中国农业科学 ›› 2021, Vol. 54 ›› Issue (22): 4826-4839.doi: 10.3864/j.issn.0578-1752.2021.22.010
徐久凯(),袁亮,温延臣,张水勤,林治安,李燕婷,李海燕,赵秉强(
)
收稿日期:
2020-11-28
接受日期:
2021-04-09
出版日期:
2021-11-16
发布日期:
2021-11-19
通讯作者:
赵秉强
作者简介:
徐久凯,E-mail: 基金资助:
XU JiuKai(),YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang(
)
Received:
2020-11-28
Accepted:
2021-04-09
Online:
2021-11-16
Published:
2021-11-19
Contact:
BingQiang ZHAO
摘要:
【目的】近年来化学磷肥的过量施用不仅造成了磷矿资源的浪费,还增加了环境污染的风险。畜禽粪便是一种很好的化肥磷替代资源,但由于其成分复杂,转化过程影响因素较多,畜禽粪便中磷素相对化肥磷素的有效性一直存在不同结论。明确畜禽粪便中磷素替代化肥磷当量,能够确定有机肥磷素替代化肥磷素的准确比例,为有机肥磷素的合理施用提供数据支撑。【方法】选取腐熟的猪粪、鸡粪、牛粪和化肥为材料,施磷(P2O5)量均设置6个水平,分别为0、20、40、60、80、100 mg·kg-1干土,利用土柱栽培试验在冬小麦上研究粪肥磷和化肥磷对小麦产量、磷素吸收利用及土壤速效磷含量的影响,并对3种粪肥中磷素替代化肥磷素的相对替代当量进行统计分析。【结果】(1)3种粪肥中有机磷和无机磷含量存在较大差异,猪粪、鸡粪和牛粪中有机磷占总磷的比例分别为25.9%、17.6%和56.5%。从磷组分看,牛粪中磷素形态主要以活性磷(H2O-P和NaHCO3-P)为主,而鸡粪和猪粪以高稳定态磷(HCl-P)为主。(2)等磷施用粪肥和化肥条件下,各处理间小麦产量无显著差异。化肥处理的小麦磷素吸收量略高于3种粪肥处理。(3)本试验条件下,若以磷素的当季回收率作为参考指标,鸡粪、猪粪和牛粪中磷素相对化肥磷素的等效值分别为80.3%、84.3%和90.4%。以化肥磷用量与籽粒产量、生物量、籽粒吸磷量及地上部吸磷量的回归关系函数计算的3种粪肥磷素的相对替代当量,猪粪的相对替代当量分别为90.0%、93.6%、80.6%、80.2%,鸡粪的相对替代当量分别为78.4%、87.9%、73.4%、67.6%,牛粪的相对替代当量分别为89.6%、99.9%、90.0%、87.3%。(4)粪肥磷和化肥磷均可提高土壤中速效磷含量,但短期内粪肥磷对土壤中速效磷含量的提高稍弱于化肥磷。【结论】本试验条件下综合几种计算磷素相对替代当量的方法,猪粪能够替代85.7%的化肥磷素,鸡粪能够替代77.6%的化肥磷素,而牛粪能够替代91.4%的化肥磷素。
徐久凯,袁亮,温延臣,张水勤,林治安,李燕婷,李海燕,赵秉强. 畜禽有机肥磷素在冬小麦上替代化肥磷当量研究[J]. 中国农业科学, 2021, 54(22): 4826-4839.
XU JiuKai,YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang. Phosphorus Fertilizer Replacement Value of Livestock Manure in Winter Wheat[J]. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839.
