中国农业科学 ›› 2020, Vol. 53 ›› Issue (18): 3833-3845.doi: 10.3864/j.issn.0578-1752.2020.18.017
收稿日期:
2020-01-18
接受日期:
2020-02-25
出版日期:
2020-09-16
发布日期:
2020-09-25
通讯作者:
李建科
作者简介:
张丽翠,E-mail: 基金资助:
ZHANG LiCui(),MA Chuan,FENG Mao,LI JianKe(
)
Received:
2020-01-18
Accepted:
2020-02-25
Online:
2020-09-16
Published:
2020-09-25
Contact:
JianKe LI
摘要:
【目的】蜂王浆是具有医疗保健功效的天然产品,含有丰富的小分子活性成分,目前蜂王浆代谢物的提取尚缺乏系统研究。通过蜂王浆代谢轮廓分析,比较不同溶剂对蜂王浆小分子化合物的提取效果,优化蜂王浆代谢物提取方法,鉴定蜂王浆中的代谢物。【方法】分别使用6种溶剂(50%和80%的甲醇、乙醇和乙腈)提取蜂王浆代谢物,运用反相液相色谱(reverse phase liquid chromatography,RPLC)和亲水相互作用色谱(hydrophilic interaction liquid chromatography,HILIC)分别联合四级杆-静电场轨道阱高分辨质谱技术(Q-exactive orbitrap HRMS)进行检测。比较不同溶剂组的代谢特征离子数量和相对标准偏差(relative standard deviation,RSD),并进行主成分分析(principal component analysis,PCA)。利用质谱数据库定性代谢物,并经标准品验证,比较其RSD差异,进行聚类热图(clustering heatmap)分析。通过正交偏最小二乘判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)、单变量统计分析(student’s t-test)和倍数变化(fold change,FC)筛选溶剂组间具有显著差异的代谢物。【结果】强极性化合物,包括葡萄糖与果糖等同分异构体,在HILIC条件下分离良好,而脂类等中低极性化合物在RPLC条件下得到较好的分离。两种色谱分离方法的应用实现了对不同极性代谢物的检测,在蜂王浆中共鉴定到70种高丰度化合物,涵盖了糖、氨基酸、脂类、维生素等,其丰度差异高达8 340倍,其中有17种化合物为本研究首次报道。乙腈溶剂得到的代谢特征离子数量最少,80%乙腈比50%乙腈的提取效果更差;对甲醇和乙醇而言,高浓度时的代谢特征离子数量更多。所有溶剂组得到的RSD值集中分布在20%范围内,但80%乙腈组在10%内的占比最低,已鉴定的70种代谢物的RSD值进一步证明80%乙腈的重复性较差。PCA结果表明,来自同一提取溶剂的蜂王浆代谢谱高度相似,不同溶剂提取的样品间存在差异,其中,80%乙腈组与其他5组差异最大。聚类热图等分析结果表明,中低极性物质在50%溶剂组丰度较低,强极性物质特别是果糖、葡萄糖、蔗糖、赖氨酸、腺苷、胆碱、磷酸胆碱和葡萄糖酸在80%乙腈组丰度最低。【结论】RPLC和HILIC分别联合高分辨质谱技术能够较全面准确地检测蜂王浆中的小分子化合物,80%甲醇或80%乙醇是提取蜂王浆代谢物的最佳溶剂。
张丽翠,马川,冯毛,李建科. 基于高分辨质谱和代谢组学技术评估和优化蜂王浆代谢物提取方法[J]. 中国农业科学, 2020, 53(18): 3833-3845.
ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics[J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
表1
在蜂王浆中鉴定到的化合物"
编号 No. | 化合物 Compound | 分子式 Molecular formula | 保留时间Retention time (min) | 分子量测量值Measured mass | 分子量理论值Theoretical mass | 质量偏差 Mass error (×10-6) | 匹配度得分Match score | 平均峰面积 Average peak area | 色谱柱 Column |
---|---|---|---|---|---|---|---|---|---|
1 | 马尿酸Hippuric acidab | C9H9NO3 | 3.34 | 179.05835 | 179.05824 | 0.61 | <50.0 | 1.93E+05 | RPLC |
2 | 咖啡碱Caffeic acida | C9H8O4 | 3.65 | 180.04238 | 180.04226 | 0.67 | 85.0 | 3.28E+05 | RPLC |
3 | 3,10-二羟基癸酸3,10-Dihydroxydecanoic acid | C10H20O4 | 3.94 | 204.13618 | 204.13616 | 0.10 | <50.0 | 2.24E+08 | RPLC |
4 | 辛二酸Suberic acida | C8H14O4 | 3.95 | 174.08918 | 174.08921 | -0.17 | 97.1 | 1.03E+06 | RPLC |
5 | 8-羟基辛酸8-Hydroxyoctanoic acida | C8H16O3 | 4.05 | 160.10992 | 160.10994 | -0.12 | <50.0 | 2.26E+06 | RPLC |
6 | 壬酸Nonanoic acid | C9H18O2 | 4.67 | 158.13068 | 158.13068 | 0.00 | 88.1 | 4.79E+06 | RPLC |
7 | 2-癸二酸2-Decenedioic acid | C10H16O4 | 4.80 | 200.10483 | 200.10486 | -0.15 | 97.0 | 2.42E+08 | RPLC |
8 | 癸二酸Decenedioic acida | C10H18O4 | 4.95 | 202.12048 | 202.12051 | -0.15 | 85.2 | 3.83E+08 | RPLC |
9 | 10-羟基二癸烯酸10-Hydroxy-2-decenoic acida | C10H18O3 | 4.96 | 186.12558 | 186.12559 | -0.05 | 97.0 | 5.35E+07 | RPLC |
10 | 10-羟基癸酸10-Hydroxydecanoic acida | C10H20O3 | 5.12 | 188.14120 | 188.14124 | -0.21 | 89.0 | 1.90E+07 | RPLC |
11 | 十四烷二酸Tetradecanedioic acidb | C14H26O4 | 5.43 | 258.18337 | 258.18311 | 1.01 | 52.0 | 9.89E+05 | RPLC |
12 | 愈伤酸Traumatic acida | C12H20O4 | 5.72 | 228.13631 | 228.13616 | 0.66 | 84.7 | 2.22E+07 | RPLC |
13 | 3-羟基癸酸3-Hydroxydecanoic acida | C10H20O3 | 5.74 | 188.14121 | 188.14124 | -0.16 | 89.7 | 8.69E+07 | RPLC |
14 | 十二烷二酸Dodecanedioic acida | C12H22O4 | 5.85 | 230.15179 | 230.15181 | -0.09 | 87.2 | 3.73E+07 | RPLC |
15 | 脂肪酸(12:1)FA (12:1) | C12H22O2 | 5.91 | 198.16194 | 198.16198 | -0.20 | 50.8 | 1.37E+07 | RPLC |
16 | 11-羟基十二烷酸 11-Hydroxydodecanoic acida | C12H24O3 | 5.92 | 216.17257 | 216.17254 | 0.14 | 78.3 | 1.24E+06 | RPLC |
17 | 12-羟基十二烷酸 12-Hydroxydodecanoic acida | C12H24O3 | 6.05 | 216.17256 | 216.17254 | 0.09 | 66.8 | 1.48E+06 | RPLC |
18 | 柯因Chrysina | C15H10O4 | 6.51 | 254.05777 | 254.05791 | -0.55 | 97.1 | 2.12E+06 | RPLC |
19 | 脂肪酸(14:2)FA (14:2) | C14H24O2 | 6.61 | 224.17759 | 224.17763 | -0.18 | 89.4 | 2.39E+06 | RPLC |
20 | 13-羟基十四烷酸13-Hydroxytetradecanoic acid | C14H28O3 | 6.74 | 244.20393 | 244.20384 | 0.37 | 95.2 | 7.39E+06 | RPLC |
21 | 脂肪酸(16:1)FA (16:1) | C16H30O2 | 7.48 | 254.22445 | 254.22458 | -0.51 | 95.2 | 5.32E+05 | RPLC |
