中国农业科学 ›› 2019, Vol. 52 ›› Issue (15): 2664-2677.doi: 10.3864/j.issn.0578-1752.2019.15.010

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响

李文广,杨晓晓,黄春国,薛乃雯,夏清,刘小丽,张晓琪,杨思,杨珍平(),高志强   

  1. 山西农业大学农学院,山西太谷030801
  • 收稿日期:2019-03-15 接受日期:2019-05-29 出版日期:2019-08-01 发布日期:2019-08-06
  • 通讯作者: 杨珍平
  • 作者简介:李文广,Tel:18404983422;E-mail: 18404983422@163.com
  • 基金资助:
    国家公益性行业农业科研专项(201503120);国家自然科学基金项目(31101113);国家现代农业产业技术体系建设专项(CARS-03-01-24);山西省科技创新团队项目(201605D131041);作物生态与旱作栽培生理山西省重点实验室项目(201705D111007)

Effects of Rapeseed Green Manure on Soil Fertility and Bacterial Community in Dryland Wheat Field

LI WenGuang,YANG XiaoXiao,HUANG ChunGuo,XUE NaiWen,XIA Qing,LIU XiaoLi,ZHANG XiaoQi,YANG Si,YANG ZhenPing(),GAO ZhiQiang   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2019-03-15 Accepted:2019-05-29 Online:2019-08-01 Published:2019-08-06
  • Contact: ZhenPing YANG

摘要:

【目的】探讨黄土高原旱地麦后复种饲料油菜还田对后茬麦田土壤养分、酶活性及细菌群落的影响,为改善农田地力提供依据。【方法】设置饲料油菜播量(S1:小播量;S2:中播量;S3:大播量)和还田时期(D1:早期还田9月10日;D2:中期还田9月20日;D3:晚期还田9月30日)二因素试验,以常规农户复种夏玉米模式为对照,比较后茬麦田土壤养分及酶活性变化,并采用16S rRNA 基因Illumina MiSeq高通量测序技术和PICRUSt基因预测分析方法,比较后茬麦田耕层土壤细菌群落结构、多样性及代谢功能变化。【结果】与常规农户模式相比,饲料油菜还田可不同程度提升土壤养分及酶活性,其中有机质含量和蔗糖酶活性的提升范围最大,分别为11.73%—60.5% 和1.4%—94.5%;饲料油菜播量显著影响土壤养分和酶活性,还田时期显著影响土壤有机质含量和蔗糖酶活性,二者间互作效应显著影响碱性磷酸酶活性;播量、还田时期及其互作效应均显著影响细菌群落多样性;大播量晚期还田处理(S3D3)在所有指标中均表现最优。细菌群落组成方面,门水平上10个土壤样品共得到19个类群,其中优势菌群为变形菌门、放线菌门、酸杆菌门和厚壁菌门;聚类结果显示,10个处理可聚为大播量、中播量、小播量和常规农户模式4类,表明不同播量油菜还田明显改变了土壤细菌群落构成。RDA分析表明,土壤养分、酶活性与细菌群落多样性密切相关。PICRUSt功能预测表明,土壤细菌群落具有丰富的代谢功能,其中编码新陈代谢的基因具有明显优势;二级预测功能分类中,氨基酸代谢、碳水化合物代谢和能量代谢是主要代谢功能路径。KEGG直系同源基因簇KO(KEGG orthologous groups)丰度热图结果表明,油菜还田增加了与土壤碳、氮代谢相关的细菌群落。【结论】合理复种饲料油菜并还田可提高后茬麦田土壤养分含量及酶活性,并有效改善细菌群落多样性,增加土壤有益菌群落数量。夏闲期引入饲料油菜作绿肥对提高黄土高原旱地麦田土壤肥力以及合理农作非常有利。

关键词: 油菜, 还田, 绿肥, 小麦, 土壤肥力, 细菌群落, 高通量测序, 功能预测

Abstract:

【Objective】 The experiment was conducted to explore the effects of rapeseed planting as green manure on soil nutrients, enzyme activities and bacterial community in dryland wheat field of Loess Plateau in order to improve farmland fertility. 【Method】The experiment was arranged as two-factor split-plot design including sowing rates (S1: small amount; S2: medium amount; S3: large amount) as main plots and rapeseed composting dates (D1: September 10 as early period; D2: September 20 as medium period; D3: September 30 as late period) as subplots. Soil samples at replanting maize field at local areas were considered as control to compare the soil nutrient and enzyme activities. The high-throughput sequencing and PICRUSt gene prediction analysis method was used to determine soil community composition and metabolic function.【Result】Rapeseed manure increased the soil nutrients, enzyme activity and soil bacterial community and soil organic matter and sucrase activity were increased the most, ranging from 11.7% to 60.5%, and 1.4% to 94.5%, respectively, compared with control. Soil nutrients and enzyme activities were significantly affected by rapeseed sowing rates and soil organic matter, and sucrase activity were significantly affected by rapeseed composting dates. Alkaline phosphatase activity and soil bacterial community were significantly influenced with interaction between sowing rate and compositing date. Soil nutrients, enzyme activities and soil bacterial community diversity in S3D3 group were the highest as compared to other treatments. For bacterial community composition, 19 bacterial populations were identified in 10 soil samples at the phylum level, of which the dominant bacterial population were Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes. Cluster analysis showed that ten treatments could be clustered into four categories, including large amount, medium amount, small amount and control. Results indicated that rapeseed composting could significantly altered soil bacterial community composition. RDA analysis showed that there was a positive correlation between soil nutrients, enzyme activities and Acidobacteria, Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Gemmatimonadetes, Actinobacteria and bacterial diversity. According to the PICRUSt analysis, soil bacterial community had rich metabolic functions and genes encoding metabolism were highest. Amino acid metabolism, carbohydrate metabolism, energy metabolism and environmental information processes were key metabolic function pathways in secondary prediction function classification. Heat map analysis of KEGG demonstrated that rapeseed composting increased the bacterial community associated with soil carbon and nitrogen metabolism.【Conclusion】Sowing amount and rapeseed composting date significantly increased the soil nutrients, enzyme activities of succeeding wheat field and effectively, and improved the composition and diversity of soil bacterial community and enhanced the beneficial bacteria. The introduction of feed rapeseed as green manure during the summer fallow period is beneficial to improve the soil fertility and provide reasonable farming system in the dryland of the Loess Plateau.

Key words: rape, returning, green manure, wheat, soil fertility, bacterial community, high-throughput sequencing, functional predicting