表2
鸡粪、猪粪和牛粪中各形态磷占总磷比例"
项目 Item | 不同肥料品种 Different types of fertilizer | ||
---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | |
H2O-Pi | 12.55 ±0.95 | 17.62±0.95 | 13.19 ±0.16 |
H2O-Po | 3.64±0.10 | 3.61±0.03 | 8.61±0.19 |
NaHCO3-Pi | 12.17±0.24 | 13.91±0.40 | 12.61±0.53 |
NaHCO3-Po | 4.36 ±0.28 | 2.95±0.26 | 18.98 ±0.22 |
NaOH-Pi | 13.66±0.37 | 2.06±0.15 | 8.21±0.15 |
NaOH-Po | 3.28±0.10 | 5.33±0.28 | 10.64±0.45 |
HCl-Pi | 35.69±0.91 | 48.94±2.00 | 9.54 ±0.11 |
HCl-Po | 7.76±0.22 | 0.00±0.00 | 9.29±0.50 |
residual-P | 6.89±0.31 | 5.65±0.16 | 8.93±0.20 |
表3
不同来源磷素对小麦籽粒产量和生物量的影响"
项目 Item | 施磷量 P2O5 rate (mg·kg-1) | 不同肥料品种 Different type of fertilizers | |||
---|---|---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer | ||
籽粒产量 Grain yield (g/pot) | 0 | 47.14±7.67d A | 47.14±7.67d A | 47.14±7.67d A | 47.14±7.67d A |
20 | 68.29±9.95c A | 64.98±5.15c A | 72.20±5.77c A | 72.94±6.95c A | |
40 | 83.32±12.5b A | 84.01±12.59b A | 83.42±5.91b A | 83.29±9.28b A | |
60 | 92.01±8.03ab A | 84.50±5.88b A | 86.80±7.29ab A | 91.64±8.22ab A | |
80 | 94.34±6.81a A | 97.96±6.77a A | 92.86±6.21a A | 98.49±11.20a A | |
100 | 93.88±9.76ab A | 92.76±6.03ab A | 93.22±7.79a A | 96.73±6.62a A | |
生物量 Wheat biomass (g/pot) | 0 | 89.87±14.02d A | 89.87±14.02e A | 89.87±14.02d A | 89.87±14.02c A |
20 | 130.29±18.97c A | 125.97±12.33d A | 138.58±10.86c A | 137.34±11.46b A | |
40 | 156.04±15.82b A | 157.15±18.04c A | 158.73±9.25b A | 150.93±12.61b A | |
60 | 173.44±11.65ab A | 161.59±12.43bc A | 163.37±13.53ab A | 170.3±14.01a A | |
80 | 169.45±11.48ab A | 183.87±10.57a A | 173.04±13.08a A | 183.77±19.52a A | |
100 | 173.52±18.29a A | 173.02±12.20ab A | 169.00±12.67ab A | 181.01±14.73a A |
表4
不同来源磷素对小麦产量构成因素的影响"
项目 Item | 施磷量 P2O5 rate (mg·kg-1) | 不同肥料品种 Different type of fertilizers | |||
---|---|---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer | ||
穗数 Number of ears (No./pot) | 0 | 33±4c A | 33±4c A | 33±4c A | 33±4d A |
20 | 35±3bc A | 37±2c A | 39±2b A | 39±4c A | |
40 | 39±6b A | 44±4b A | 45±6a A | 43±4bc A | |
60 | 46±2a A | 43±5b A | 44±1a A | 45±2ab A | |
80 | 47±6a A | 49±1a A | 47±4a A | 49±6a A | |
100 | 47±5a AB | 45±3ab AB | 43±2a B | 49±3a A | |
穗粒数 Grain No.per spike (No./spike) | 0 | 30±3b A | 30±3b A | 30±3c A | 30±3b A |
20 | 39±5a A | 36±4a B | 38±4b A | 39±1a A | |
40 | 42±2a A | 38±4a AB | 37±4b B | 39±3a AB | |
60 | 40±2a A | 39±3a A | 39±3b A | 40±2a A | |
80 | 40±2a A | 39±2a A | 40±2ab A | 40±2a A | |
100 | 39±1a B | 40±2a AB | 43±5a A | 39±2a B | |
千粒重 Thousand seed weight (g) | 0 | 47.36±1.04c A | 47.36±1.04c A | 47.36±1.04c A | 47.36±1.04d A |
20 | 49.50±1.44b A | 48.66±1.55bc A | 48.98±0.67bc A | 48.92±1.27c A | |
40 | 50.85±1.54ab A | 50.15±1.53ab A | 50.97±1.23a A | 50.32±1.00b A | |
60 | 50.92±2.16ab A | 51.01±1.53a A | 50.36±2.56ab A | 51.15±1.03ab A | |