22 | 烟酰胺Nicotinamidea | C6H6N2O | 1.92 | 122.04801 | 122.04801 | 0.00 | 81.7 | 1.34E+06 | HILIC |
23 | 吡哆醛Pyridoxal | C8H9NO3 | 2.25 | 167.05826 | 167.05824 | 0.12 | 88.5 | 3.04E+06 | HILIC |
24 | 泛酸Pantothenic acida | C9H17NO5 | 3.26 | 219.11061 | 219.11067 | -0.27 | 80.7 | 5.03E+07 | HILIC |
25 | 乙酰胆碱Acetylcholinea | C7H15NO2 | 3.28 | 145.11018 | 145.11028 | -0.69 | 95.8 | 1.61E+09 | HILIC |
26 | 琥珀酸Succinic acida | C4H6O4 | 3.39 | 118.02665 | 118.02661 | 0.34 | 83.7 | 4.34E+07 | HILIC |
27 | 烟酸Nicotinic acida | C6H5NO2 | 3.98 | 123.03209 | 123.03203 | 0.49 | 64.7 | 8.27E+05 | HILIC |
28 | 2′-脱氧腺苷2′-Deoxyadenosineab | C10H13N5O3 | 4.01 | 251.10167 | 251.10184 | -0.68 | <50.0 | 9.55E+05 | HILIC |
29 | 腺嘌呤Adeninea | C5H5N5 | 4.87 | 135.05452 | 135.05450 | 0.15 | 90.8 | 2.03E+08 | HILIC |
30 | 尿苷Uridinea | C9H12N2O6 | 5.42 | 244.06970 | 244.06954 | 0.66 | 84.7 | 2.53E+07 | HILIC |
31 | 腺苷Adenosinea | C10H13N5O4 | 5.54 | 267.09670 | 267.09675 | -0.19 | 97.4 | 2.74E+08 | HILIC |
32 | 肌酐Creatininea | C4H7N3O | 5.58 | 113.05896 | 113.05891 | 0.44 | <50.0 | 4.75E+05 | HILIC |
33 | 胞嘧啶Cytosinea | C4H5N3O | 5.94 | 111.04327 | 111.04326 | 0.09 | 95.5 | 7.44E+05 | HILIC |
34 | 胆碱Cholinea | C5H13NO | 6.09 | 103.09963 | 103.09971 | -0.78 | 91.3 | 2.32E+08 | HILIC |
35 | 溶血磷脂酰胆碱(18:3)LysoPC (18:3)b | C26H48NO7P | 6.32 | 517.31677 | 517.31684 | -0.14 | 78.6 | 2.04E+06 | HILIC |
36 | N,N-二乙基乙醇胺N,N-Diethylethanolamineb | C6H15NO | 6.33 | 117.11532 | 117.11536 | -0.34 | 75.7 | 4.21E+07 | HILIC |
37 | N-乙酰基组胺N-Acetylhistamineab | C7H11N3O | 6.60 | 153.09019 | 153.09021 | -0.13 | 91.4 | 4.34E+06 | HILIC |
38 | 肌苷Inosinea | C10H12N4O5 | 6.76 | 268.08081 | 268.08077 | 0.15 | 90.0 | 5.05E+06 | HILIC |
39 | 次黄嘌呤Hypoxanthinea | C5H4N4O | 6.76 | 136.03854 | 136.03851 | 0.22 | 92.8 | 4.34E+06 | HILIC |
40 | 鸟嘌呤Guaninea | C5H5N5O | 6.93 | 151.04944 | 151.04941 | 0.20 | 93.0 | 2.70E+05 | HILIC |
41 | 甜菜碱Betainea | C5H11NO2 | 7.26 | 117.07893 | 117.07898 | -0.43 | 96.0 | 2.18E+07 | HILIC |
42 | 鸟苷Guanosinea | C10H13N5O5 | 7.27 | 283.09147 | 283.09167 | -0.71 | 98.9 | 1.32E+06 | HILIC |
43 | 果糖Fructosea | C6H12O6 | 7.35 | 180.06350 | 180.06339 | 0.61 | 92.4 | 4.07E+08 | HILIC |
44 | 胡芦巴碱Trigonellinea | C7H7NO2 | 7.39 | 137.04766 | 137.04768 | -0.15 | 93.8 | 3.81E+07 | HILIC |
45 | 胆碱Prolinea | C5H9NO2 | 7.61 | 115.06330 | 115.06333 | -0.26 | 97.4 | 6.82E+07 | HILIC |
46 | 肉碱Carnitineab | C7H15NO3 | 7.66 | 161.10514 | 161.10519 | -0.31 | 82.4 | 1.26E+06 | HILIC |
47 | γ-氨基丁酸γ-Aminobutyric acida | C4H9NO2 | 7.66 | 103.06332 | 103.06333 | -0.10 | 92.1 | 2.88E+06 | HILIC |
