中国农业科学 ›› 2019, Vol. 52 ›› Issue (6): 1066-1077.doi: 10.3864/j.issn.0578-1752.2019.06.010
陈勤操1,2,戴伟东1(),蔺志远1,2,解东超1,2,吕美玲3,林智1()
收稿日期:
2018-11-12
接受日期:
2019-01-10
出版日期:
2019-03-16
发布日期:
2019-03-22
通讯作者:
戴伟东,林智
作者简介:
陈勤操,E-mail: cqc459145372@tricaas.com。
基金资助:
CHEN QinCao1,2,DAI WeiDong1(),LIN ZhiYuan1,2,XIE DongChao1,2,LÜ MeiLing3,LIN Zhi1()
Received:
2018-11-12
Accepted:
2019-01-10
Online:
2019-03-16
Published:
2019-03-22
Contact:
WeiDong DAI,Zhi LIN
摘要:
【目的】 茶叶生产上常采用遮阴处理来提高其品质,然而,黑暗遮阴对茶叶品质的影响尚未清楚。本文重点研究黑暗遮阴对茶叶中主要品质成分的影响,以期更加详细了解遮阴与茶叶品质的关系。【方法】利用遮阳网对茶树进行中度(65.0%)、黑暗(99.7%)两个遮阴处理,不遮阴作为对照;采用紫外分光光度法检测总多酚、总氨基酸、总黄酮的含量,同时采用超高效液相色谱-四级杆-飞行时间质谱(UHPLC-Q-TOF/MS)对茶叶中的主要品质成分进行详细调查。【结果】 与对照相比,中度遮阴显著降低了茶叶的总氨基酸、总黄酮含量(P<0.05),轻微降低了总多酚含量,增加了酚氨比;黑暗遮阴显著降低了总氨基酸和总黄酮含量,显著增加了总多酚含量和酚氨比(P<0.05)。主成分分析(PCA)表明,两个遮阴处理明显改变了茶树叶片的代谢组。进一步鉴定得到了87个化合物,包括2个生物碱、18个氨基酸、12个儿茶素类、8个儿茶素二聚体类、19个黄酮(醇)糖苷、5个香气糖苷、6个核苷(酸)、9个酚酸、8个其他化合物;与对照相比,82个化合物在遮阴处理后出现显著差异(P<0.05)。遮阴后,生物碱含量显著增加;氨基酸呈现多样性变化,半数以上氨基酸含量显著下降;部分儿茶素类及二聚儿茶素类物质的含量在中度遮阴后显著降低,然而大部分儿茶素类和儿茶二聚体素类物质的含量却在黑暗遮阴后显著上升;绝大部分黄酮(醇)糖苷的含量在遮阴后出现显著下降,且遮阴程度越高,下降越多;大部分香气糖苷含量在遮阴后显著上升;大部分核苷(酸)含量在遮阴后显著降低;多数酚酸的含量在遮阴后显著上升。【结论】黑暗遮阴后,生物碱、儿茶素类及儿茶素二聚体类等物质含量显著上升,氨基酸含量显著下降,酚氨比显著上升,预示黑暗遮阴处理可能不利于提高茶叶的品质。
陈勤操,戴伟东,蔺志远,解东超,吕美玲,林智. 代谢组学解析遮阴对茶叶主要品质成分的影响[J]. 中国农业科学, 2019, 52(6): 1066-1077.