80 | 50.59±2.16ab A | 50.59±1.76a A | 50.26±1.71ab A | 50.95±0.69ab A | |
100 | 51.38±1.23a A | 51.00±2.04a A | 50.42±1.97ab A | 51.55±1.00a A |
表5
不同来源磷素对小麦各部位磷吸收量影响"
项目 Item | 施磷量 P2O5 rate (mg·kg-1) | 不同肥料品种 Different type of fertilizers | ||||
---|---|---|---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer | |||
磷吸收量 P uptake (g/pot) | 秸秆 Straw | 0 | 0.05±0.01d A | 0.05±0.01d A | 0.05±0.01d A | 0.05±0.01e A |
20 | 0.06±0.01c A | 0.06±0.01cd A | 0.06±0.01c A | 0.06±0.01d A | ||
40 | 0.07±0.02b A | 0.07±0.01bc A | 0.07±0.01c A | 0.08±0.02c A | ||
60 | 0.09±0.01ab A | 0.08±0.02b B | 0.08±0.02bc B | 0.09±0.02b AB | ||
80 | 0.09±0.00a B | 0.09±0.00a B | 0.08±0.01b B | 0.11±0.02ab A | ||
100 | 0.10±0.02a A | 0.09±0.01a A | 0.10±0.01a A | 0.11±0.02a A | ||
籽粒 Grain | 0 | 0.14±0.03d A | 0.14±0.03d A | 0.14±0.03d A | 0.14±0.03e A | |
20 | 0.21±0.05c AB | 0.19±0.03c B | 0.23±0.02c A | 0.22±0.02d AB | ||
40 | 0.27±0.03b A | 0.26±0.07b A | 0.27±0.04b A | 0.28±0.03c A | ||
60 | 0.29±0.03ab A | 0.29±0.04b A | 0.30±0.05ab A | 0.32±0.03b A | ||
80 | 0.32±0.04a A | 0.34±0.04ab A | 0.33±0.03a A | 0.35±0.03ab A | ||
100 | 0.31±0.04a B | 0.32±0.03a AB | 0.33±0.04a AB | 0.36±0.03a A | ||
地上部 Above ground | 0 | 0.19±0.03d A | 0.19±0.03d A | 0.19±0.03e A | 0.19±0.03e A | |
20 | 0.27±0.05c AB | 0.24±0.03c B | 0.29±0.02d A | 0.28±0.03d AB | ||
40 | 0.34±0.07b A | 0.33±0.07b A | 0.34±0.05c A | 0.36±0.04c A | ||
60 | 0.39±0.04ab A | 0.36±0.04b A | 0.38±0.07bc A | 0.41±0.04b A | ||
80 | 0.41±0.03a B | 0.43±0.05a B | 0.41±0.02ab AB | 0.46±0.05a A | ||
100 | 0.41±0.06a B | 0.42±0.04a B | 0.43±0.04a AB | 0.47±0.02a A | ||
磷素收获指数 PHI (%) | 0 | 75.70±6.13a A | 75.70±6.13b A | 75.70±6.13b A | 75.70±6.13b A | |
20 | 79.08±4.51a A | 76.98±2.52b A | 77.88±2.56ab A | 77.84±3.66ab A | ||
40 | 78.54±1.00a A | 79.38±4.20aA | 79.35±2.50a A | 77.70±4.96ab A | ||
60 | 75.84±2.00a A | 79.03±5.67ab A | 80.01±3.76a A | 78.35±2.88a A | ||
80 | 78.07±1.65a A | 78.40±1.95ab A | 79.42±3.79a A | 76.46±2.27ab A | ||
100 | 76.35±1.88a A | 77.13±2.58b A | 77.27±2.53ab A | 75.91±3.51ab A |
表6
磷素回收率与相对化肥磷素的等效值"
项目 Item | 施磷量 P2O5 rate (mg·kg-1) | 不同肥料品种 Different type of fertilizers | |||
---|---|---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer | ||
磷素回收率 Phosphorous recovery ratio (%) | 20 | 55.82a AB | 48.15a B | 72.18a A | 66.45a AB |
40 | 52.85a A | 50.70a A | 55.03b A | 61.80abA | |
60 | 47.01ab A | 40.89ab A | 46.52bc A | 52.10abc A | |
80 | 38.82ab B | 42.68ab A | 39.43cB | 48.62bc A | |
100 | 32.04lb B | 32.33b B | 34.88c AB | 40.03cA | |
化肥磷素等效值 Chemical phosphorus equivalent value (%) | 20 | 84.02 | 72.46 | 108.63 | -- |
40 | 87.36 | 82.05 | 89.04 | -- | |
60 | 90.24 | 78.50 | 85.82 | -- | |
80 | 79.84 | 87.78 | 81.10 | -- | |
100 | 80.03 | 80.76 | 87.15 | -- |
表7
基于小麦籽粒产量、生物量、籽粒吸磷量和地上部吸磷量粪肥磷素替代化肥磷素的相对替代当量"
