 Quality | 6 | 日本晴 Nipponbare | 非糯的情况下,增加支连淀粉含量 In case of non waxy, increase the content of amylopectin |
18 | ALK | 品质 Quality | 6 | 明恢 63 Minghui63 | 增加了中长型支链淀粉的含量,糊化温度升高 Increase the content of medium long amylopectin and gelatinization temperature |
29 | Os01g62780 | 生育期 Heading date | 1 | Haplotype B | 延迟抽穗 Delayed heading |
20 | Hd17 | 生育期 Heading date | 6 | Koshihikari | 延迟开花 Delayed flowering |
21 | Hd3a | 生育期 Heading date | 6 | 日本晴 Nipponbare | 光周期敏感基因(促进抽穗,微效QTL) Photoperiod sensitivity |
22 | S5 | 育性 Fertility | 6 | 珍汕97 Zhenshan97 | 广亲和(籼稻亲和) Wide-compatibility |
23 | qNGR9 | 株型 Plant type | 9 | O. rufipogon | 直穗 Erect panicle |
24 | TAC1 | 株型 Plant type | 9 | IR24 | 分蘖角度增大 Increased tillering angle |
25 | sh4 | 其他 Other type | 4 | 日本晴 Nipponbare | 非落粒 Non seed shattering |
表3
2022年不同杂交组合的抽穗期及在高温条件下结实率"
序号 No. | 田间编号 Field No. | 组合名称 Name of combination | 始穗期(月/日) Initial heading stage (M/D) | 齐穗期(月/日) Full heading stage (M/D) | 结实率 Seed setting rate (%) |
---|---|---|---|---|---|
1 | 220038 | 1070A×R203 | 7/26 | 8/2 | 88.32 |
2 | 220148 | 1070A×R18 | 7/26 | 7/31 | 65.11 |
3 | 220146 | 泰优203 Taiyou203 | 8/4 | 8/9 | 87.89 |
4 | 220126 | 泰丰A×元恢236(CK) Taifeng A×Yuanhui236(CK) | 7/30 | 8/5 | 50.00 |
5 | 220128 | EK2S×R203 | 7/29 | 8/3 | 89.39 |
6 | 220135 | EK2S×Z-3 | 7/31 | 8/4 | 64.55 |
7 | 220129 | N25S×R203 | 8/5 | 8/10 | 93.58 |
8 | 220132 | N25S×Z-3 | 8/2 | 8/6 | 73.85 |
9 | 220130 | 泰香A×R203 Taixiang A×R203 | 8/3 | 8/8 | 83.43 |
10 | 220131 | 野香A×R203 Yexiang A×R203 | 8/1 | 8/6 | 91.64 |
11 | 220127 | 垦2001S×R203 Ken2001S×R203 | 8/4 | 8/9 | 90.20 |
表4
长江中下游汇丰企业联合体中籼迟熟组生产试验参加品种耐高温鉴定结果"
田间区号 Field No. | 品种编号 Variety No. | 品种名称 Name of variety | 大田条件 Field condition | 盆栽条件 Potting condition | 综合相对 耐热系数 Comprehensive relative heat resistance coefficient | 耐热级别 Heat resistance rating | 年份 Year | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
常温结实率 Seed setting rate at normal condition (%) | 高温结实率 Seed setting rate at high temperature condition (%) | 相对结实率 Relative seed setting rate (%) | 相对耐热 系数 Relative heat resistance coefficient | 常温结实率 Seed setting rate at normal condition (%) | 高温结实率 Seed setting rate at high temperature condition (%) | 相对结实率 Relative seed setting rate (%) | 相对耐热 系数 Relative heat resistance coefficient | ||||||
BZE211555 | 1 | 利两优3822 Liliangyou3822 | 86.72 | 76.35 | 88.04 | 1.03 | 84.95 | 55.53 | 65.37 | 1.02 | 1.02 | 3 | 2021 |
BZE211556 | 2 | 95优1号 95you1hao | 88.68 | 68.35 | 77.07 | 0.92 | 83.47 | 50.97 | 61.06 | 0.94 | 0.93 | 3 | |
BZE211557 | 3 | 果两优桂花丝苗 Guoliangyouguihuasimiao | 85.84 | 71.7 | 83.53 | 0.96 | 84.36 | 55.47 | 65.75 | 1.02 | 0.99 | 3 | |
BZE211558 | 4 | 竹两优珍25 Zhuliangyouzhen25 | 87.58 | 69.22 | 79.04 | 0.93 | 81.17 | 49.65 | 61.17 | 0.91 | 0.92 | 3 | |
BZE211559 | 5 | 丰两优四号(CK) Fengliangyousihao (CK) | 87.8 | 74.36 | 84.69 | 1.00 | 83.55 | 54.47 | 65.19 | 1.00 | 1.00 | 3 | |
