中国农业科学 ›› 2022, Vol. 55 ›› Issue (1): 26-35.doi: 10.3864/j.issn.0578-1752.2022.01.003
张北举(),陈松树,李魁印,李鲁华,徐如宏,安畅,熊富敏,张燕,董俐利,任明见(
)
收稿日期:
2021-06-01
接受日期:
2021-07-30
出版日期:
2022-01-01
发布日期:
2022-01-07
通讯作者:
任明见
作者简介:
张北举,E-mail: 基金资助:
ZHANG BeiJu(),CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian(
)
Received:
2021-06-01
Accepted:
2021-07-30
Online:
2022-01-01
Published:
2022-01-07
Contact:
MingJian REN
摘要:
【目的】高粱是酿酒和饲料的主要原料之一,其籽粒直链淀粉含量与支链淀粉含量的比值大小与白酒品质及饲料质量密切相关。传统的高粱成分化学检测方法已不适合高通量测试,采用改进最小二乘法(modified PLS)对高粱样品的近红外光谱图进行光谱预处理、得分处理和结果监控建立高粱籽粒直链淀粉、支链淀粉含量的预测模型,旨在得到一种快速高效低成本的检测方法,为高粱的遗传改良及品质分析提供依据。【方法】从450份高粱资源中筛选出112份代表品种作为校正集和验证集,通过双波长法测定112份高粱品种籽粒中直链淀粉、支链淀粉含量的化学值,并收集波长为850—1 048 nm的近红外光谱,对光谱进行扫描数据矩阵和化学数据计算得分(PL1)处理解释光谱间差异,剔除马氏距离(GH)大于3的超常品种以减小建模误差。采用Modified PLS回归技术建模,通过不同散射处理和导数处理等方法建立不同的定标模型。根据交叉验证标准偏差(SECV)、交叉验证相关系数(1-VR)确定最佳模型,并进行结果监控和非参数检验评估模型的预测性能。【结果】直链淀粉的近红外预测模型SECV是2.7732,1-VR是0.9503,相关系数(RSQ)是0.9688。Bias=0.229<2.7732(SECV)×0.6,即偏差(Bias)小于定标模型SECV的0.6倍;预测标准偏差(SEP)=1.266<2.7732(SECV)×1.3=3.60516,即SEP小于定标模型SECV的1.3倍,11.01(SD)—10.81(SD)=0.2<11.02(SD)×0.2=2.204即化学数据和近红外预测数据标准偏差(SD)差值小于化学数据SD的20%。支链淀粉的近红外预测模型SECV是1.7516,1-VR是0.8818,RSQ是0.9127。Bias=-0.014<1.7516(SECV)×0.6即Bias小于定标模型SECV的0.6倍,SEP=1.316<1.7516(SECV)×1.3=2.2708即SEP小于定标模型SECV的1.3倍,5.30–5.29=0.01<5.30×0.2=1.06即化学数据和近红外预测数据SD差值小于化学数据SD的20%。利用30份模型外高粱籽粒对模型的有效性进行两配对样本非参数检验,结果表明,直链淀粉含量和支链淀粉含量的测定值与预测值之间差异不显著(P=0.262>0.05;P=0.992>0.05)。【结论】所建立的近红外模型精准度高,稳定性好,能准确快速地检测高粱籽粒中直链淀粉、支链淀粉的含量,可用于高粱的遗传改良及高粱品质的检测。
张北举,陈松树,李魁印,李鲁华,徐如宏,安畅,熊富敏,张燕,董俐利,任明见. 基于近红外光谱的高粱籽粒直链淀粉、支链淀粉含量检测模型的构建与应用[J]. 中国农业科学, 2022, 55(1): 26-35.
ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy[J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
表2
不同处理方法高粱直链淀粉、支链淀粉含量的主要评价参数"
处理方法 Approach | 淀粉类型 Starch type | 样品数量 Number of samples | 定标标准 偏差 SEC | 相关 系数 RSQ | 交叉验证标准偏差 SECV | 交叉验证相关系数 1-VR |
---|---|---|---|---|---|---|
标准正常化+散射处理+一阶导数SNV+detrend+first derivative | 直链淀粉 Amylose | 76 | 2.5045 | 0.9602 | 3.2933 | 0.9316 |
标准正常化+散射处理+二阶导数SNV+detrend+second derivative | 直链淀粉 Amylose | 79 | 2.7621 | 0.9516 | 3.3402 | 0.9298 |
无散射处理+一阶导数None+first derivative | 直链淀粉 Amylose | 81 | 3.3227 | 0.9288 | 3.8291 | 0.9053 |
无散射处理+二阶导数None+second derivative | 直链淀粉 Amylose | 81 | 3.0363 | 0.9406 | 3.7766 | 0.9079 |
标准正常化处理+一阶导数SNV+first derivative | 直链淀粉 Amylose | 75 | 2.7078 | 0.9508 | 3.3899 | 0.9229 |
标准正常化处理+二阶导数SNV+second derivative | 直链淀粉 Amylose | 76 | 2.1958 | 0.9688 | 2.7732 | 0.9503 |
去散射处理+一阶导数Detrend only+first derivative | 直链淀粉 Amylose | 80 | 3.1756 | 0.9332 | 3.7943 | 0.9045 |
去散射处理+二阶导数Detrend only+second derivative | 直链淀粉 Amylose | 81 | 3.2852 | 0.9304 | 3.6507 | 0.9139 |
多元离散校正+一阶导数MSC+first derivative | 直链淀粉 Amylose | 73 | 2.6378 | 0.9540 | 3.3120 | 0.9273 |
多元离散校正+二阶导数MSC+second derivative | 直链淀粉 Amylose | 79 | 2.4211 | 0.9624 | 2.9392 | 0.9447 |
反向多元离散校正+一阶导数Inverse-MSC+first derivative | 直链淀粉 Amylose | 76 | 3.0152 | 0.9409 | 3.4970 | 0.9208 |
反向多元离散校正+二阶导数Inverse-MSC+second derivative | 直链淀粉 Amylose | 77 | 3.3412 | 0.9245 | 3.5641 | 0.9138 |
加权散射校正+一阶导数Weighted MSC++first derivative | 直链淀粉 Amylose | 79 | 2.7588 | 0.9513 | 3.8374 | 0.9065 |
加权散射校正+二阶导数Weighted MSC+second derivative | 直链淀粉 Amylose | 80 | 2.7625 | 0.9507 | 3.3601 | 0.9273 |
标准正常化+散射处理+一阶导数SNV+detrend+first derivative | 支链淀粉 Amylopectin | 43 | 1.4723 | 0.9173 | 1.9041 | 0.8602 |
标准正常化+散射处理+二阶导数SNV+detrend+second derivative | 支链淀粉Amylopectin | 44 | 1.3861 | 0.9209 | 1.9073 | 0.8486 |
无散射处理+一阶导数None+first derivative | 支链淀粉Amylopectin | 44 | 1.9477 | 0.8434 | 2.3981 | 0.7607 |
无散射处理+二阶导数None+second derivative | 支链淀粉Amylopectin | 46 | 2.2004 | 0.8217 | 2.6703 | 0.7353 |
标准正常化处理+一阶导数SNV+first derivative | 支链淀粉Amylopectin | 44 | 1.5098 | 0.9127 | 1.7516 | 0.8818 |
标准正常化处理+二阶导数SNV+second derivative | 支链淀粉Amylopectin | 45 | 2.1107 | 0.8368 | 2.2006 | 0.8209 |
去散射处理+一阶导数Detrend only+first derivative | 支链淀粉Amylopectin | 46 | 2.2710 | 0.8100 | 2.5787 | 0.7531 |