48 | 牛磺酸Taurinea | C2H7NO3S | 7.66 | 125.01462 | 125.01466 | -0.32 | 82.2 | 1.53E+06 | HILIC |
49 | 葡萄糖Glucosea | C6H12O6 | 7.67 | 180.06344 | 180.06339 | 0.28 | 97.8 | 1.30E+08 | HILIC |
50 | 吡哆胺Pyridoxamine | C8H12N2O2 | 7.81 | 168.08986 | 168.08988 | -0.12 | 87.4 | 4.25E+06 | HILIC |
51 | β-丙氨酸β-Alaninea | C3H7NO2 | 7.88 | 89.04772 | 89.04768 | 0.45 | 88.9 | 5.48E+06 | HILIC |
52 | 苏氨酸Threonic acida | C4H8O5 | 7.99 | 136.03725 | 136.03717 | 0.59 | 55.0 | 7.53E+05 | HILIC |
53 | 蔗糖Sucrosea | C12H22O11 | 8.08 | 342.11652 | 342.11621 | 0.91 | 93.6 | 1.71E+08 | HILIC |
54 | 葡萄糖酸Gluconic acida | C6H12O7 | 8.24 | 196.05822 | 196.05830 | -0.41 | 95.9 | 4.08E+08 | HILIC |
55 | 谷氨酸Glutamic acida | C5H9NO4 | 8.26 | 147.05315 | 147.05316 | -0.07 | 95.2 | 7.14E+06 | HILIC |
56 | 甘油3-磷酸乙醇胺 Glycerol 3-phosphoethanolamineb | C5H14NO6P | 8.29 | 215.05582 | 215.05587 | -0.23 | <50.0 | 2.47E+06 | HILIC |
57 | N3,N4-二甲基-L-精氨酸N3,N4-Dimethyl-L-arginineb | C8H18N4O2 | 8.37 | 202.14296 | 202.14298 | -0.10 | 90.5 | 8.42E+06 | HILIC |
58 | 5′-单磷酸腺苷 Adenosine 5′-monophosphatea | C10H14N5O7P | 8.45 | 347.06309 | 347.06308 | 0.03 | 84.3 | 1.36E+07 | HILIC |
59 | 尿苷一磷酸Uridine monophosphateab | C9H13N2O9P | 8.52 | 324.03609 | 324.03587 | 0.68 | 86.2 | 8.36E+05 | HILIC |
60 | N6,N6,N6-三甲基-L-赖氨酸N6,N6,N6-Trimethyl-L-lysineb | C9H20N2O2 | 8.53 | 188.15221 | 188.15248 | -1.44 | 56.5 | 5.95E+06 | HILIC |
61 | 天冬氨酸Aspartic acida | C4H7NO4 | 8.54 | 133.03753 | 133.03751 | 0.15 | 90.5 | 1.72E+06 | HILIC |
62 | N6-甲基-L-赖氨酸N6-Methyl-L-lysineb | C7H16N2O2 | 8.59 | 160.12116 | 160.12118 | -0.12 | 87.6 | 1.44E+06 | HILIC |
63 | 1-甲基组氨酸1-Methylhistidineab | C7H11N3O2 | 8.71 | 169.08506 | 169.08513 | -0.41 | 91.2 | 2.11E+06 | HILIC |
64 | 组氨酸Histidinea | C6H9N3O2 | 8.73 | 155.06952 | 155.06948 | 0.26 | 98.3 | 1.36E+07 | HILIC |
65 | 赖氨酸Lysinea | C6H14N2O2 | 8.81 | 146.10548 | 146.10553 | -0.34 | 90.2 | 7.32E+07 | HILIC |
66 | 鸟氨酸Ornithinea | C5H12N2O2 | 8.86 | 132.08986 | 132.08988 | -0.15 | 92.8 | 8.47E+05 | HILIC |
67 | 鸟苷单磷酸Guanosine monophosphateab | C10H14N5O8P | 8.87 | 363.05817 | 363.05800 | 0.47 | 78.1 | 2.64E+06 | HILIC |
68 | 烟酰胺腺嘌呤二核苷酸 Nicotinamide adenine dinucleotideab | C21H27N7O14P2 | 8.94 | 663.10950 | 663.10912 | 0.57 | 94.2 | 4.80E+05 | HILIC |
69 | UDP-N-乙酰氨基葡萄糖UDP-N-Acetylglucosamineb | C17H27N3O17P2 | 9.08 | 607.08223 | 607.08157 | 1.09 | 91.0 | 1.29E+06 | HILIC |
70 | 磷酸胆碱Phosphorylcholineab | C5H14NO4P | 9.26 | 183.06600 | 183.06604 | -0.22 | 97.5 | 7.18E+07 | HILIC |
[1] |
FUJTA T, KOZUKA-HATA H, AO-KONDO H, KUNIEDA T, OYAMA M, KUBO T. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. Journal of Proteome Research, 2013,12(1):404-411.
