中国农业科学 ›› 2022, Vol. 55 ›› Issue (17): 3343-3354.doi: 10.3864/j.issn.0578-1752.2022.17.007
夏芊蔚1(),陈浩3,姚宇阗4,笪达5,陈健2,石志琦1,2(
)
收稿日期:
2022-02-28
接受日期:
2022-04-11
出版日期:
2022-09-01
发布日期:
2022-09-07
通讯作者:
石志琦
作者简介:
夏芊蔚,E-mail: 基金资助:
XIA QianWei1(),CHEN Hao3,YAO YuTian4,DA Da5,CHEN Jian2,SHI ZhiQi1,2(
)
Received:
2022-02-28
Accepted:
2022-04-11
Online:
2022-09-01
Published:
2022-09-07
Contact:
ZhiQi SHI
摘要:
【目的】 针对水稻生产中的减肥、减药措施,前期自主开发了水稻优标体系。本研究通过分析应用优标体系的稻米产量和污染物含量以及土壤质量,评估优标体系在实际农业生产中的应用效果,以期为该优标体系的合理设计和及时调整提供科学依据。【方法】 基于在江苏省、上海市水稻种植区连续实施1—5年的定点优标体系试验区,以常规施肥用药水稻栽培体系(简称常规体系)为对照。采集水稻籽粒和稻田土壤样品,测定稻米产量、委托SGS检测稻米农药残留和重金属含量;采用内梅罗指数法评价土壤肥力;分别采用TTC还原法、靛酚蓝比色法、3,5-二硝基水杨酸比色法测定土壤脱氢酶、脲酶、蔗糖酶活性;利用16S rDNA高通量测序分析土壤微生物多样性。【结果】 采用优标体系较常规体系在氮肥施用量减少46.8%,代以添加有机肥、EM菌剂、叶面肥、锌肥;以生物制剂为核心,协同使用低毒、低残留化学农药,保证了稻米的高安全标准。在保证水稻产量、质量安全的前提下实施优标体系显著提高了土壤全氮与有机质含量;且连续实施1—4年的优标体系土壤肥力综合评分均高于常规体系,但连续实施5年后的优标体系土壤肥力综合评分值低于常规体系。连续实施2年优标体系脲酶、脱氢酶、蔗糖酶的活性均高于常规体系。实施优标体系的稻田土壤细菌群落多样性与丰度提高,优标体系实施1年和连续实施5年的土壤细菌丰富度上升比例重复变化的菌为拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi);优势菌属为Terrimonas(尚无确切名称)和黄杆菌属(Flavobacterium)。相关性分析结果显示,优标体系实施1年,土壤中拟杆菌门、绿弯菌门丰度变化分别与pH肥力指数、全磷肥力指数变化呈正相关;优标体系连续实施5年,土壤中拟杆菌门、绿弯菌门丰度变化均与pH肥力指数变化呈正相关。另外,拟杆菌门、绿弯菌门丰度变化与土壤脱氢酶活性变化呈正相关。【结论】 实施优标体系在保证水稻产量、质量安全的前提下,可有效改善土壤质量,提升土壤细菌群落多样性,进而有助于恢复土壤肥力。
夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354.
XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field[J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
表1
常规体系和优标体系肥料用量"
时期Stage | 施用肥料量Amount of fertilizer applied (kg·hm-2) | |
---|---|---|
常规体系 Conventional system | 优标体系 Good quality standard system | |
基肥Base fertilizer | 复合肥Compound fertilizer 15-15-15 600 | 复合肥Compound fertilizer 15-15-15 450 |
46%尿素Urea 225 | 有机肥Organic fertilizer 3000 | |
返青肥Resume growth fertilizer | 46%尿素Urea 112.5 | 46%尿素Urea 112.5 |
— | EM菌剂EM bacteria agent 37.5 | |
分蘖肥Tiller fertilizer | 46%尿素Urea 112.5 | 46%尿素Urea 75 |
拔节期 Jointing stage | — | 磷酸二氢钾KH2PO4 1.5 |
— | 锌肥Zinc fertilizer 2.25 | |
破口期(抽穗期前) Rupturing stage (Before heading stage) | — | 磷酸二氢钾KH2PO4 1.5 |
齐穗期Full heading stage | 46%尿素Urea 75 | 大量元素水溶肥Water soluble fertilizer 2.25 |
灌浆期Filling stage | — | 海藻叶面肥Seaweed foliar fertilizer 3000 |
化学肥料总量Total chemical fertilizer | N:331.5,P:90,K:90 | N:176.25,P:68.18,K:68.36 |
表2
常规体系和优标体系农药用量情况(有效含量)"
时期 Stage | 用药量Amount of pesticides applied (/hm2) | |
---|---|---|
常规体系 Conventional system | 优标体系 Good quality standard system | |
浸种 Soaking | 25%咪鲜胺乳油30 mL兑水75 L,浸种45—60 kg 25% Prochloraz EC 30 mL with 75 L water, and then soaked 45-60 kg seed | 25%氰烯菌酯300 mL兑水1500 L,浸种1500 kg 25% Phenamacril 300 mL with 1500 L water, and then soaked 1500 kg seed |
— | 0.136%碧护300 g兑水1500 L,浸种1500 kg 0.136% Bihu 300 g with 1500 L water, and then soaked 1500 kg seed | |
拔节期 Jointing stage | 10%阿维菌素Avermectin 75 g | 40%甲氧茚虫威Methoxyfenozide-indoxacarb 300 g |
35%己唑嘧菌酯Hexaconazole+Azoxystrobin 300 g | 15%井冈噻呋 Validamycin-thifluzamide 750 g | |
70%吡虫啉Imidacloprid 75 g | 20%呋虫胺Dinotefuran 300 g | |
破口期 Rupturing stage | 2.5%溴氰菊酯Deltamethrin 450 g | 5%甲维盐Emamectin benzoate 75 g |
40%稻瘟灵Isoprothiolane 1125 g | 2%春雷霉素Kasugamycin 1500 g | |
45%马拉硫磷Malathion 1500 g | 50%烯啶虫胺Nitenpyram 150 g | |
8%井冈霉素Validamycin 1500 g | 24%井冈霉素Validamycin A 600 g | |
齐穗期 Full heading stage | 90%杀虫单Monosultap 900 g | 3.2%苏云金杆菌Bt 1500 g |
40%三环唑Tricyclazole 750 g | 2%春雷霉素Kasugamycin 1500 g | |
— | 50%吡蚜酮Pymetrozine 150 g | |
— | 1%蛇床子素Osthole 450 g | |
除草剂 Herbicide | 30%苄嘧·丙草胺Benzyl pyrimethole·prochlor 1500 g+2.4% 五氟磺草胺Penoxsulam 300 g+40%氰氟草酯Cyhalofop- butyl 300 g | 30%苄嘧·丙草胺Benzyl pyrimethole·prochlor 1500 g+2.4%五氟磺草胺Penoxsulam 300 g+氰氟草酯Cyhalofop-butyl 300 g |
表3
样品采集地"
实施年限 Application time | 采样地区Sampling site | 试验田面积 Test plot area (hm2) | |
---|---|---|---|
1年 One year | 江苏 Jiangsu | 淮安市淮阴区马头镇双闸村Shuangzha, Matou, Huaiyin, Huaian | 10 |
2年Two years | 盐城市亭湖区黄建港镇新洋港闸北Zhabei, Xinyanggang, Huangjiangang, Tinghu, Yancheng | 20 | |
3年Three years | 上海 Shanghai | 浦东新区书院镇里灶村Lizao, Shuyuan, Pudong | 10 |
4年Four years | 浦东新区书院镇李雪村Lixue, Shuyuan, Pudong | 8 | |
5年Five years | 浦东新区书院镇石南村Shinan, Shuyuan, Pudong | 7.33 |
表5
稻米安全性SGS检测"
检测项目Test item | 限量标准Limit standard | SGS检测结果SGS test result |
---|---|---|
520项农药残留520 pesticide residues | GB 2763—2021 | 未检出Not detected |
重金属-镉Heavy metal-Cadmium | ≤0.2 mg·kg-1(GB 2762—2017) ≤0.4 mg·kg-1(出口标准Export standard) | 0.032 mg·kg-1 |
重金属-铅Heavy metal-Plumbum | ≤0.2 mg·kg-1(GB 2762—2017) | 未检出Not detected |
重金属-铬Heavy metal-Chromium | ≤1.0 mg·kg-1(GB 2762—2017) | 未检出Not detected |
重金属-无机砷Heavy metal-Inorganic arsenic | ≤0.2 mg·kg-1(GB 2762—2017) | 未检出Not detected |
重金属-汞Heavy metal-Hydrargyrum | ≤0.2 mg·kg-1(GB 2762—2017) | 未检出Not detected |
[1] |
李杰, 杨洪建, 邓建平. 江苏水稻生产现状和新形势下绿色可持续发展的技术对策. 中国稻米, 2017, 23(2): 41-44.