去散射处理+二阶导数Detrend only+second derivative | 支链淀粉Amylopectin | 46 | 2.3122 | 0.8031 | 2.6936 | 0.7306 |
多元离散校正+一阶导数MSC+first derivative | 支链淀粉Amylopectin | 41 | 1.4930 | 0.9119 | 1.7521 | 0.8794 |
多元离散校正+二阶导数MSC+second derivative | 支链淀粉Amylopectin | 45 | 2.0743 | 0.8424 | 2.1851 | 0.8234 |
反向多元离散校正+一阶导数Inverse-MSC+first derivative | 支链淀粉Amylopectin | 44 | 1.5827 | 0.9029 | 1.7719 | 0.8790 |
反向多元离散校正+二阶导数Inverse-MSC+second derivative | 支链淀粉Amylopectin | 45 | 1.3854 | 0.9305 | 1.8142 | 0.8795 |
加权散射校正+一阶导数Weighted MSC+first derivative | 支链淀粉Amylopectin | 42 | 1.6364 | 0.8718 | 2.0300 | 0.8010 |
加权散射校正+二阶导数Weighted MSC+second derivative | 支链淀粉Amylopectin | 42 | 1.6410 | 0.8918 | 2.0391 | 0.8339 |
表3
化学测定值和近红外模型预测值结果比较"
序号 No. | 测定值 Measured value | 预测值 Predicted value | 测定值与预测值差异 Difference of value | |||
---|---|---|---|---|---|---|
直链淀粉Amylose | 支链淀粉Amylopectin | 直链淀粉Amylose | 支链淀粉Amylopectin | 直链淀粉Amylose | 支链淀粉Amylopectin | |
1 | 12.030 | 49.610 | 12.094 | 50.893 | -0.064 | -1.238 |
2 | 9.730 | 48.780 | 8.933 | 48.967 | 0.797 | -0.187 |
3 | 38.020 | 29.020 | 39.256 | 28.190 | -1.236 | 0.830 |
4 | 30.260 | 38.710 | 31.733 | 38.206 | -1.472 | 0.504 |
5 | 9.740 | 48.500 | 10.817 | 48.644 | -1.077 | -0.144 |
6 | 38.440 | 37.160 | 36.908 | 37.452 | 1.532 | -0.292 |
7 | 40.080 | 47.100 | 39.215 | 45.670 | 0.865 | 1.430 |
8 | 31.760 | 41.400 | 31.298 | 42.629 | 0.462 | -1.229 |
9 | 28.420 | 43.520 | 27.056 | 44.158 | 1.364 | -0.638 |
10 | 12.370 | 47.390 | 12.00 | 48.180 | 0.370 | -0.790 |
11 | 27.580 | 46.110 | 26.088 | 47.377 | 1.492 | -1.267 |
12 | 13.720 | 52.230 | 13.368 | 49.854 | 0.352 | 2.376 |
13 | 15.550 | 45.840 | 14.400 | 48.761 | 1.150 | -2.921 |
14 | 8.890 | 47.510 | 9.847 | 48.098 | -0.957 | -0.588 |
15 | 12.500 | 47.260 | 11.744 | 49.650 | 0.756 | -2.390 |
16 | 14.420 | 46.300 | 16.154 | 46.405 | -1.734 | -0.105 |
17 | 13.420 | 48.460 | 12.164 | 47.136 | 1.256 | 1.324 |
18 | 7.650 | 47.730 | 8.144 | 49.223 | -0.494 | -1.493 |
19 | 6.810 | 51.890 | 9.679 | 53.231 | -2.869 | -1.341 |
20 | 21.380 | 50.440 | 19.716 | 47.841 | 1.664 | 2.599 |
21 | 9.730 | 49.870 | 8.744 | 48.124 | 0.986 | 1.746 |
22 | 24.820 | 47.410 | 24.288 | 47.009 | 0.532 | 0.401 |
23 | 39.620 | 35.310 | 38.362 | 34.939 | 1.258 | 0.371 |
24 | 24.430 | 47.140 | 23.864 | 45.625 | 0.566 | 1.515 |
25 | 31.040 | 42.130 | 32.280 | 42.999 | -1.240 | -0.869 |
26 | 34.280 | 41.390 | 32.245 | 42.238 | 2.035 | -0.848 |