BZE191281 | 6 | 两优新月丝苗 Liangyouxinyuesimiao | 81.32 | 65.45 | 80.48 | 0.92 | 80.63 | 45.25 | 56.12 | 0.93 | 0.93 | 3 | 2019 |
BZE191286 | 7 | 桂香优086 Guixiangyou086 | 86.85 | 65.78 | 75.74 | 0.93 | 82.27 | 47.39 | 57.60 | 0.97 | 0.95 | 3 | |
BZE191288 | 8 | 泰优203 Taiyou203 | 86.47 | 76.74** | 88.75 | 1.08** | 82.64 | 55.31** | 66.93 | 1.14** | 1.11** | 1 | |
BZE191255 | 9 | 丰两优四号(CK) Fengliangyousihao (CK) | 88.65 | 70.83 | 79.90 | 1.00 | 8365 | 48.64 | 58.15 | 1.00 | 1.00 | 3 |
表5
泰优203在区试中的产量及主要性状表现"
年份 Year | 品种名称 Name of variety | 产量 Yield (t·hm-2) | 比CK增产 Compared with CK (%) | 增产点率 Point ratio compared with CK (%) | 全生育期 Entire growth period (d) | 有效穗数 Effective panicle number (万/hm2) | 每穗颖花数 Spikelets per panicle | 结实率 Seed setting rate (%) | 稻米品质部标级 Rice quality | 稻瘟病综合抗性 Comprehensive resistance index of rice blast | 耐热性 Thermo- tolerance |
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 泰优203 Taiyou 203 | 9.99 | 6.70 | 100.00 | 131.8 | 256.50 | 187.1 | 88.10 | - | 4.4 | 1 |
丰两优四号(CK) Fengliangyousihao (CK) | 9.36 | 135.1 | 228.00 | 192.8 | 85.40 | - | 7.4 | 3 | |||
2020 | 泰优203 Taiyou 203 | 9.30 | 3.35 | 94.12 | 130.9 | 249.00 | 198.9 | 88.20 | 2 | 3.7 | |
丰两优四号(CK) Fengliangyousihao (CK) | 8.99 | 134.4 | 213.00 | 207.0 | 87.40 | - | 6.6 | ||||
汇总 | 泰优203 Taiyou 203 | 9.65 | 5.12 | 97.06 | 131.4 | 252.75 | 193.0 | 88.15 | 2 | 4.4 | 1 |
丰两优四号(CK) Fengliangyousihao (CK) | 9.18 | 134.8 | 220.5 | 199.9 | 86.40 | - | 7.4 | 3 |
[21] | PS S, SV A M, PRAKASH C, MK R, TIWARI R, MOHAPATRA T, SINGH N K. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice (New York, NY), 2017, 10: 28. |
[22] | 刘进, 胡佳晓, 马小定, 陈武, 勒思, Jo Sumin, 崔迪, 周慧颖, 张立娜, Shin Dongjin, 黎毛毛, 韩龙植, 余丽琴. 最新录用:水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位. 中国农业科学, 2022, 55(22): 4327-4341. |
LIU J, HU J X, MA X D, CHEN W, LE S, JO S, CUI D, ZHOU H Y, ZHANG L N, SHIN D, LI M M, HAN L Z, YU L Q. Construction of high density genetic map for RIL population and QTL analysis of heat tolerance at seedling stage in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2022, 55(22): 4327-4341. (in Chinese) | |
[23] |
WANG D, QIN B X, LI X, TANG D, ZHANG Y E, CHENG Z K, XUE Y B. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genetics, 2016, 12(2): e1005844.
doi: 10.1371/journal.pgen.1005844 |
[24] |
LIU J P, ZHANG C C, WEI C C, LIU X, WANG M G, YU F F, XIE Q, TU J M. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiology, 2015, 170(1): 429-443.
doi: 10.1104/pp.15.00879 |
[25] | ZHENG K L, ZHAO J, LIN D Z, CHEN J Y, XU J L, ZHOU H, TENG S, DONG Y J. The rice TCM5 gene encoding a novel Deg protease protein is essential for chloroplast development under high temperatures. Rice (New York, NY), 2016, 9(1): 13. |
[26] |
LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47(7): 827-833
doi: 10.1038/ng.3305 |
[27] |
KAN Y, MU X R, ZHANG H, GAO J, SHAN J X, YE W W, LIN H X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nature Plants, 2022, 8(1): 53-67.