CHEN QinCao,DAI WeiDong,LIN ZhiYuan,XIE DongChao,LÜ MeiLing,LIN Zhi. Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis[J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
表1
遮阴对茶叶中主要生化成分及含水率的影响"
对照CK | 中度遮阴(M)Moderate shading | 黑暗遮阴(D)Dark shading | |
---|---|---|---|
总多酚 Total polyphenols (%) | 9.99±0.4a | 9.77±0.71a | 12.75±0.57b |
总氨基酸 Total amino acids (%) | 4.63±0.14a | 4.20±0.05b | 4.33±0.06b |
总黄酮 Total flavonoids (%) | 3.28±0.17a | 2.17±0.06b | 1.46±0.14c |
酚氨比Ratio of polyphenols to amino acids | 2.16±0.05a | 2.33±0.17a | 2.95±0.17b |
没食子酸Gallic acid (mg?g-1) | 3.78±0.22a | 4.51±0.29b | 4.63±0.11b |
表没食子儿茶素 EGC (mg?g-1) | 14.93±0.37a | 13.49±0.08b | 10.56±0.34c |
儿茶素 C (mg?g-1) | 4.19±0.13a | 3.99±0.03b | 8.24±0.08c |
表没食子儿茶素没食子酸酯EGCG (mg?g-1) | 29.12±3.86a | 28.35±2.7a | 53.38±6.08b |
表儿茶素EC (mg?g-1) | 6.42±0.05a | 5.58±0.07b | 5.64±0.12b |
表儿茶素没食子酸酯ECG (mg?g-1) | 2.19±0.63a | 1.79±0.37a | 5.69±1.12b |
咖啡碱Caffeine (mg?g-1) | 26.93±0.87a | 28.88±0.08b | 39.4±0.19c |
含水率Moisture content (%) | 78.67±0.13a | 80.15±0.28b | 80.85±0.25c |
表2
茶叶中鉴定到的化合物及其相对含量(峰面积,counts)"
编号 NO. | 化合物 Compound | 对照 CK | 中度遮阴(M) Moderate shading | 黑暗遮阴(D) Dark shading |
---|---|---|---|---|
生物碱 Alkaloids | ||||
1 | 可可碱 Theobromine* | 21601922±564017a | 23610245±1235150b | 31765707±910344c |
2 | 咖啡碱 Caffeine* | 81927164±669239a | 84157969±833682b | 92249135±626755c |
氨基酸 Amino acids | ||||
3 | 赖氨酸 Lysine* | 415102±33333a | 304636±13196b | 287939±21857b |
4 | 组氨酸 Histidine* | 106521±2331a | 114046±1501b | 115505±4088b |
5 | 精氨酸 Arginine* | 1080777±17439a | 411284±30083b | 310232±11544c |
6 | 谷氨酰胺 Glutamine* | 11504894±248750a | 9510890±228064b | 8544787±165748c |
7 | 天冬酰胺 Asparagine* | 269010±4047a | 330815±12527b | 386838±12683c |
8 | 天冬氨酸 Aspartic acid* | 2471046±65470a | 3061948±147858b | 3511442±163262c |
9 | 苏氨酸 Threonine* | 508856±15011a | 541787±29692a | 658518±34367b |
10 | 谷氨酸 Glutamic acid* | 12341565±309155a | 13270317±611986b | 13439150±632674b |
11 | 脯氨酸 Proline* | 2645963±379642a | 2440953±213986ab | 2108482±62378b |
12 | 哌啶酸 Pipecolic acid | 3248531±142042a | 2935336±171353b | 1764292±38796c |
13 | 缬氨酸 Valine* | 2339386±101496a | 2238141±130139a | 1919611±60701b |
14 | 焦谷氨酸 Pyroglutamic acid | 1062221±57097a | 811492±72660b | 771975±48705b |
15 | 茶氨酸 Theanine* | 68360338±585955a | 66479617±411838b | 68385572±731671a |
16 | 络氨酸 Tyrosine* | 1786868±93078a | 1549169±153847b | 1106611±81550c |
17 | 亮氨酸 Leucine* | 1443868±81819a | 1408718±79026a | 1573454±70977b |
18 | 异亮氨酸 Isoleucine* | 3262703±121220a | 3024099±132531ab | 2798292±251013b |
19 | 苯丙氨酸 Phenylalanine* | 4853644±269826a | 4666955±267358a | 2267113±388453b |
20 | 色氨酸 Tryptophan* | 5472135±160789a | 5984855±345522b | 11062018±429397c |