项目 Item | 施磷量 P2O5 rate (mg·kg-1) | 粪肥磷素替代化肥磷素(P2O5)的相对替代当量 Mineral phosphorus fertilizer replacement value (%) | ||
---|---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | ||
籽粒Grain | 20 | 93.81 | 60.84 | 116.12 |
40 | 95.78 | 98.57 | 96.20 | |
60 | 92.46 | 67.07 | 73.74 | |
80 | 78.08 | 87.02 | 72.26 | |
生物量Biomass | 20 | 104.80 | 72.53 | 133.09 |
40 | 99.56 | 102.15 | 107.93 | |
60 | 101.19 | 76.71 | 83.35 | |
80 | 68.84 | 100.00 | 75.13 | |
籽粒磷吸收量 Grain phosphorus uptake | 20 | 88.44 | 52.67 | 109.76 |
40 | 87.89 | 86.14 | 92.81 | |
60 | 75.40 | 70.51 | 81.00 | |
80 | 70.78 | 84.25 | 76.39 | |
地上部磷吸收量 Aboveground phosphorus uptake | 20 | 83.11 | 41.25 | 110.13 |
40 | 87.42 | 81.15 | 94.95 | |
60 | 80.48 | 68.10 | 72.82 | |
80 | 69.59 | 79.91 | 71.14 |
表8
施用不同来源磷素对土壤速效磷含量的影响"
施磷量 P2O5 rate (mg·kg-1) | 速效磷含量 Available phosphorus (mg·kg-1) | |||
---|---|---|---|---|
猪粪 Pig manure | 鸡粪 Chicken manure | 牛粪 Cattle manure | 化肥 Chemical fertilizer | |
0 | 4.77±0.65d A | 4.77±0.65d A | 4.77±0.65d A | 4.77±0.65d A |
20 | 6.27±0.82c A | 4.52±0.40d C | 5.16±0.53cd BC | 5.41±0.89d B |
40 | 7.03±1.17c AB | 5.82±0.76c C | 5.97±0.61c BC | 7.35±1.09cd A |
60 | 9.04±1.68bA | 8.18±1.15b A | 8.21±0.71b A | 8.50±2.74bc A |
80 | 8.82±1.14b B | 7.91±0.62b B | 8.38±0.91b B | 10.37±1.80b A |
100 | 11.50±1.02a A | 9.61±1.05a B | 10.45±1.24a AB | 12.20±2.24a A |
[1] | 鲁如坤. 土壤–植物营养学原理和施肥. 北京: 化学工业出版社, 1998. |
LU R K. Principles of Soil Plant Nutrition and Fertilization. Beijing: Chemical Industry Press, 1998. (in Chinese) | |
[2] |
MA J C, HE P, XU X P, HE W T, LIU Y X, YANG F Q, CHEN F, LI S T, TU S H, JIN J Y, JOHNSTON A M, ZHOU W. Temporal and spatial changes in soil available phosphorus in China (1990-2012). Field Crops Research, 2016, 192: 13-20. doi: 10.1016/j.fcr.2016.04.006.
doi: 10.1016/j.fcr.2016.04.006 |
[3] |
XIN X L, QIN S W, ZHANG J B, ZHU A N, YANG W L, ZHANG X F. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Research, 2017, 208: 27-33. doi: 10.1016/j.fcr.2017.03.011.
doi: 10.1016/j.fcr.2017.03.011 |
[4] |
刘晓永, 王秀斌, 李书田. 中国农田畜禽粪尿磷负荷量及环境风险分析. 农业环境科学学报, 2019, 38(11): 2594-2608. doi: 10.11654/jaes.2018-0626.
doi: 10.11654/jaes.2018-0626 |
LIU X Y, WANG X B, LI S T. Phosphorus loading rates from livestock and poultry faeces, and environmental evaluation in China. Journal of Agro-Environment Science, 2019, 38(11): 2594-2608. doi: 10.11654/jaes.2018-0626. (in Chinese)
doi: 10.11654/jaes.2018-0626 |
|
[5] |
BAI Z H, MA L, JIN S Q, MA W Q, VELTHOF G L, OENEMA O, LIU L, CHADWICK D, ZHANG F S. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environmental Science & Technology, 2016, 50(24): 13409-13418. doi: 10.1021/acs.est.6b03348.
doi: 10.1021/acs.est.6b03348 |
[6] |
徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和. 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008, 41(10): 3133-3139. doi: 10.3864/j.issn.0578-1752.2008.10.029.