27 | 15.840 | 46.650 | 14.222 | 46.316 | 1.618 | 0.334 |
28 | 10.260 | 53.960 | 10.258 | 52.351 | 0.002 | 1.609 |
29 | 25.500 | 45.370 | 27.481 | 44.757 | -1.981 | 0.613 |
30 | 9.490 | 44.690 | 8.549 | 44.383 | 0.941 | 0.307 |
表4
单样本科尔翼戈洛夫-斯米诺夫检验"
指标 Index | 直链淀粉 Amylose | 支链淀粉 Amylopectin | |
---|---|---|---|
个案数No. of cases | 30 | 30 | |
正态参数a,b Normal parameter | 平均值Mean | 20.59 | 45.63 |
标准差SD | 11.01 | 5.30 | |
最极端差值 The most extreme difference | 绝对Absolute | 0.200 | 0.183 |
正Positive | 0.200 | 0.082 | |
负Negative | -0.105 | -0.183 | |
检验统计Test statistics | 0.200 | 0.183 | |
渐进显著性(双尾)c Progressive significance (two-tailed) | 0.003c | 0.012c |
[1] | 焦少杰, 王黎明, 姜艳喜, 严洪冬, 苏德峰, 孙广全. 高粱与固态白酒关系的研究综述. 酿酒, 2015, 42(1): 13-16. |
JIAO S J, WANG L M, JIANG Y X, YAN H D, SU D F, SUN G Q. A review of the research on the relationship between sorghum and solid liquor. Wine Making, 2015, 42(1): 13-16. (in Chinese) | |
[2] |
OMAR J, SLOWIKOWSKI B, BOIX A. Chemometric approach for discriminating tobacco trademarks by near infrared spectroscopy. Forensic Science International, 2019, 294: 15-20.
doi: 10.1016/j.forsciint.2018.10.016 |
[3] |
CHEN H, TAN C, LIN Z, LI H J. Quantifying several adulterants of Noto ginseng powder by near-infrared spectroscopy and multivariate calibration. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 211: 280-286.
doi: 10.1016/j.saa.2018.12.003 |
[4] |
SIRSOMBOON P, POSOM J. On-line measurement of activation energy of ground bamboo using near infrared spectroscopy. Renewable Energy, 2019, 133: 480-488.
doi: 10.1016/j.renene.2018.10.051 |
[5] | 陈雪萍, 刘世尧, 尹能文, 荆凌云, 魏丽娟, 林呐, 肖阳, 徐新福, 李加纳, 刘列钊. 甘蓝型油菜茎秆纤维组分含量和木质素单体G/S近红外模型构建. 中国农业科学, 2018, 51(4): 688-698. |
CHEN X P, LIU S Y, YIN N W, JING L Y, WEI L J, LIN N, XIAO Y, XU X F, LI J N, LIU L Z. Construction of NIR model of fiber component content and lignin monomer G/S in Brassica napus stalk. Scientia Agricultura Sinica, 2018, 51(4): 688-698. (in Chinese) | |
[6] |
TKACHUK R. Oil and protein analysis of whole rapeseed kernels by near infrared reflectance spectroscopy. Journal of the American Oil Chemists’ Society, 1981, 58(8): 819-822.
doi: 10.1007/BF02665588 |
[7] |
PANFORD J A, WILLIAMS P C, DEMAN J M. Analysis of oilseeds for protein, oil, fiber and moisture by near-infrared reflectance spectroscopy. Journal of the American Oil Chemists’ Society, 1988, 65(10): 1627-1634.