儿茶素类物质 Catechins | ||||
21 | 没食子儿茶素 GC* | 10739724±248150a | 7266229±1746807b | 6619543±177288b |
22 | 表没食子儿茶素 EGC* | 39500597±1284644a | 37443505±1664176b | 34546359±1417812c |
23 | 儿茶素 C* | 8415688±210799a | 7060237±384357b | 8382320±246267a |
24 | 表没食子儿茶素没食子酸酯 EGCG* | 29958037±706088a | 30326483±808249a | 34639578±1220789b |
25 | 表没食子儿茶素-3,5-二没食子酸酯 EGC 3,5-digallate | 273480±42970a | 283272±48547a | 1053013±139393b |
26 | 没食子儿茶素没食子酸酯 GCG | 972901±112326a | 1030902±94020a | 1425857±71356b |
27 | 表儿茶素 EC* | 19771924±1020879a | 18019916±667293b | 19623903±522374a |
28 | 表没食子儿茶素-3- (3-O-甲基)没食子酸酯 EGCG3''Me* | 120447±4955a | 140818±4851b | 199237±10846c |
29 | 表儿茶素没食子酸酯 ECG* | 18779724±793807a | 17384430±501165a | 24909140±1543699b |
30 | 表阿夫儿茶精 Epiafzelechin* | 734021±40623a | 779426±44759a | 632343±30136b |
31 | 表没食子儿茶素-3-O (4-O-甲基)没食子酸酯 EGCG4''Me | 172678±3694a | 186962±6304b | 117215±7432c |
32 | 表阿夫儿茶精-3-没食子酸酯 Epiafzelechin 3-gallate | 361261±14773a | 417017±48019a | 872386±74888b |
儿茶素二聚体类物质 Dimeric catechins | ||||
33 | 原花青素B3 Procyanidin B3 | 1456926±144947a | 1318465±164090a | 1777328±154439b |
34 | 原花青素B5 Procyanidin B5 | 676231±36224a | 607400±27511a | 865820±81000b |
35 | 原花青素B1 Procyanidin B1 | 12734590±529138a | 11845963±653962a | 14682473±1649024b |
36 | 原花青素B2 Procyanidin B2* | 3648511±97335a | 3372480±218490b | 4396056±133796c |
37 | 原花青素C1 Procyanidin C1 | 442411±27557a | 407848±31717a | 576841±29677b |
38 | 聚酯型儿茶素B Theasinensin B | 2686283±501963a | 2475063±384834a | 2088193±324752a |
39 | 聚酯型儿茶素A Theasinensin A | 1078878±239782a | 1060887±272465a | 1853021±224828b |
40 | 表儿茶素-4α-8-表儿茶素没食子酸酯 EC-(4alpha->8)-ECG | 3126006±328977a | 3187820±548213a | 3992103±491254b |
黄酮(醇)糖苷 Flavone glycosides and flavonol glycosides | ||||
41 | 芹菜素 6,8-C-二葡萄糖苷 Apigenin 6,8-C-diglucoside* | 1613798±56930a | 1630940±131948a | 777980±59120b |
42 | 芹菜素 6-C-葡糖-8-C-阿拉伯糖苷 Apigenin 6-C-glucosyl-8-C-arabinoside | 1660183±106041a | 1503259±97807b | 810637±78142c |
43 | 芹菜素 6-C-阿拉伯糖-8-C-葡萄糖苷 Apigenin 6-C-arabinoside-8-C-glucoside | 1496711±129603a | 1518132±151862a | 788376±65889b |
44 | 槲皮素三葡萄糖苷1 Quercetin triglucoside1 | 1612840±57495a | 1363996±78280b | 580505±25067c |
45 | 槲皮素二葡萄糖苷 Quercetin diglucoside | 67381±3565a | 55609±3754b | 107029±9284c |
46 | 槲皮素三葡萄糖苷2 Quercetin triglucoside2 | 1084804±46160a | 1141132±51278a | 638989±30546b |
47 | 杨梅酮 3-葡萄糖苷 Myricetin 3-glucoside | 18182085±616935a | 12072654±310669b | 3589507±251769c |
48 | 牡荆素 Vitexin (Apigenin 8-C-glucoside)* | 765594±51330a | 782206±55471a | 271503±22369b |
49 | 异牡荆素 Isovitexin (Apigenin 6-C-glucoside)* | 1181313±24234a | 979750±147049b | 233632±18079c |
50 | 槲皮素 3-半乳糖苷Quercetin 3-O-galactoside* | 1099792±11518a | 506247±12394b | 143146±3610c |