doi: 10.3864/j.issn.0578-1752.2008.10.029 |
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI Y, YASUKAZU H. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Scientia Agricultura Sinica, 2008, 41(10): 3133-3139. doi: 10.3864/j.issn.0578-1752.2008.10.029. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.10.029 |
|
[7] | 李燕青. 不同类型有机肥与化肥配施的农学和环境效应研究[D]. 北京: 中国农业科学院, 2016. |
LI Y Q. Study on agronomic and environmental effects of combined application of different organic manures with chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
[8] |
EGHBALL B, GINTING D, GILLEY J E. Residual effects of manure and compost applications on corn production and soil properties. Agronomy Journal, 2004, 96(2): 442-447. doi: 10.2134/agronj2004.4420.
doi: 10.2134/agronj2004.4420 |
[9] |
李书田, 刘荣乐, 陕红. 我国主要畜禽粪便养分含量及变化分析. 农业环境科学学报, 2009, 28(1): 179-184. doi: 10.3321/j.issn:1672-2043.2009.01.033.
doi: 10.3321/j.issn:1672-2043.2009.01.033 |
LI S T, LIU R L, SHAN H. Nutrient contents in main animal manures in China. Journal of Agro-Environment Science, 2009, 28(1): 179-184. doi: 10.3321/j.issn:1672-2043.2009.01.033. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2009.01.033 |
|
[10] |
LIU J L, LIAO W H, ZHANG Z X, ZHANG H T, WANG X J, MENG N. Effect of phopshate fertilizer and manure on crop yield, soil P accumulation, and the environmental risk assessment. Agricultural Sciences in China, 2007, 6(9): 1107-1114. doi: 10.1016/S1671-2927(07)60153-9.
doi: 10.1016/S1671-2927(07)60153-9 |
[11] |
PIZZEGHELLO D, BERTI A, NARDI S, MORARI F. Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agriculture, Ecosystems & Environment, 2011, 141(1/2): 58-66. doi: 10.1016/j.agee.2011.02.011.
doi: 10.1016/j.agee.2011.02.011 |
[12] |
REDDY D D, RAO A S, RUPA T R. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a Vertisol. Bioresource Technology, 2000, 75(2): 113-118. doi: 10.1016/S0960-8524(00)00050-X.
doi: 10.1016/S0960-8524(00)00050-X |
[13] |
EGHBALL B, WIENHOLD B L, WOODBURY B L, EIGENBERG R A. Plant availability of phosphorus in swine slurry and cattle feedlot manure. Agronomy Journal, 2005, 97(2): 542-548. doi: 10.2134/agronj2005.0542.
doi: 10.2134/agronj2005.0542 |
[14] |
KAHILUOTO H, KUISMA M, KETOJA E, SALO T, HEIKKINEN J. Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environmental Science & Technology, 2015, 49(4): 2115-2122. doi: 10.1021/es503387y.
doi: 10.1021/es503387y |
[15] |
严正娟, 陈硕, 王敏锋, 宋梓玮, 贾伟, 陈清. 不同动物粪肥的磷素形态特征及有效性分析. 农业资源与环境学报, 2015, 32(1): 31-39. doi: 10.13254/j.jare.2014.0283.
doi: 10.13254/j.jare.2014.0283 |
YAN Z J, CHEN S, WANG M F, SONG Z W, JIA W, CHEN Q. Characteristics and availability of different forms of phosphorus in animal manures. Journal of Agricultural Resources and Environment, 2015, 32(1): 31-39. doi: 10.13254/j.jare.2014.0283. (in Chinese)
doi: 10.13254/j.jare.2014.0283 |
|
[16] |
CONDRON L M, TURNER B L, CADE-MENUN B J. Chemistry and dynamics of soil organic phosphorus. Agronomy Monographs. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015: 87-121. doi: 10.2134/agronmonogr46.c4.
doi: 10.2134/agronmonogr46.c4 |
[17] | PAGLIARI P H. Variety and solubility of phosphorus forms in animal manure and their effects on soil test phosphorus//HE Z Q, ZHANG H L. Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment. Dordrecht: Springer Netherlands, 2014: 141-161. |
[18] |
AJIBOYE B, AKINREMI O O, HU Y F, FLATEN D N. Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. Journal of Environmental Quality, 2007, 36(6): 1563-1576. doi: 10.2134/jeq2006.0541.
doi: 10.2134/jeq2006.0541 |
[19] | 莫淑勋, 钱菊芳, 钱承梁. 猪粪等有机肥料中磷素养分循环再利用的研究. 土壤学报, 1991, 28(3): 309-316. |
MO S X, QIAN J F, QIAN C L. Studies on phosphorus of organic manures and its reutilization. Acta Pedologica Sinica, 1991, 28(3): 309-316. (in Chinese) | |
[20] |
SIKORA L J, ENKIRI N K. Comparison of phosphorus uptake from poultry litter compost with triple superphosphate in codorus soil. Agronomy Journal, 2005, 97(3): 668-673. doi: 10.2134/agronj2004.0008.