doi: 10.3969/j.issn.1006-8082.2017.02.010 |
LI J, YANG H J, DENG J P. Current situation of rice production in Jiangsu Province and technical countermeasures for green and sustainable development under the new circumstances. China Rice, 2017, 23(2): 41-44. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2017.02.010 |
|
[2] |
ALI W, MAO K, ZHANG H, JUNAID M, XU N, RASOOL A, FENG X, YANG Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. Journal of Hazardous Materials, 2020, 397: 122720.
doi: 10.1016/j.jhazmat.2020.122720 |
[3] | 中华人民共和国国家统计局. 2021年粮食和稻谷产量. http://data.stats.gov.cn/search.htm?s=稻谷. [2022-02-28]. |
National Bureau of Statistics of the People’s Republic of China. Grain and rice production in 2021. http://data.stats.gov.cn/search.htm?s=稻谷. [2022-02-28]. (in Chinese) | |
[4] | Our world in data. Arable land use per person in different countries from 1961 to 2018. https://ourworldindata.org. [2022-02-28]. |
[5] | 张福锁. 提高土壤质量实现高产、高效与环保. 中国农资, 2013(7): 23. |
ZHANG F S. Improving soil quality for high yield, efficiency and environmental protection. China Agri-Production News, 2013(7): 23. (in Chinese) | |
[6] | 张福锁. 我国农田土壤酸化现状及影响. 民主与科学, 2016(6): 26-27. |
ZHANG F S. Status and impact of soil acidification on agricultural land in China. Democracy and Science, 2016(6): 26-27. (in Chinese) | |
[7] |
HUANG P, XU J, KLOEPPER J W. Plant-microbe-soil fertility interaction impacts performance of a Bacillus-containing bioproduct on bell pepper. Journal of Basic Microbiology, 2020, 60(1): 27-36.
doi: 10.1002/jobm.201900435 |
[8] | Our world in data. Use of pesticides and fertilizers in different countries from 2002 to 2017. https://ourworldindata.org. [2022-02-28]. |
[9] |
AHMED M, RAUF M, AKHTAR M, MUKHTER Z, SAEED N A. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environmental Science and Pollution Research, 2020, 27: 17661-17670.
doi: 10.1007/s11356-020-08236-y |
[10] | 中华人民共和国国家统计局. 2017年耕地面积. https://data.stats.gov.cn/search.htm?s=全国耕地面积. [2022-02-28]. |
National Bureau of Statistics of the People’s Republic of China. Cultivated land area of 2017. https://data.stats.gov.cn/search.htm?s=全国耕地面积. [2022-02-28]. (in Chinese) | |
[11] | 洪婷. 浅谈微生物肥料研究进展. 南方农业, 2019, 13(35): 157-158. |
HONG T. An introduction to the progress of microbial fertilizer research. South China Agriculture, 2019, 13(35): 157-158. (in Chinese) | |
[12] | 杨丽辉, 张希子, 韩建鑫. 肥料配施对土壤养分含量的影响. 肥料与健康, 2020, 47(6): 14-20. |
YANG L H, ZHANG X Z, HAN J X. Effect of combined application of fertilizers on soil nutrient content. Fertilizer and Health, 2020, 47(6): 14-20. (in Chinese) | |
[13] | 夏波. 耕地土壤安全问题及保护和修复措施. 辽宁农业科学, 2020(6): 64-65. |
XIA B. Soil safety of arable land and measures for its protection and restoration. Liaoning Agricultural Sciences, 2020(6): 64-65. (in Chinese) | |
[14] |
THOMAS G, WITHALL D, BIRKETT M. Harnessing microbial volatiles to replace pesticides and fertilizers. Microbial Biotechnology, 2020, 13(5): 1366-1376.