51 | 槲皮素 3-葡萄糖酰芸香糖苷 Quercetin 3-O-glucosylrutinoside | 14979656±3750206a | 8112166±2330341b | 3161317±67104c |
52 | 芦丁 Rutin (Quercetin 3-rutinoside)* | 2164395±550873a | 1090625±197167b | 198801±14635c |
53 | 异槲皮苷 Isoquercitrin (Quercetin 3-glucoside)* | 17026726±301235a | 7759338±124311b | 1851133±23502c |
54 | 山奈酚 3-半乳糖酰芸香糖苷 Kaempferol 3-galactosylrutinoside | 7541465±350174a | 7835962±171382a | 4825756±137690b |
55 | 山奈酚 3-葡糖酰芸香糖苷 Kaempferol 3-glucosylrutinoside | 7016794±174776a | 5664808±182475b | 1898898±51123c |
56 | 山奈酚 3-半乳糖苷 Kaempferol 3-O-galactoside* | 23176288±330927a | 20712077±535708b | 7805419±171856c |
57 | 山奈酚 3-芸香糖苷 Kaempferol 3-O-rutinoside* | 2816105±37743a | 1598996±83538b | 483109±13085c |
58 | 山奈酚 3-葡萄糖苷 Kaempferol 3-O-glucoside* | 5081721±116589a | 3529878±58811b | 936048±18986c |
59 | 山奈酚 3-阿拉伯糖苷 Kaempferol 3-O-arabinoside* | 1525796±41047a | 1362198±34642b | 469329±16088c |
香气糖苷 Glycosidically bound volatiles | ||||
60 | 苯甲基樱草糖苷 Benzyl primeveroside | 355943±33789a | 418331±21363b | 457889±16047c |
61 | 苯乙基樱草糖苷 Phenylethyl primeveroside | 303228±36908a | 670857±67252b | 2026015±184020c |
62 | 顺-3-己烯基樱草糖苷 cis-3-Hexenyl b-primeveroside | 115287±8765a | 129325±6209b | 219121±11667c |
63 | 芳樟醇氧化物樱草糖苷 Linalool oxide primeveroside | 2152086±267169a | 2604541±163205b | 972995±35694c |
64 | 芳樟基樱草糖苷 Linalyl primeveroside | 142195±5721a | 232484±9465b | 256285±15269c |
核苷(酸) Nucleosides and nucleotides | ||||
65 | 腺嘌呤核苷二磷酸 ADP | 289424±11725a | 241159±17959b | 233107±15448b |
66 | 腺嘌呤核苷酸 AMP | 2320655±155694a | 2183139±147428a | 1661637±77320b |
67 | (S)-5'-脱氧-5' -(甲基亚磺酰基)腺苷 (S)-5'-Deoxy-5'-(methylsulfinyl)adenosine | 3129086±882862a | 2919162±1223813a | 1980296±688545a |
68 | 腺苷 Adenosine* | 11518652±412666a | 10370580±354834b | 8366365±330059c |
69 | 鸟苷 Guanosine* | 2390845±190284a | 2035461±70401b | 1463535±89231c |
70 | 5'-甲硫腺苷 5'-Methylthioadenosine | 3089992±571947a | 3567162±597102a | 3150748±579503a |
酚酸 Phenolic acids | ||||
71 | 茶没食子素 Theogallin* | 25899247±573438a | 31559584±533807b | 50027889±838726c |
72 | 木麻黄素 Strictinin* | 1774131±71441a | 1958248±182106a | 3045129±305136b |
73 | 4-香豆酰奎宁酸 4-Coumaroylquinic acid | 1490324±342313a | 1610962±50961a | 1667523±402289a |
74 | 绿原酸 Chlorogenic acid* | 951977±26554a | 1163181±36488b | 1210987±22284c |
75 | 二没食子葡萄糖苷 Digalloylglucose | 54447±5062a | 65531±4727b | 136856±7065c |
76 | 3-O-p-香豆酰奎宁 3-O-p-Coumaroylquinic acid | 5148816±226499a | 5686498±191820a | 4357076±794521b |
77 | 鲁米诺酸 Lucuminic acid | 393779±42713a | 428757±27110a | 180194±17712b |
78 | 咖啡酰莽草酸 Caffeoylshikimic acid | 124053±3716a | 71765±2542b | 0±0c |
79 | 2''-O-反式香豆酰紫云英苷2''-O-trans-p-Coumaroylastragalin | 315833±14488a | 427880±10136ab | 481791±180927b |