doi: 10.2134/agronj2004.0008 |
[21] |
MATERECHERA S A, MORUTSE H M. Response of maize to phosphorus from fertilizer and chicken manure in a semi-arid environment of South Africa. Experimental Agriculture, 2009, 45(3): 261-273. doi: 10.1017/s0014479709007868.
doi: 10.1017/s0014479709007868 |
[22] |
EBELING A M, COOPERBAND L R, BUNDY L G. Phosphorus availability to wheat from manures, biosolids, and an inorganic fertilizer. Communications in Soil Science and Plant Analysis, 2003, 34(9/10): 1347-1365. doi: 10.1081/CSS-120020449.
doi: 10.1081/CSS-120020449 |
[23] |
KULIGOWSKI K, POULSEN T G, RUBÆK G H, SØRENSEN P. Plant-availability to barley of phosphorus in ash from thermally treated animal manure in comparison to other manure based materials and commercial fertilizer. European Journal of Agronomy, 2010, 33(4): 293-303. doi: 10.1016/j.eja.2010.08.003.
doi: 10.1016/j.eja.2010.08.003 |
[24] | 邢璐. 不同粪肥的施用对土壤磷素转化与迁移的影响[D]. 北京: 中国科学院大学, 2013. |
XING L. Effects of different manures on transformation and movement of phosphorus in soils[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese) | |
[25] |
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x.
doi: 10.2136/sssaj1982.03615995004600050017x |
[26] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
LU R K. Analysis Methods of Soil and Agricultural Chemistry. China Agriculture Scientech Press, 2000. (in Chinese) | |
[27] |
MUÑOZ G R, KELLING K A, RYLANT K E, ZHU J. Field evaluation of nitrogen availability from fresh and composted manure. Journal of Environmental Quality, 2008, 37(3): 944-955. doi: 10.2134/jeq2007.0219.
doi: 10.2134/jeq2007.0219 |
[28] |
DELIN S, STENBERG B, NYBERG A, BROHEDE L. Potential methods for estimating nitrogen fertilizer value of organic residues. Soil Use and Management, 2012, 28(3): 283-291. doi: 10.1111/j.1475-2743.2012.00417.x.
doi: 10.1111/j.1475-2743.2012.00417.x |
[29] |
SCHRÖDER J J, UENK D, HILHORST G J. Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant and Soil, 2007, 299(1): 83-99. doi: 10.1007/s11104-007-9365-7.
doi: 10.1007/s11104-007-9365-7 |
[30] |
DOU Z, TOTH J D, GALLIGAN D T, RAMBERG JR C F, FERGUSON J D. Laboratory procedures for characterizing manure phosphorus. Journal of Environmental Quality, 2000, 29(2): 508-514. doi: 10.2134/jeq2000.00472425002900020019x.
doi: 10.2134/jeq2000.00472425002900020019x |
[31] |
李玲玲, 李书田. 猪粪氮素有效性与替代化肥氮当量研究. 中国土壤与肥料, 2011(5): 60-64. doi: 10.3969/j.issn.1673-6257.2011.05.012.
doi: 10.3969/j.issn.1673-6257.2011.05.012 |
LI L L, LI S T. Nitrogen availability of pig manure and its fertilizer equivalence. Soils and Fertilizers Sciences in China, 2011(5): 60-64. doi: 10.3969/j.issn.1673-6257.2011.05.012. (in Chinese)
doi: 10.3969/j.issn.1673-6257.2011.05.012 |
|
[32] |
PAGLIARI P H, LABOSKI C A M. Investigation of the inorganic and organic phosphorus forms in animal manure. Journal of Environmental Quality, 2012, 41(3): 901-910. doi: 10.2134/jeq2011.0451.
doi: 10.2134/jeq2011.0451 |
[33] |
TURNER B L, LEYTEM A B. Phosphorus compounds in sequential extracts of animal manures: chemical speciation and a novel fractionation procedure. Environmental Science & Technology, 2004, 38(22): 6101-6108. doi: 10.1021/es0493042.
doi: 10.1021/es0493042 |
[34] |
HANSEN J C, CADE-MENUN B J, STRAWN D G. Phosphorus speciation in manure-amended alkaline soils. Journal of Environmental Quality, 2004, 33(4): 1521-1527. doi: 10.2134/jeq2004.1521.