doi: 10.1007/BF02912567 |
[8] | 王翠秀, 曹建飞, 顾振飞, 徐明雪, 吴泉源. 基于近红外光谱大豆蛋白质、脂肪快速无损检测模型的优化构建. 大豆科学, 2019, 38(6): 968-976. |
WANG C X, CAO J F, GU Z F, XU M X, WU Q Y. Optimized construction of a rapid non-destructive detection model for soybean protein and fat based on near-infrared spectroscopy. Soybean Science, 2019, 38(6): 968-976. (in Chinese) | |
[9] |
ZHANG Y M, GUO W C. Moisture content detection of maize seed based on visible/near-infrared and near-infrared hyperspectral imaging technology. International Journal of Food Science and Technology. 2020, 55: 631-640.
doi: 10.1111/ijfs.v55.2 |
[10] | 李佳佳, 洪慧龙, 万明月, 储丽, 赵敬会, 汪明华, 徐志鹏, 张阴, 黄志平, 张文明, 王晓波, 邱丽娟. 基于近红外光谱的大豆茎秆化学组分含量检测模型构建与应用. 中国农业科学, 2021, 54, 54(5): 887-900. |
LI J J, HONG H L, WAN M Y, CHU L, ZHAO J H, WANG M H, XU Z P, ZHANG Y, HUANG Z P, ZHANG W M, WANG X B, QIU L J. Construction and application of soybean stem chemical composition detection model based on near infrared spectroscopy. Scientia Agricultura Sinica, 2021, 54, 54(5): 887-900. (in Chinese) | |
[11] | 黄朝晖, 陆平, 杨楠, 孟宪军, 任贵兴. 近红外光谱法测定高粱原花青素含量. 食品科技, 2008(10): 207-210. |
HUANG Z H, LU P, YANG N, MENG X J, REN G X. Determination of proanthocyanidins content of sorghum by near infrared spectroscopy. Food Science and Technology, 2008(10): 207-210. (in Chinese) | |
[12] | 刘敏轩, 黄赟文, 韩建国. 高粱籽粒中多酚类物质的傅里叶变换近红外光谱分析. 分析化学, 2009, 37(9): 1275-1280. |
LIU M X, HUANG Y W, HAN J G. Fourier transform near infrared spectroscopy analysis of polyphenols in sorghum grains. Chinese Journal of Analytical Chemistry, 2009, 37(9): 1275-1280. (in Chinese) | |
[13] |
SIMEONE M L F, PARRELLA R A C, SCHAFFERT R E S, DAMASCENO C M B, LEAL M C B, PASQUINI C. Near infrared spectroscopy determination of sucrose, glucose and fructose in sweet sorghum juice. Microchemical Journal, 2017, 134: 125-130.
doi: 10.1016/j.microc.2017.05.020 |
[14] | 纪楠. 大豆秸秆木质素和纤维素含量与近红外光谱相关性模型研究[D]. 哈尔滨: 东北农业大学, 2016. |
JI N. Research on the correlation model between lignin and cellulose content of soybean straw and near infrared spectroscopy[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese) | |
[15] | CELIO P. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. Journal of the Brazilian Society, 2003, 4(1): 198-219. |
[16] | GB/T15683-2008, 大米直链淀粉含量的测定. 北京: 中国标准出版社, 2008. |
GB/T15683-2008, Determination of amylose content in rice. Beijing: China Standard Press, 2008. (in Chinese) | |
[17] |
GARRIDOVARO A, GARCIAOLMO J, FEARN T. A note on Mahalanobis and related distance measures in WinISI and The Unscrambler. Journal of Near Infrared Spectroscopy, 2019, 27(4): 253-258.
doi: 10.1177/0967033519848296 |
[18] | BAI T C, WANG T, CHEN Y Q, MERCATORIS B. Comparison of near-infrared spectrum pretreatment methods for Jujube leaf moisture content detection in the sand and dust area of southern Xinjiang. Spectroscopy and Spectral Analysis, 2019, 39: 1323-1328. |
[19] | 郑震璇. 近红外光谱分析技术在饲料加工行业的应用. 福建农机, 2019, 40(1): 24-27. |
ZHENG Z X. Application of near infrared spectroscopy analysis technology in feed processing industry. Fujian Agricultural Machinery, 2019, 40(1): 24-27. (in Chinese) | |
[20] |
VAMADEVAN V, BERTOFT E. Structure-function relationships of starch components. Starch-Stärke, 2015, 67(1/2): 55-68.