doi: 10.1021/pr300700e pmid: 23157659 |
[2] |
RAMADAN M F, AL-GHAMDI A. Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of Functional Foods, 2012,4(1):39-52.
doi: 10.1016/j.jff.2011.12.007 |
[3] | AHMAD S, CAMPOS M G, FRATINI F, ALTAYE S Z, LI J K. New insights into the biological and pharmaceutical properties of royal jelly. International Journal of Molecular Sciences, 2020,21:382. |
[4] |
FRATINI F, CILIA G, MANCINI S, FELICIOLI A. Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiological Research, 2016,192:130-141.
doi: 10.1016/j.micres.2016.06.007 pmid: 27664731 |
[5] |
GIKA H G, THEODORIDIS G A, WILSON I D. Metabolic profiling: Status, challenges, and perspective// Methods in Molecular Biology, 2018,1738:3-13.
doi: 10.1007/978-1-0716-0676-6_1 pmid: 32529359 |
[6] |
KIM S, KIM J, YUN E J, KIM K H. Food metabolomics: From farm to human. Current Opinion in Biotechnology, 2016,37:16-23.
doi: 10.1016/j.copbio.2015.09.004 pmid: 26426959 |
[7] |
VUCKOVIC D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2012,403(6):1523-1548.
doi: 10.1007/s00216-012-6039-y pmid: 22576654 |
[8] |
KIM H K, VERPOORTE R. Sample preparation for plant metabolomics. Phytochemical Analysis, 2010,21(1):4-13.
doi: 10.1002/pca.1188 pmid: 19904733 |
[9] | T’KINDT R, DE VEYLDER L, STORME M, DEFORCE D, VAN BOCXLAER J. LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: Optimization of pre-LC-MS procedure parameters. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2008,871(1):37-43. |
[10] | 李思钒, 胡朝阳, 宋越, 詹舜安, 石建新. 不同提取液配方对水稻种子代谢组学研究的影响. 中国农机化学报, 2017,38(2):108-113, 153. |
LI S F, HU C Y, SONG Y, ZHAN S A, SHI J X. Effects of different extraction methods on metabolomics analysis of rice seeds. Journal of Chinese Agricultural Mechanization, 2017,38(2):108-113, 153. (in Chinese) | |
[11] |
ISIDOROV V A, BAKIER S, GRZECH I. Gas chromatographic-mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2012,885/886:109-116.
doi: 10.1016/j.jchromb.2011.12.025 |
[12] |
PINA A, BEGOU O, KANELIS D, GIKA H, KALOGIANNIS S, TANANAKI C, THEODORIDIS G, ZOTOU A. Targeted profiling of hydrophilic constituents of royal jelly by hydrophilic interaction liquid chromatography-tandem mass spectrometry . Journal of Chromatography A, 2018,1531:53-63.
doi: 10.1016/j.chroma.2015.10.035 pmid: 26518491 |
[13] |
VIRGILIOU C, KANELIS D, PINA A, GIKA H, TANANAKI C, ZOTOU A, THEODORIDIS G. A targeted approach for studying the effect of sugar bee feeding on the metabolic profile of royal jelly . Journal of Chromatography A, 2020,1616:460783.
doi: 10.1016/j.chroma.2019.460783 pmid: 31952813 |
[14] |
WU L M, ZHOU J H, XUE X F, LI Y, ZHAO J. Fast determination of 26 amino acids and their content changes in royal jelly during storage using ultra-performance liquid chromatography. Journal of Food Composition and Analysis, 2009,22(3):242-249.
doi: 10.1016/j.jfca.2008.10.022 |
[15] | BOSELLI E, CABONI M F, SABATINI A G, MARCAZZAN G L, LERCKER G. Determination and changes of free amino acids in royal jelly during storage. Apidologie, 2003,34(2):129-137. |
[16] | WYTRYCHOWSKI M, CHENAVAS S, DANIELE G, CASABIANCA H, BATTEAU M, GUIBERT S, BRION B. Physicochemical characterisation of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. Journal of Food Composition and Analysis, 2013,29(2):126-133. |
[17] |
SESTA G. Determination of sugars in royal jelly by HPLC. Apidologie, 2006,37(1):84-90.