doi: 10.2134/jeq2004.1521 |
[35] | 刘占军, 谢佳贵, 张宽, 王秀芳, 侯云鹏, 尹彩侠, 李书田. 有机肥磷替代化肥磷对春玉米干物质积累和磷素吸收的影响. 玉米科学, 2011, 19(2): 123-128. |
LIU Z J, XIE J G, ZHANG K, WANG X F, HOU Y P, YIN C X, LI S T. Biomass accumulation and phosphorus uptake of spring maize as influenced by organic manure substitution for chemical phosphate. Journal of Maize Sciences, 2011, 19(2): 123-128. (in Chinese) | |
[36] | 赵明, 赵征宇, 蔡葵, 王玉洲. 畜禽有机肥料当季速效氮磷钾养分释放规律. 山东农业科学, 2004(5): 59-61. |
ZHAO M, ZHAO Z Y, CAI K, WANG Y Z. Release rule of Nitrogen, Phosphorus, potassium in animal manures. Shandong Agricultural Sciences, 2004(5): 59-61. (in Chinese) | |
[37] |
姜宗庆, 封超年, 黄联联, 郭文善, 朱新开, 彭永欣. 施磷量对小麦物质生产及吸磷特性的影响. 植物营养与肥料学报, 2006, 12(5): 628-634. doi: 10.3321/j.issn:1008-505X.2006.05.005.
doi: 10.3321/j.issn:1008-505X.2006.05.005 |
JIANG Z Q, FENG C N, HUANG L L, GUO W S, ZHU X K, PENG Y X. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (Triticum aestivum L.). Plant Nutrition and Fertilizer Science, 2006, 12(5): 628-634. doi: 10.3321/j.issn:1008-505X.2006.05.005. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2006.05.005 |
|
[38] | 韩燕来, 介晓磊, 谭金芳, 郭天财, 朱云集, 王晨阳, 夏国军, 刘征. 超高产冬小麦氮磷钾吸收、分配与运转规律的研究. 作物学报, 1998, 24(6): 908-915. |
HAN Y L, JIE X L, TAN J F, GUO T C, ZHU Y J, WANG C Y, XIA G J, LIU Z. Studies on absorption, distribution and translocation of N, P and K of super-high yield winter wheat. Acta Agronomica Sinica, 1998, 24(6): 908-915. (in Chinese) | |
[39] |
唐继伟, 徐久凯, 温延臣, 田昌玉, 林治安, 赵秉强. 长期单施有机肥和化肥对土壤养分和小麦产量的影响. 植物营养与肥料学报, 2019, 25(11): 1827-1834. doi: 10.11674/zwyf.18436.
doi: 10.11674/zwyf.18436 |
TANG J W, XU J K, WEN Y C, TIAN C Y, LIN Z A, ZHAO B Q. Effects of organic fertilizer and inorganic fertilizer on the wheat yields and soil nutrients under long-term fertilization. Plant Nutrition and Fertilizer Science, 2019, 25(11): 1827-1834. doi: 10.11674/zwyf.18436. (in Chinese)
doi: 10.11674/zwyf.18436 |
|
[40] |
DELIN S. Fertilizer value of phosphorus in different residues. Soil Use and Management, 2016, 32(1): 17-26. doi: 10.1111/sum.12227.
doi: 10.1111/sum.12227 |
[41] | 赵少华, 宇万太, 张璐, 沈善敏, 马强. 土壤有机磷研究进展. 应用生态学报, 2004, 15(11): 2189-2194. |
ZHAO S H, YU W T, ZHANG L, SHEN S M, MA Q. Research advance in soil organic phosphorus. Chinese Journal of Applied Ecology, 2004, 15(11): 2189-2194. (in Chinese) | |
[42] |
姜一, 步凡, 张超, 陈立新. 土壤有机磷矿化研究进展. 南京林业大学学报(自然科学版), 2014, 38(3): 160-166. doi: 10.3969/j.issn.1000-2006.2014.03.031.
doi: 10.3969/j.issn.1000-2006.2014.03.031 |
JIANG Y, BU F, ZHANG C, CHEN L X. Research advances on soil organic phosphorus mineralization. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(3): 160-166. doi: 10.3969/j.issn.1000-2006.2014.03.031. (in Chinese)
doi: 10.3969/j.issn.1000-2006.2014.03.031 |
|
[43] | JENSEN L S. Animal manure fertiliser value, crop utilisation and soil quality impacts. Animal Manure Recycling. Chichester, UK: John Wiley & Sons, Ltd, 2013: 295-328. |
[44] |
DE NOTARIS C, SØRENSEN P, MØLLER H B, WAHID R, ERIKSEN J. Nitrogen fertilizer replacement value of digestates from three green manures. Nutrient Cycling in Agroecosystems, 2018, 112(3): 355-368. doi: 10.1007/s10705-018-9951-5.