doi: 10.1111/1751-7915.13645 |
[15] |
SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, ESKER P, MCROBERTS N, NELSON A. The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3(3): 430-439.
doi: 10.1038/s41559-018-0793-y |
[16] | 孔凡斌, 郭巧苓, 潘丹. 中国粮食作物的过量施肥程度评价及时空分异. 经济地理, 2018, 38(10): 201-210, 240. |
KONG F B, GUO Q L, PAN D. Evaluation on overfertilization and its spatial-temporal difference about major grain crops in China. Economic Geography, 2018, 38(10): 201-210, 240. (in Chinese) | |
[17] | 张田野. 化肥零增长行动实施效果及问题研究[D]. 北京: 中国农业科学院, 2020 |
ZHANG T Y. Study on the effect and problems of zero growth action of chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese) | |
[18] | 许祥富, 林明义. 我国新型肥料的研究现状及在水稻上的应用进展. 安徽农业科学, 2021, 49(7): 17-19, 29. |
XU X F, LIN M Y. Research status of new fertilizers in China and its application in rice. Journal of Anhui Agricultural Science, 2021, 49(7): 17-19, 29. (in Chinese) | |
[19] | 郭利京, 王颖. 我国水稻生产中农药过量施用研究: 基于社会和私人利益最大化的视角. 生态与农村环境学报, 2018, 34(5): 401-407. |
GUO L J, WANG Y. Study on overdose of pesticides in rice production in China: Based on the perspective of maximizing social and private interests. Journal of Ecology and Rural Environment, 2018, 34(5): 401-407. (in Chinese) | |
[20] | 杨欣, 胡继连. 粮食作物农药施用减量管理调查研究. 山东农业大学学报(社会科学版), 2019, 21(1): 74-78. |
YANG X, HU J L. Investigation and research on pesticide application reduction management of grain crops. Journal of Shandong Agricultural University (Social Science Edition), 2019, 21(1): 74-78. (in Chinese) | |
[21] | 陈德来, 刘长仲, 张挺峰. 近10年来绿色防控技术在我国植物保护中的应用. 安徽农业科学, 2019, 47(5): 29-32. |
CHEN D L, LIU C Z, ZHANG T F. Application of green prevention and control technology in plant protection in China in recent 10 years. Journal of Anhui Agricultural Sciences, 2019, 47(5): 29-32. (in Chinese) | |
[22] | 秦士娇. 绿色防控技术推广应用存在的问题及对策. 农业科技与信息, 2020(10): 83, 87. |
QIN S J. Problems and countermeasures in the promotion and application of green prevention and control technology. Agricultural Science-Technology and Information, 2020(10): 83, 87. (in Chinese) | |
[23] | 张亮, 杨玉民.我国稻米标准体系现状分析. 安徽农业科学, 2014, 42(31): 11118-11119. |
ZHANG L, YANG Y M. Analysis of current quality standards of Chinese rice. Journal of Anhui Agricultural Sciences, 2014, 42(31): 11118-11119. (in Chinese) | |
[24] | 周伟, 王文杰, 张波, 肖路, 吕海亮, 何兴元. 长春城市森林绿地土壤肥力评价. 生态学报, 2017, 37(4): 1211-1220. |
ZHOU W, WANG W J, ZHANG B, XIAO L, LÜ H L, HE X Y. Soil fertility evaluation for urban forests and green spaces in Changchun City. Acta Ecologica Sinica, 2017, 37(4): 1211-1220. (in Chinese) | |
[25] | 张洪程, 王夫玉. 中国水稻群体研究进展. 中国水稻科学, 2001, 15(1): 51-56. |
ZHANG H C, WANG F Y. Recent progress on research of rice population in China. Chinese Journal of Rice Science, 2001, 15(1): 51-56. (in Chinese) | |