doi: 10.1051/apido:2005061 |
[18] |
PYRZANOWSKA J, PIECHAL A, BLECHARZ-KLIN K, JONIEC- MACIEJAK I, GRAIKOU K, CHINOU I, WIDY-TYSZKIEWICZ E. Long-term administration of Greek royal jelly improves spatial memory and influences the concentration of brain neurotransmitters in naturally aged Wistar male rats. Journal of Ethnopharmacology, 2014,155(1):343-351.
doi: 10.1016/j.jep.2014.05.032 |
[19] |
PRESOTO A E F, RIOS M D G, DE ALMEIDA-MURADIAN L B. Simultaneous high performance liquid chromatographic analysis of vitamins B1, B2 and B6 in royal jelly. Journal of the Brazilian Chemical Society, 2004,15(1):136-139.
doi: 10.1590/S0103-50532004000100021 |
[20] |
CIULU M, FLORIS I, NURCHI V M, PANZANELLI A, PILO M I, SPANO N, SANNA G. HPLC determination of pantothenic acid in royal jelly. Analytical Methods, 2013,5(23):6682-6685.
doi: 10.1039/c3ay41284a |
[21] |
WU L M, CHEN L Z, SELVARAJ J N, WEI Y, WANG Y, LI Y, ZHAO J, XUE X F. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly . Food Chemistry, 2015,173:1111-1118.
doi: 10.1016/j.foodchem.2014.10.137 pmid: 25466132 |
[22] | WU L M, WEI Y, DU B, CHEN L Z, WANG Y, LI Y, ZHAO J, XUE X F. Freshness determination of royal jelly by analyzing decomposition products of adenosine triphosphate . LWT-Food Science and Technology, 2015,63(1):504-510. |
[23] |
DUNN W B, BROADHURST D, BEGLEY P, ZELENA E, FRANCIS-MCINTYRE S, ANDERSON N, BROWN M, KNOWLES J D, HALSALL A, HASELDEN J N, NICHOLLS A W, WILSON I D, KELL D B, GOODACRE R, The Human Serum Metabolome (HUSERMET) Consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry . Nature Protocols, 2011,6(7):1060-1083.
doi: 10.1038/nprot.2011.335 pmid: 21720319 |
[24] |
BAJAD S U, LU W Y, KIMBALL E H, YUAN J, PETERSON C, RABINOWITZ J D. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography- tandem mass spectrometry. Journal of Chromatography A, 2006,1125(1):76-88.
doi: 10.1016/j.chroma.2006.05.019 pmid: 16759663 |
[25] |
CUBBON S, ANTONIO C, WILSON J, THOMAS-OATES J. Metabolomic applications of HILIC-LC-MS. Mass Spectrometry Reviews, 2010,29(5):671-684.
doi: 10.1002/mas.20252 pmid: 19557839 |
[26] | SPAGOU K, TSOUKALI H, RAIKOS N, GIKA H, WILSON I D, THEODORIDIS G. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. Journal of Separation Science, 2010,33(6/7):716-727. |
[27] |
TANG D Q, ZOU L, YIN X X, ONG C N. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS . Mass Spectrometry Reviews, 2016,35(5):574-600.
doi: 10.1002/mas.21445 pmid: 25284160 |
[28] |
BRUCE S J, TAVAZZI I, PARISOD V, REZZI S, KOCHHAR S, GUY P A. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 2009,81(9):3285-3296.
doi: 10.1021/ac8024569 pmid: 19323527 |
[29] |
KIM S, LEE D Y, WOHLGEMUTH G, PARK H S, FIEHN O, KIM K H. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Analytical Chemistry, 2013,85(4):2169-2176.
doi: 10.1021/ac302881e |
[30] |
AA J, TRYGG J, GULLBERG J, JOHANSSON A I, JONSSON P, ANTTI H, MARKLUND S L, MORITZ T. Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 2005,77(24):8086-8094.
doi: 10.1021/ac051211v pmid: 16351159 |
[31] |
夏广辉, 沈伟健, 余可垚, 吴斌, 张睿, 沈崇钰, 赵增运, 卞筱泓, 许激扬. 气相色谱-负化学源质谱法测定蜂蜜和王浆中4种杀虫剂的残留. 色谱, 2014,32(7):741-745.