doi: 10.1038/s41477-021-01039-0 |
[28] |
ZHANG H, ZHOU J F, KAN Y, SHAN J X, YE W W, DONG N Q, GUO T, XIANG Y H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, GUO S Q, LEI J J, LIAO B, MU X R, CAO Y J, YU J J, LIN Y S, LIN H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289 |
[1] | CHEN C Q, VAN GROENIGEN K J, YANG H Y, HUNGATE B A, YANG B, TIAN Y L, CHEN J, DONG W J, HUANG S, DENG A X, JIANG Y, ZHANG W J. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security, 2020, 24: e100359. |
[2] | IPCC. Climate Change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013, Cambridge, United Kingdom and New York, NY, USA, 1535. |
[3] |
JAGADISH S V K, CAIRNS J, LAFITTE R, WHEELER T R, PRICE A H, CRAUFURD P Q. Genetic analysis of heat tolerance at anthesis in rice. Crop Science, 2010, 50(5): 1633-1641.
doi: 10.2135/cropsci2009.09.0516 |
[4] |
JAGADISH S V K, MUTHURAJAN R, OANE R, WHEELER T R, HEUER S, BENNETT J, CRAUFURD P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61(1): 143-156.
doi: 10.1093/jxb/erp289 |
[5] |
KILASI N L, SINGH J, VALLEJOS C E, YE C R, JAGADISH S V K, KUSOLWA P, RATHINASABAPATHI B. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 2018, 9: 1578.
doi: 10.3389/fpls.2018.01578 |
[6] |
LEI D Y, TAN L B, LIU F X, SUN C Q. Identification of heat- sensitive QTL derived from common wild rice (Oryza rufipogon Griff.). Plant Science, 2013, 201/202: 121-127.
doi: 10.1016/j.plantsci.2012.12.001 |
[7] |
LI M M, LI X, YU L Q, WU J W, LI H, LIU J, MA X D, JO S M, PARK D S, SONG Y C, SHIN D J, HAN L Z. Identification of QTLs associated with heat tolerance at the heading and flowering stage in rice (Oryza sativa L.). Euphytica, 2018, 214(4): 1-11.
doi: 10.1007/s10681-017-2087-x |
[8] | POLI Y, BASAVA R K, PANIGRAHY M, VINUKONDA V P, DOKULA N R, VOLETI S R, DESIRAJU S, NEELAMRAJU S. Characterization of a Nagina 22 rice mutant for heat tolerance and mapping of yield traits. Rice (New York, NY), 2013, 6(1): 36. |
[9] |
TAZIB T, KOBAYASHI Y, KOYAMA H, MATSUI T. QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice (Oryza sativa L.). Euphytica, 2015, 203(3): 629-642.
doi: 10.1007/s10681-014-1291-1 |
[10] |
XIAO Y H, PAN Y, LUO L H, ZHANG G L, DENG H B, DAI L Y, LIU X L, TANG W B, CHEN L Y, WANG G L. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica, 2011, 178(3): 331-338.
doi: 10.1007/s10681-010-0300-2 |
[11] |
YE C R, TENORIO F A, ARGAYOSO M A, LAZA M A, KOH H J, REDOÑA E D, JAGADISH K S V, GREGORIO G B. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics, 2015, 16: 41.
doi: 10.1186/s12863-015-0199-7 pmid: 25895682 |
[12] |
ZHU S, HUANG R L, WAI H P, XIONG H L, SHEN X H, HE H H, YAN S. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice. Physiology and Molecular Biology of Plants, 2017, 23(4): 817-825.
doi: 10.1007/s12298-017-0465-4 pmid: 29158631 |
[13] | 曹立勇, 朱军, 赵松涛, 何立斌, 颜启传. 水稻籼粳交DH群体耐热性的QTLs定位. 农业生物技术学报, 2002, 10(3): 210-214. |
CAO L Y, ZHU J, ZHAO S T, HE L B, YAN Q C. Mapping QTLs for heat tolerance in a DH population from indica-japonica cross of rice (Oryza sativa). Journal of Agricultural Biotechnology, 2002, 10(3): 210-214. (in Chinese) | |
[14] |
曹志斌, 谢红卫, 聂元元, 毛凌华, 李永辉, 蔡耀辉. 水稻抽穗扬花期耐热QTL (qHTH5)定位及其遗传效应分析. 中国水稻科学, 2015, 29(2): 119-125.