[26] | 王玉雯, 郭九信, 孔亚丽, 张瑞卿, 宋立新, 刘振刚, 张俊, 王建中, 郭世伟. 氮肥优化管理协同实现水稻高产和氮肥高效. 植物营养与肥料学报, 2016, 22(5): 1157-1166. |
WANG Y W, GUO J X, KONG Y L, ZHANG R Q, SONG L X, LIU Z G, ZHANG J, WANG J Z, GUO S W. Nitrogen optimize management achieves high grain yield and enhances nitrogen use efficiency of rice. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1157-1166. (in Chinese) | |
[27] | 叶英聪, 孙波, 刘绍贵, 李文西, 杨帆. 中国水稻土酸化时空变化特征及其对氮素盈余的响应. 农业机械学报, 2021, 52(2): 246-256. |
YE Y C, SUN B, LIU S G, LI W X, YANG F. Spatial-temporal variation of paddy soil acidification and its response to nitrogen surplus in China. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 246-256. (in Chinese) | |
[28] |
CHEN Z, WANG Q, MA J, ZOU P, JIANG L. Impact of controlled-release urea on rice yield, nitrogen use efficiency and soil fertility in a single rice cropping system. Scientific Reports, 2020, 10(1): 10432.
doi: 10.1038/s41598-020-67110-6 |
[29] |
YANG Y, LI M, WU J, PAN X, GAO C, TANG D W S. Impact of combining long-term subsoiling and organic fertilizer on soil microbial biomass carbon and nitrogen, soil enzyme activity, and water use of winter wheat. Frontiers in Plant Science, 2022, 12: 788651.
doi: 10.3389/fpls.2021.788651 |
[30] | 许江, 戴慧敏, 刘国栋, 宋运红. 不同土地利用方式下土壤酶活性的变化研究. 地质与资源, 2020, 29(6): 579-584. |
XU J, DAI H M, LIU G D, SONG Y H. Study on the changes of soil enzyme activity under different land use types. Geology and Resources, 2020, 29(6): 579-584. (in Chinese) | |
[31] | 熊明彪, 田应兵, 雷孝章, 宋光煜, 曹叔尤. 小麦生长期内土壤养分与土壤酶活性变化及其相关性研究. 水土保持学报, 2003, 17(4): 27-30. |
XIONG M B, TIAN Y B, LEI X Z, SONG G Y, CAO S Y. Dynamics of soil nutrition and soil enzyme activity and their relationships during wheat grow. Journal of Soil and Water Conservation, 2003, 17(4): 27-30. (in Chinese) | |
[32] |
WANG X, TENG Y, REN W, LI Y, YANG T, CHEN Y, ZHAO L, ZHANG H, KURAMAE E E. Variations of bacterial and diazotrophic community assemblies throughout the soil profile in distinct paddy soil types and their contributions to soil functionality. mSystems, 2022, 7(2): e0104721.
doi: 10.1128/msystems.01047-21 |
[33] | 胡柯鑫, 罗尊长, 董春华, 洪曦, 孙梅, 谢宜, 周旋, 刘杰, 孙耿. 化肥减施有机肥施用及秸秆还田下双季稻产量变化及光合特征研究. 华北农学报, 2020, 35(5): 107-114. |
HU K X, LUO Z C, DONG C H, HONG X, SUN M, XIE Y, ZHOU X, LIU J, SUN G. Study on yield changes and photosynthetic characteristics of double-cropping rice under organic fertilizer application and straw returning under reduced chemical fertilizer application. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 107-114. (in Chinese) | |
[34] |
ZHOU G, QIU X, ZHANG J, TAO C. Effects of seaweed fertilizer on enzyme activities, metabolic characteristics, and bacterial communities during maize straw composting. Bioresource Technology, 2019, 286: 121375.