doi: 10.1002/star.v67.1-2 |
[21] |
LEE J H, YOU S, KWEON D K, CHUNG H J, LIM S T. Dissolution behaviors of waxy maize amylopectin in aqueous-DMSO solutions containing NaCl and CaCl2. Food Hydrocolloids, 2014, 35: 115-121.
doi: 10.1016/j.foodhyd.2013.05.003 |
[22] |
BERTOFT E. Understanding starch structure: Recent progress. Agronomy 2017, 7: 1-29.
doi: 10.3390/agronomy7010001 |
[23] | 郝勇. 近红外光谱微量分析方法研究[D]. 天津: 南开大学, 2009. |
HAO Y. Research on near infrared spectroscopy microanalysis method[D]. Tianjin: Nankai University. 2009. (in Chinese) | |
[24] | 梁晓燕, 吉海彦. 近红外光谱技术在农作物品质分析方面的应用. 中国农学通报, 2006, 22(1): 366-371. |
LIANG X Y, JI H Y. Application of near infrared spectroscopy technology in crop quality analysis. Chinese Agricultural Science Bulletin, 2006, 22(1): 366-371. (in Chinese) | |
[25] | 王家多, 周向阳, 金同铭, 胡祥娜, 钟娇娥, 吴启堂. 近红外光谱检测技术在农业和食品分析上的应用. 光谱学与光谱分析, 2004, 24(4): 447-450. |
WANG J D, ZHOU X Y, JIN T M, HU X N, ZHONG J E, WU Q T. The application of near-infrared spectroscopy detection technology in agriculture and food analysis. Spectroscopy and Spectral Analysis, 2004, 24(4): 447-450. (in Chinese) | |
[26] | 刘红梅, 肖正午, 申涛, 蒋鹏, 单双吕, 邹应兵. 稻米直链淀粉含量近红外检测模型的建立. 湖南农业大学学报, 2019, 45(2): 189-193. |
LIU H M, XIAO Z W, SHEN T, JIANG P, SHAN S L, ZOU Y B. Establishment of near infrared detection Model of rice amylose content. Journal of Hunan Agricultural University, 2019, 45(2): 189-193. (in Chinese) | |
[27] | 王勇生, 李洁, 王博, 张宇婷, 耿俊林. 基于近红外光谱技术评估高粱中粗蛋白质、水分含量的研究. 动物营养学报, 2020, 32(3): 1353-1361. |
WANG Y S, LI J, WANG B, ZHANG Y T, GENG J L. Research on the evaluation of crude protein and moisture content in sorghum based on near-infrared spectroscopy technology. Chinese Journal of Animal Nutrition, 2020, 32(3): 1353-1361. (in Chinese) | |
[28] | 巫小建, 曾凡荣, 岳文浩, 汪军妹. 大麦籽粒总淀粉含量近红外快速无损检测模型的构建. 浙江农业科学, 2021, 62(1): 40-41. |
WU X J, ZENG F R, YUE W H, WANG J M. Construction of a near-infrared rapid non-destructive detection model for the total starch content of barley grains. Zhejiang Agricultural Sciences, 2021, 62(1): 40-41. (in Chinese) | |
[29] | 韩浩楠, 王美娟, 赵训超, 鲁鑫, 周志强, 李明顺, 张德贵, 郝传芳, 翁剑峰, 雍红军, 李新海. 玉米粉淀粉含量近红外模型建立与优化. 玉米科学, 2020, 28(6): 81-87. |
HAN H N, WANG M J, ZHAO X C, LU X, ZHOU Z Q, LI M S, ZHANG D G, HAO C F, WENG J F, YONG H J, LI X H. Establishment and optimization of near-infrared model of corn flour starch content. Maize Science, 2020, 28(6): 81-87. (in Chinese) | |
[30] |
KIM G, HONG S J, LEE A Y, LEE Y E, LM S. Moisture content measurement of broadleaf litters using near-infrared spectroscopy technique. Remote Sensing, 2017, 9(12): 1212.