其他 Others | ||||
80 | 胆碱磷酸 Phosphocholine | 996444±32181a | 1102106±31318b | 2057178±51259c |
81 | 甘油磷酸胆碱 Glycerophosphocholine | 3593165±298005a | 1005165±240471b | 689645±68058c |
82 | N-乳酰乙醇胺 N-Lactoyl ethanolamine | 1479644±40550a | 1231846±44941b | 956384±48087c |
83 | 茶氨酸葡萄糖苷 Theanine glucoside | 1570632±195849a | 1325741±40281b | 1732060±143831a |
84 | 1-乙基-5-羟基-2-吡咯烷酮1-Ethyl-5-hydroxy-2-pyrrolidinone* | 2415457±132124a | 2761946±73300b | 2371416±94210a |
85 | 泛酸 Pantothenic acid | 307404±16208a | 262262±7379b | 236161±10922c |
86 | 二氢猕猴桃内脂 Dihydroactinidiolide | 199672±27481a | 226319±14022b | 135856±6966c |
87 | N, N'-二环己基脲 N,N'-Dicyclohexylurea | 3100145±55344a | 3096187±43286a | 3041915±59904a |
[1] |
HARBOWY M E, BALENTINE D A, DAVIES A P, CAI Y . Tea chemistry. Critical Reviews in Plant Sciences, 1997,16(5):415-480.
doi: 10.1080/07352689709701956 |
[2] |
孙京京, 朱小元, 罗贤静丽, 邓骋, 宁井铭 . 不同遮荫处理对绿茶品质的影响. 安徽农业大学学报, 2015,42(3):387-390.
doi: 10.13610/j.cnki.1672-352x.20150424.018 |
SUN J J, ZHU X Y , LUO X J L, DENG C, NING J M . Effects of different degrees of shading on green tea quality. Journal of Anhui Agricultural University, 2015,42(3):387-390. (in Chinese)
doi: 10.13610/j.cnki.1672-352x.20150424.018 |
|
[3] |
张文锦, 梁月荣, 张方舟, 陈常颂, 张应根, 陈荣冰, 翁伯奇 . 覆盖遮荫对乌龙茶产量、品质的影响. 茶叶科学, 2004,24(4):276-282.
doi: 10.3969/j.issn.1000-369X.2004.04.010 |
ZHANG W J, LIANG Y R, ZHANG F Z, CHEN C S, ZHANG Y G, CHEN R B, WENG B Q . Effects on the yield and quality of oolong tea by covering with shading net. Journal of Tea Science, 2004,24(4):276-282. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2004.04.010 |
|
[4] | 石元值, 肖强, 吕闰强, 韩国方 . 不同遮荫材料对茶树叶产量与品质的影响//第十五届中国科协年会, 2013. |
SHI Y Z, XIAO Q, LÜ R Q, HAN G F . The effects of the shading mate rials on the tea yield and tea qualities//The 15th Annual Meeting of China Association for Science and Technology , 2013. (in Chinese) | |
[5] | 肖润林, 王久荣, 汤宇, 刘永胜, 彭晚霞, 宋同清 . 高温干旱季节遮阳网覆盖对茶园温湿度和茶树生理的影响. 生态学杂志, 2005,24(3):251-255. |
XIAO R L, WANG J R, TANG Y, LIU Y S, PENG W X, SONG T Q . Effects of covering with outer shading screens during hot-dry season in tea plantation. Chinese Journal of Ecology, 2005,24(3):251-255. (in Chinese) | |
[6] | 肖润林, 王久荣, 单武雄, 黎星辉, 宋同清, 汤宇 . 不同遮荫水平对茶树光合环境及茶叶品质的影响. 中国生态农业学报, 2007,15(6):6-11. |
XIAO R L, WANG J R, DAN W X, LI X H, SONG T Q, TANG Y . Tea plantation environment and quality under different degrees of shading. Chinese Journal of Eco-Agriculture, 2007,15(6):6-11. (in Chinese) | |
[7] |
LEE L S, CHOI J H, SON N, KIM S H, PARK J D, JANG D J, JEONG Y, KIM H J . Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. Journal of Agricultural & Food Chemistry, 2013,61(2):332-338.