doi: 10.1016/j.biortech.2019.121375 |
[35] | 王洪杰, 倪俊, 张怡, 张玲, 辛越勇. 新型固碳途径—3-羟基丙酸循环的研究进展. 微生物学通报, 2013, 40(2): 304-315. |
WANG H J, NI J, ZHANG Y, ZHANG L, XIN Y Y. The progress of studies on a unique carbon dioxide pathway: 3-hydroxypropionic cycle. Microbiology China, 2013, 40(2): 304-315. (in Chinese) | |
[36] | 孟建宇, 冀锦华, 郭慧琴, 陶羽, 冯福应, 赵鸿彬. 常温纤维素降解细菌的筛选及其复合系的构建. 生物学杂志, 2020, 37(3): 86-90. |
MENG J Y, JI J H, GUO H Q, TAO Y, FENG F Y, ZHAO H B. Isolation of room temperature cellulose-degrading bacteria and construction of degrading consortia. Journal of Biology, 2020, 37(3): 86-90. (in Chinese) |
[1] | 李佳燕,孙良杰,马南,王丰,汪景宽. 不同肥力棕壤玉米根茬和茎叶残体碳氮的固定特征[J]. 中国农业科学, 2022, 55(23): 4664-4677. |
[2] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[3] | 马超,王玉宝,邬刚,王泓,汪建飞,朱林,李佳佳,马晓静,柴如山. 近十年安徽省秸秆直接还田研究进展[J]. 中国农业科学, 2022, 55(18): 3584-3599. |
[4] | 郭迎新,陈永亮,苗琪,范志勇,孙军伟,崔振岭,李军营. 洱海流域植烟土壤养分时空变异特征及肥力评价[J]. 中国农业科学, 2022, 55(10): 1987-1999. |
[5] | 任海英,周慧敏,戚行江,郑锡良,俞浙萍,张淑文,王震铄. 多效唑对杨梅土壤微生物及内生群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3752-3765. |
[6] | 尹思佳,李慧,徐志强,裴久渤,戴继光,刘雨薇,李艾蒙,于雅茜,刘维,汪景宽. 东北典型黑土区旱地耕层土壤肥力指标的纬度变化特征及其关系[J]. 中国农业科学, 2021, 54(10): 2132-2141. |
[7] | 郑福丽,刘苹,李国生,张柏松,李燕,魏建林,谭德水. 有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应[J]. 中国农业科学, 2020, 53(21): 4355-4364. |
[8] | 张露,张水清,任科宇,李俊杰,段英华,徐明岗. 不同肥力潮土的酶活计量比特征及其与微生物量的关系[J]. 中国农业科学, 2020, 53(20): 4226-4236. |
[9] | 张维理,KOLBEH,张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331. |
[10] | 袁武,靳振江,程跃扬,贾远航,梁锦桃,邱江梅,潘复静,刘德深. 岩溶湿地和稻田的土壤酶活性与CO2和CH4排放特征[J]. 中国农业科学, 2020, 53(14): 2897-2906. |
[11] | 徐梦,徐丽君,程淑兰,方华军,卢明珠,于光夏,杨艳,耿静,曹子铖,李玉娜. 人工草地土壤有机碳组分与微生物群落对施氮补水的响应[J]. 中国农业科学, 2020, 53(13): 2678-2690. |
[12] | 王劲松,董二伟,武爱莲,白文斌,王媛,焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响[J]. 中国农业科学, 2019, 52(22): 4166-4176. |
[13] | 李文广,杨晓晓,黄春国,薛乃雯,夏清,刘小丽,张晓琪,杨思,杨珍平,高志强. 饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响[J]. 中国农业科学, 2019, 52(15): 2664-2677. |
[14] | 张承,王秋萍,周开拓,吴小毛,龙友华,李姣红,尹显慧. 猕猴桃园套种吉祥草对土壤酶活性及果实产量、品质的影响[J]. 中国农业科学, 2018, 51(8): 1556-1567. |
[15] | 吕波,王宇函,夏浩,姚子涵,姜存仓. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315. |
|