doi: 10.1007/s10705-018-9951-5 |
[45] | 严正娟. 施用粪肥对设施菜田土壤磷素形态与移动性的影响[D]. 北京: 中国农业大学, 2015. |
YAN Z J. Effects of manure application on the form and mobility of soil phosphorus in vegetable greenhouse[D]. Beijing: China Agricultural University, 2015. (in Chinese) | |
[46] |
PARHAM J A, DENG S P, DA H N, SUN H Y, RAUN W R. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biology and Fertility of Soils, 2003, 38(4): 209-215. doi: 10.1007/s00374-003-0657-7.
doi: 10.1007/s00374-003-0657-7 |
[47] | PARHAM JA, DENG SP, RAUN WR, JOHNSON G V. Long-term cattle manure application in soil. I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biology & Fertility of Soils, 2002, 35(5): 328-337. |
[48] |
SATO S, SOLOMON D, HYLAND C, KETTERINGS Q M, LEHMANN J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environmental Science & Technology, 2005, 39(19): 7485-7491. doi: 10.1021/es0503130.
doi: 10.1021/es0503130 |
[1] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[2] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[3] | 熊淑萍,高明,张志勇,秦步坛,徐赛俊,付新露,王小纯,马新明. 基于GIS的河南省小麦产量及产量构成要素时空差异分析[J]. 中国农业科学, 2022, 55(4): 692-706. |
[4] | 李刚,白阳,贾子颖,马正阳,张祥池,李春艳,李诚. 两种磷素水平下小麦苗期对干旱胁迫的离子组和代谢组响应[J]. 中国农业科学, 2022, 55(2): 280-294. |
[5] | 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学, 2021, 54(3): 596-607. |
[6] | 向晓玲,陈松鹤,杨洪坤,杨永恒,樊高琼. 秸秆覆盖与施磷对丘陵旱地小麦产量和磷素吸收利用效应的影响[J]. 中国农业科学, 2021, 54(24): 5194-5205. |
[7] | 区惠平,周柳强,黄金生,朱晓晖,曾艳,彭嘉宇,谢如林,谭宏伟,李忠宁,沈小微,刘昔辉. 基于甘蔗产量与土壤磷素平衡的磷肥施用量研究[J]. 中国农业科学, 2021, 54(13): 2818-2829. |
[8] | 刘东晖,张世昌,杨静,黄梦元,吴良泉. 1985—2015年福建省农牧系统磷素流动特征及影响因素[J]. 中国农业科学, 2020, 53(7): 1419-1431. |
[9] | 王钧,李广,闫丽娟,刘强,聂志刚. 旱地春小麦产量对不同生育阶段温度变化的响应模拟[J]. 中国农业科学, 2020, 53(5): 904-916. |
[10] | 王昆昆,廖世鹏,任涛,李小坤,丛日环,鲁剑巍. 连续秸秆还田对油菜水稻轮作土壤磷素有效性 及作物磷素利用效率的影响[J]. 中国农业科学, 2020, 53(1): 94-104. |
[11] | 丁尚,郭浩浩,宋晨阳,刁晓平,赵洪伟. 海南岛农牧生产体系磷元素流动时空变化特征[J]. 中国农业科学, 2019, 52(5): 860-873. |
[12] | 李冬初,王伯仁,黄晶,张杨珠,徐明岗,张淑香,张会民. 长期不同施肥红壤磷素变化及其对产量的影响[J]. 中国农业科学, 2019, 52(21): 3830-3841. |
[13] | 王柏寒,黄绍敏,郭斗斗,张水清,宋晓,岳克,张珂珂. 长期定位施肥下潮土磷素盈亏及对无机磷的影响[J]. 中国农业科学, 2019, 52(21): 3842-3851. |
[14] | 侯云鹏,王立春,李前,尹彩侠,秦裕波,王蒙,王永军,孔丽丽. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的 磷肥适用量研究[J]. 中国农业科学, 2019, 52(20): 3573-3584. |
[15] | 金修宽,马茂亭,赵同科,安志装,姜玲玲. 测墒补灌和施氮对冬小麦产量及水分、氮素利用效率的影响[J]. 中国农业科学, 2018, 51(7): 1334-1344. |
|