doi: 10.3724/SP.J.1123.2014.01043 |
XIA G H, SHEN W J, YU K Y, WU B, ZHANG R, SHEN C Y, ZHAO Z Y, BIAN X H, XU J Y. Determination of four insecticide residues in honey and royal jelly by gas chromatography-negative chemical ionization mass spectrometry. Chinese Journal of Chromatographyi, 2014,32(7):741-745. (in Chinese)
doi: 10.3724/SP.J.1123.2014.01043 |
|
[32] |
ALTAYE S Z, MENG L F, LI J K. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee ( Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie, 2019,50(4):436-453.
doi: 10.1007/s13592-019-00656-1 |
[33] |
CAO L F, ZHENG H Q, PIRK C W W, HU F L, XU Z W. High royal jelly-producing honeybees (Apis mellifera ligustica) (Hymenoptera: Apidae) in China. Journal of Economic Entomology, 2016,109(2):510-514.
doi: 10.1093/jee/tow013 pmid: 26921226 |
[34] |
HU H, BEZABIH G, FENG M, WEI Q H, ZHANG X F, WU F, MENG L F, FANG Y, HAN B, MA C, LI J K. In-depth proteome of the hypopharyngeal glands of honeybee workers reveals highly activated protein and energy metabolism in priming the secretion of royal jelly. Molecular and Cellular Proteomics, 2019,18(4):606-621.
doi: 10.1074/mcp.RA118.001257 pmid: 30617159 |
[35] |
GIKA H G, THEODORIDIS G A, WINGATE J E, WILSON I D. Within-day reproducibility of a HPLC-MS-based method for metabonomic analysis: Application to human urine. Journal of Proteome Research, 2007,6(8):3291-3303.
doi: 10.1021/pr070183p pmid: 17625818 |
[36] |
JOHANNINGSMEIER S D, HARRIS G K, KLEVORN C M. Metabolomic technologies for improving the quality of food: Practice and promise. Annual Review of Food Science and Technology, 2016,7:413-438.
doi: 10.1146/annurev-food-022814-015721 pmid: 26772413 |
[37] |
WANT E J, WILSON I D, GIKA H, THEODORIDIS G, PLUMB R S, SHOCKCOR J, HOLMES E, NICHOLSON J K. Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 2010,5(6):1005-1018.
doi: 10.1038/nprot.2010.50 pmid: 20448546 |
[38] |
GIKA H G, THEODORIDIS G A, VRHOVSEK U, MATTIVI F. Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2012,1259:121-127.
pmid: 24369998 |
[39] |
ZHAO Y Z, LI Z G, TIAN W L, FANG X M, SU S K, PENG W J. Differential volatile organic compounds in royal jelly associated with different nectar plants. Journal of Integrative Agriculture, 2016,15(5):1157-1165.
doi: 10.1016/S2095-3119(15)61274-6 |
[40] |
ZHENG H Q, HU F L, DIETEMANN V. Changes in composition of royal jelly harvested at different times: Consequences for quality standards. Apidologie, 2011,42(1):39-47.
doi: 10.1051/apido/2010033 |
[41] |
CREYDT M, ARNDT M, HUDZIK D, FISCHER M. Plant metabolomics: Evaluation of different extraction parameters for nontargeted UPLC-ESI-QTOF-mass spectrometry at the example of white Asparagus officinalis. Journal of Agricultural and Food Chemistry, 2018,66(48):12876-12887.
doi: 10.1021/acs.jafc.8b06037 pmid: 30411896 |
[42] |
WANT E J O’MAILLE G, SMITH C A, BRANDON T R, URITBOONTHAI W, QIN C, TRAUGER S A, SIUZDAK G. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Analytical Chemistry, 2006,78(3):743-752.
doi: 10.1021/ac051312t pmid: 16448047 |
[43] |
XUE X F, ZHOU J H, WU L M, HU F L, ZHAO J. HPLC determination of adenosine in royal jelly. Food Chemistry, 2009,115(2):715-719.
doi: 10.1016/j.foodchem.2008.12.003 |
[44] |
BONDIA-PONS I, SAVOLAINEN O, TÖRRÖNEN R, MARTINEZ J A, POUTANEN K, HANHINEVA K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non- targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International, 2014,63:132-138.