doi: 10.3969/j.issn.1001-7216.2015.02.002 |
CAO Z B, XIE H W, NIE Y Y, MAO L H, LI Y H, CAI Y H. Mapping a QTL (qHTH5) for heat tolerance at the heading stage on rice chromosome 5 and its genetic effect analysis. Chinese Journal of Rice Science, 2015, 29(2): 119-125. (in Chinese) | |
[15] | 陈庆全, 余四斌, 李春海, 牟同敏. 水稻抽穗开花期耐热性QTL的定位分析. 中国农业科学, 2008, 41(2): 315-321. |
CHEN Q Q, YU S B, LI C H, MOU T M. Identification of QTLs for heat tolerance at flowering stage in rice. Scientia Agricultura Sinica, 2008, 41(2): 315-321. (in Chinese) | |
[16] | 奎丽梅, 谭禄宾, 涂建, 卢义宣, 孙传清. 云南元江野生稻抽穗开花期耐热QTL定位. 农业生物技术学报, 2008, 16(3): 461-464. |
KUI L M, TAN L B, TU J, LU Y X, SUN C Q. Identification of QTLs associated with heat tolerance of Yuanjiang common wild rice (Oryza rufipogon griff.) at flowering stage. Journal of Agricultural Biotechnology, 2008, 16(3): 461-464. (in Chinese) | |
[17] |
盘毅, 罗丽华, 邓化冰, 张桂莲, 唐文邦, 陈立云, 肖应辉. 水稻开花期高温胁迫下的花粉育性QTL定位. 中国水稻科学, 2011, 25(1): 99-102.
doi: 10.3969/j.issn.1001-7216.2011.01.01 |
PAN Y, LUO L H, DENG H B, ZHANG G L, TANG W B, CHEN L Y, XIAO Y H. Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice. Chinese Journal of Rice Science, 2011, 25(1): 99-102. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.01.01 |
|
[18] | 张昌泉, 陈飞, 洪燃, 李钱峰, 顾铭洪, 刘巧泉. 利用染色体片段代换系定位水稻抽穗开花期耐热性QTL. 江苏农业科学, 2016, 44(12): 120-123. |
ZHANG C Q, CHEN F, HONG R, LI Q F, GU M H, LIU Q Q. Mapping QTL for heat tolerance at heading and anthesis stage in rice using chromosome segment substitution lines. Jiangsu Agricultural Sciences, 2016, 44(12): 120-123. (in Chinese) | |
[19] | 赵志刚, 江玲, 肖应辉, 张文伟, 翟虎渠, 万建民. 水稻孕穗期耐热性QTLs分析. 作物学报, 2006, 32(5): 640-644. |
ZHAO Z G, JIANG L, XIAO Y H, ZHANG W W, ZHAI H Q, WAN J M. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agronomica Sinica, 2006, 32(5): 640-644. (in Chinese) | |
[20] |
YE C R, TENORIO F A, REDOÑA E D, MORALES-CORTEZANO P S, CABREGA G A, JAGADISH K S V, GREGORIO G B. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517.
doi: 10.1007/s00122-015-2526-9 |
[29] | 查中萍, 殷得所, 万丙良, 焦春海. 水稻种质资源开花期耐热性分析. 湖北农业科学, 2016, 55(1): 17-19. |
ZHA Z P, YIN D S, WAN B L, JIAO C H. Analyzing of rice germplasm heat resistance during flowering stage. Hubei Agricultural Sciences, 2016, 55(1): 17-19. (in Chinese) | |
[30] |
LIU G, ZHA Z P, CAI H Y, QIN D D, JIA H T, LIU C Y, QIU D F, ZHANG Z J, WAN Z H, YANG Y Y, WANG B L, YOU A Q, JIAO C H. Dynamic transcriptome analysis of anther response to heat stress during anthesis in thermotolerant rice (Oryza sativa L.). International Journal of Molecular Sciences, 2020, 21: 1155.
doi: 10.3390/ijms21031155 |
[31] | 邱东峰, 葛平娟, 刘刚, 杨金松, 陈建国, 张再君. 优质水稻新种质 ZY56 的创制及评价. 中国农业科学, 2021, 54(6): 1081-1091. |
QIU D F, GE P J, LIU G, YANG J S, CHEN J G, ZHANG Z J. Breeding and evaluation of elite rice line ZY56. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091. (in Chinese) | |
[32] | 周伟辉, 薛大伟, 张国平. 高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异. 作物学报, 2011, 37(5): 820-831. |
ZHOU W H, XUE D W, ZHANG G P. Protein response of rice leaves to high temperature stress and its difference of genotypes at different growth stage. Acta Agronomica Sinica, 2011, 37(5): 820-831. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00820 |
[1] | 谢军, 尹学伟, 魏灵, 王子芳, 李清虎, 张晓春, 鲁远源, 王秋月, 高明. 垄作直播控制灌溉对水稻产量和温室气体排放的影响[J]. 中国农业科学, 2023, 56(4): 697-710. |
[2] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[3] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[4] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[5] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[6] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[7] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[8] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[9] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[10] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[11] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[12] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[13] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[14] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[15] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
|