doi: 10.3390/rs9121212 |
[31] |
CHEN J M, LI M L, PAN T, PANG L W, YAO L J, ZHANG J. Rapid and non-destructive for the identification of multi-grain rice seeds with near-infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219(5): 179-185.
doi: 10.1016/j.saa.2019.03.105 |
[1] | 王劲松,董二伟,刘秋霞,武爱莲,王媛,王立革,焦晓燕. 行距和密度对籽粒饲用高粱产量和品质的影响[J]. 中国农业科学, 2022, 55(16): 3123-3133. |
[2] | 史晓龙,郭佩,任婧瑶,张鹤,董奇琦,赵新华,周宇飞,张正,万书波,于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究[J]. 中国农业科学, 2022, 55(15): 2927-2937. |
[3] | 徐晓,任根增,赵欣蕊,常金华,崔江慧. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J]. 中国农业科学, 2022, 55(11): 2092-2108. |
[4] | 张恒栋,黄敏,邹应斌,陈佳娜,单双吕. 米粉稻籽粒直链淀粉积累特性[J]. 中国农业科学, 2021, 54(7): 1354-1364. |
[5] | 李佳佳,洪慧龙,万明月,储丽,赵敬会,汪明华,徐志鹏,张阴,黄志平,张文明,王晓波,邱丽娟. 基于近红外光谱的大豆茎秆化学组分含量检测模型构建与应用[J]. 中国农业科学, 2021, 54(5): 887-900. |
[6] | 李顺国,刘猛,刘斐,邹剑秋,陆晓春,刁现民. 中国高粱产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 471-482. |
[7] | 张彦,王劲松,董二伟,武爱莲,王媛,焦晓燕. 中晚熟区主要高粱品种耐瘠性综合评价[J]. 中国农业科学, 2021, 54(23): 4954-4968. |
[8] | 钟亮,郭熙,国佳欣,韩逸,朱青,熊杏. 基于数据挖掘技术的高光谱土壤质地分类研究[J]. 中国农业科学, 2020, 53(21): 4449-4459. |
[9] | 刘倩男,黄伟,丁云花,王亚钦,胡丽萍,赵学志,何洪巨,刘光敏. 青花菜中硫代葡萄糖苷RAA和GBC的近红外光谱快速测定[J]. 中国农业科学, 2020, 53(21): 4497-4506. |
[10] | 邹剑秋. 高粱育种与栽培技术研究新进展[J]. 中国农业科学, 2020, 53(14): 2769-2773. |
[11] | 柯福来,朱凯,李志华,石永顺,邹剑秋,王艳秋. 不同糯性高粱胚乳淀粉形成与积累过程的酶学调控机制及显微结构变化[J]. 中国农业科学, 2020, 53(14): 2774-2785. |
[12] | 王黎明,严洪冬,焦少杰,姜艳喜,苏德峰,孙广全. 基于配合力和遗传距离的甜高粱杂种优势预测[J]. 中国农业科学, 2020, 53(14): 2786-2794. |
[13] | 牛皓,平俊爱,王玉斌,张福耀,吕鑫,李慧明,楚建强. 基于SSR的光敏型饲草高粱分子辅助育种体系[J]. 中国农业科学, 2020, 53(14): 2795-2803. |
[14] | 王海莲,王润丰,刘宾,张华文. 不同生长时期收获对甜高粱农艺性状及营养品质的影响[J]. 中国农业科学, 2020, 53(14): 2804-2813. |
[15] | 邹剑秋,王艳秋,李金红,朱凯. 优异高粱雄性不育系01-26A的组配降秆效应及其分子机理[J]. 中国农业科学, 2020, 53(14): 2814-2827. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 562
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 803
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|