doi: 10.1016/j.foodres.2014.01.067 |
[45] |
HRBEK V, REKTORISOVA M, CHMELAROVA H, OVESNA J, HAJSLOVA J. Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry. Journal of Food Composition and Analysis, 2018,67:19-28.
doi: 10.1016/j.jfca.2017.12.020 |
[46] |
DIAZ R, POZO O J, SANCHO J V, HERNANDEZ F. Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chemistry, 2014,157:84-93.
doi: 10.1016/j.foodchem.2014.02.009 |
[47] |
YANSHOLE V V, SNYTNIKOVA O A, KIRYUTIN A S, YANSHOLE L V, SAGDEEV R Z, TSENTALOVICH Y P. Metabolomics of the rat lens: A combined LC-MS and NMR study. Experimental Eye Research, 2014,125:71-78.
doi: 10.1016/j.exer.2014.05.016 |
[48] |
MEDIANI A, ABAS F, MAULIDIANI M, KHATIB A, TAN C P, ISMAIL I S, SHAARI K, ISMAIL A. Characterization of metabolite profile in Phyllanthus niruri and correlation with bioactivity elucidated by nuclear magnetic resonance based metabolomics. Molecules, 2017,22(6):902.
doi: 10.3390/molecules22060902 |
[49] |
MEDIANI A, ABAS F, KHATIB A, TAN C P, ISMAIL I S, SHAARI K, ISMAIL A, LAJIS N H. Phytochemical and biological features of Phyllanthus niruri and Phyllanthus urinaria harvested at different growth stages revealed by 1H NMR-based metabolomics. Industrial Crops and Products, 2015,77:602-613.
doi: 10.1016/j.indcrop.2015.09.036 |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[3] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[4] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[5] | 王荣华,孟丽峰,冯毛,房宇,魏俏红,马贝贝,钟未来,李建科. 蜂王浆高产蜜蜂与意大利蜜蜂哺育蜂唾液腺蛋白质组分析[J]. 中国农业科学, 2022, 55(13): 2667-2684. |
[6] | 袁平丽,何楠,赵胜杰,路绪强,朱红菊,刁卫楠,龚成胜,MUHAMMAD Jawad Umer,刘文革. 籽瓜、黏籽和普通西瓜的果实代谢组比较[J]. 中国农业科学, 2021, 54(19): 4179-4195. |
[7] | 虞龙涛,杨何妍,苏宇晨,颜伟玉,吴小波. 基于LC-MS技术研究氟氯苯氰菊酯对西方蜜蜂工蜂幼虫代谢的影响[J]. 中国农业科学, 2021, 54(12): 2689-2698. |
[8] | 赵文华,王桂瑛,荀文,俞媛瑞,葛长荣,廖国周. 基于代谢组学筛选表征茶花鸡肌肉中特征风味的水溶性化合物[J]. 中国农业科学, 2020, 53(8): 1627-1642. |
[9] | 孙永波,王亚,萨仁娜,张宏福. GC-MS分析慢性氨气应激对肉鸡血清代谢物的影响[J]. 中国农业科学, 2020, 53(8): 1688-1698. |
[10] | 戴宇樵,吕才有,何鲁南,易超,刘学艳,黄雯,陈加敏. 基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化[J]. 中国农业科学, 2020, 53(2): 357-370. |
[11] | 高艳,朱雅楠,李秋方,苏松坤,聂红毅. 转录组学分析意大利蜜蜂脑部哺育行为相关基因[J]. 中国农业科学, 2020, 53(19): 4092-4102. |
[12] | 陈勤操,戴伟东,蔺志远,解东超,吕美玲,林智. 代谢组学解析遮阴对茶叶主要品质成分的影响[J]. 中国农业科学, 2019, 52(6): 1066-1077. |
[13] | 许彦阳,姚桂晓,刘平香,赵洁,王昕璐,孙君茂,钱永忠. 代谢组学在农产品营养品质检测分析中的应用[J]. 中国农业科学, 2019, 52(18): 3163-3176. |
[14] | 李帅岚,沈校,邹峥嵘. 加拿大一枝黄花石油醚萃取物对福寿螺肝脏的影响[J]. 中国农业科学, 2019, 52(15): 2624-2635. |
[15] | 张波,吴小波,廖春华,何旭江,颜伟玉,曾志将. 蜜蜂免移虫技术研究与应用[J]. 中国农业科学, 2018, 51(22): 4387-4394. |
|