doi: 10.1021/jf304161y pmid: 23256790 |
[8] |
ZHANG Q F, SHI Y Z, MA L F, YI X Y, RUAN J Y . Metabolomic analysis using ultra-performance liquid chromatography-quadrupole- time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea. PLoS One, 2014,9(11):1-10.
doi: 10.1371/journal.pone.0112572 pmid: 4229221 |
[9] |
刘建军, 袁丁, 司辉清, 庞晓莉, 唐晓波, 杨洁 . 遮荫对不同季节茶树新梢的内含成分影响研究. 西南农业学报, 2013,26(1):115-118.
doi: 10.3969/j.issn.1001-4829.2013.01.024 |
LIU J J, YUAN D, SI H Q, PANG X L, TANG X B, YANG J . Effects of shading on ingredients of tea shoots in different seasons. Journal of Southwest Agriculture, 2013,26(1):115-118. (in Chinese)
doi: 10.3969/j.issn.1001-4829.2013.01.024 |
|
[10] |
WANG Y S, GAO L P, SHAN Y, LIU Y J, TIAN Y W, XIA T . Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis(L.) O. Kuntze). Scientia Horticulturae, 2012,141(3):7-16.
doi: 10.1016/j.scienta.2012.04.013 |
[11] |
KU K M, CHOI J N, KIM J, KIM J K, YOO L G, LEE S J, HONG Y S, LEE C H . Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). Journal of Agricultural & Food Chemistry, 2010,58(1):418-426.
doi: 10.1021/jf902929h pmid: 19994861 |
[12] | 杨剑超, 姜学玲, 王德涛, 贺晶, 张晓伟, 孙晓, 王冰 . 遮荫处理对胶东丘陵地区设施夏茶品质的影响. 现代农业科技, 2018(6):23-34. |
YANG J C, JIANG X L, WANG D T, HE J, ZHANG X W, SUN X, WANG B . Effect of shading treatment on summer green tea quality in Jiaodong hilly area.Science of Modern Agricultures, 2018(6):23-34. (in Chinese) | |
[13] |
单武雄, 肖润林, 王久荣, 陈佩, 付晓青 . 遮光对丘陵茶园白露毛尖茶产量和品质的影响. 农业现代化研究, 2010,31(3):368-372.
doi: 10.3969/j.issn.1000-0275.2010.03.026 |
DAN W X, XIAO R L, WANG J R, CHEN P, FU X Q . Effects of shading on yield and quality of Bailu Maojian famous tea. Research of Agricultural Modernzation, 2010,31(3):368-372. (in Chinese)
doi: 10.3969/j.issn.1000-0275.2010.03.026 |
|
[14] |
YANG Z Y, KOBAYASHI E, KATSUNO T, ASANUMA T, FUJIMORI T, ISHIKAWA T, TOMOMURA M, MOCHIZUKI K, WATASE T, NAKAMURA YWATANABE N . Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea ( Camellia sinensis) plants in the dark. Food Chemistry, 2012,135(4):2268-2276.
doi: 10.1016/j.foodchem.2012.07.066 pmid: 22980801 |
[15] |
TONTUL I, TORUN M, DINCER C, SAHIN-NADEEM H, TOPUZ A, TURNA T, OZDEMIR F . Comparative study on volatile compounds in Turkish green tea powder: Impact of tea clone, shading level and shooting period. Food Research International, 2013,53(2):744-750.
doi: 10.1016/j.foodres.2012.12.026 |
[16] |
张文锦, 梁月荣, 张应根, 陈常颂, 张方舟 . 遮荫对夏暑乌龙茶主要内含化学成分及品质的影响. 福建农业学报, 2006,21(4):360-365.
doi: 10.3969/j.issn.1008-0384.2006.04.015 |
ZHANG W J, LIANG Y R, ZHANG Y G, CHEN C S, ZHANG F Z . Effects on quality and chemical components of oolong tea by shading in summer. Fujian Journal of Agricultural Sciences, 2006,21(4):360-365. (in Chinese)
doi: 10.3969/j.issn.1008-0384.2006.04.015 |
|
[17] |
YANG C, HU Z Y, LU M L, LI P L, TAN J F, CHEN M, LV H P, ZHU Y, ZHANG Y, GUO L, PENG Q H, DAI W D, LIN Z . Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Research International, 2018,106:909-919.
doi: 10.1016/j.foodres.2018.01.069 pmid: 29580004 |
[18] | DAI W D, QI D D, YANG T, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, XIE D C, TAN J F, LIN Z . Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea ( Camellia sinensis L.). Journal of Agricultural & Food Chemistry, 2015,63(44):9869-9878. |
[19] |
DAI W D, XIE D C, LU M L, LI P L, LV H P, YANG C, PENG Q H, ZHU Y, GUO L, ZHANG Y, TAN J F, LIN Z . Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Research International, 2017,96:40-45.
doi: 10.1016/j.foodres.2017.03.028 pmid: 28528106 |
[20] |
TAN J F, DAI W D, LU M L, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, LIN Z . Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Research International, 2016,79:106-113.
doi: 10.1016/j.foodres.2015.11.018 |
[21] |
CHEN Y Y, FU X N, MEI X, ZHOU Y, CHENG S H, ZENG L T, DONG F, YANG Z Y . Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea ( Camellia sinensis) leaves. Journal of Proteomics, 2017,157:10-17.
doi: 10.1016/j.jprot.2017.01.017 pmid: 28163235 |
[22] | 张英娜 . 绿茶茶汤主要儿茶素呈味特性研究[D]. 北京: 中国农业科学院, 2016. |
ZHANG Y N . Study on the taste characteristics of the main catechins in green tea infusion[D]. Beijing: Chinese Academy of Agricultural Science, 2016. ( in Chinese) | |
[23] |
SCHARBERT S, HOLZMANN N, HOFMANN T . Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural & Food Chemistry, 2004,52(11):3498-3508.
doi: 10.1021/jf049802u pmid: 15161222 |
[24] |
SCHARBERT S, HOFMANN T . Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural & Food Chemistry, 2005,53(13):5377-5384.
doi: 10.1021/jf050294d pmid: 15969522 |
[25] | HO C T, ZHENG X, LI S M . Tea aroma formation. Food Science & Human Wellness, 2015,4(1):9-27. |
[26] |
CHEN Q C, ZHU Y, DAI W D, LV H P, MU B, LI P L, TAN J F, NI D J, LIN Z . Aroma formation and dynamic changes during white tea processing. Food Chemistry, 2019,274:915-924.
doi: 10.1016/j.foodchem.2018.09.072 |
[27] |
GUI J D, FU X M, ZHOU Y, KATSUNO T, MEI X, DENG R F, XU X L, ZHANG L Y, DONG F, WATANABE N, YANG Z Y . Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of Agricultural & Food Chemistry, 2015,63(31):6905-6914.
doi: 10.1021/acs.jafc.5b02741 pmid: 26212085 |
[28] |
KANEKO S, KUMAZAWA K, MASUDA H, HENZE A, HOFMANN T . Molecular and sensory studies on the umami taste of Japanese green tea. Journal of Agricultural & Food Chemistry, 2006,54(7):2688-2694.
doi: 10.1021/jf0525232 pmid: 16569062 |
[29] |
KANEKO S, KUMAZAWA K, MASUDA H, HENZE A, HOFMANN T . Sensory and structural characterisation of an umami enhancing compound in green tea (mat-cha). Developments in Food Science, 2006,43(43):181-184.
doi: 10.1016/S0167-4501(06)80043-9 |
[30] |
ZHAO F, QIU X H, YE N X, QIAN J, WANG D H, ZHOU P, CHEN M J . Hydrophilic interaction liquid chromatography coupled with quadrupole-orbitrap ultra high resolution mass spectrometry to quantitate nucleobases, nucleosides, and nucleotides during white tea withering process. Food Chemistry, 2018,266:343-349.
doi: 10.1016/j.foodchem.2018.06.030 |
[31] | LI C F, YAO M Z, MA C L, MA J Q, JIN J Q, CHEN L . Differential metabolic profiles during the albescent stages of ‘Anji Baicha’ ( Camellia sinensis). PLoS One, 2015,10:1-18. |
[32] |
MA C L, CHEN L, WANG X C, JIN J Q, MA J Q, YAO M Z, WANG Z L . Differential expression analysis of different albescent stages of 'Anji Baicha' ( Camellia sinensis(L.) O. Kuntze) using cDNA microarray. Scientia Horticulturae, 2012,148:246-254.
doi: 10.1016/j.scienta.2012.09.033 |
[33] |
ZHANG Q F, LIU M Y, RUAN J Y . Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar. Frontiers in Plant Science, 2017,8:1-11.
doi: 10.3389/fpls.2017.00291 pmid: 5337497 |
[34] |
ZHANG Q F, LIU M F, RUAN J Y . Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biology, 2017,17:1-10.
doi: 10.1186/s12870-016-0951-9 pmid: 5209872 |
[35] | 大棚课题组. 大棚覆盖技术在茶树上的应用研究初报. 蚕桑茶叶通讯, 1998(3):8-10. |
GROUP G R. Preliminary report on the application of greenhouse covering technology on tea trees.Sericulture Tea Communication, 1998(3):8-10. (in Chinese) | |
[36] |
胡永光, 江丰 , Ashraf MAHMOOD, 刘鹏飞 . 春茶采摘末期遮荫对其生长和品质的影响. 农业机械学报, 2018,49(1):283-289.
doi: 10.6041/j.issn.1000-1298.2018.01.035 |
HU Y G, JIANG F, ASHRAF M, LIU P F . Effects of shading cultivation on growth and quality of spring tea during final harvesting period. Journal of Agricultural Machinery, 2018,49(1):283-289. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2018.01.035 |
|
[37] | 宛晓春 . 茶叶生物化学. 第三版. 北京: 中国农业出版社, 2003: 165-166. |
WAN X C . Tea Biochemistry. 3th Edition. Beijing: China Agricultural Press, 2003: 165-166. (in Chinese) | |
[38] | 李明, 张龙杰, 石萌, 林小明, 郑新强, 王开荣, 陆建良, 梁月荣 . 遮光对光照敏感型新梢白化茶春梢化学成分含量的影响. 茶叶, 2016,42(3):150-154. |
LI M, ZHANG L J, SHI M, LIN X M, ZHENG X Q, WANG K R, LU J L, LIANG Y R . Effect of light-shading on chemical composition of spring shoots on light-sensitive albino tea plants. Journal of Tea, 2016,42(3):150-154. (in Chinese) |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[3] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[4] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[5] | 白非,白桂萍,王春云,李真,龚德平,黄威,程雨贵,汪波,王晶,徐正华,蒯婕,周广生. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响[J]. 中国农业科学, 2022, 55(14): 2726-2739. |
[6] | 朱荫,张悦,严寒,吕海鹏,林智. 不同茶叶中游离氨基酸的对映异构体[J]. 中国农业科学, 2021, 54(4): 804-819. |
[7] | 袁平丽,何楠,赵胜杰,路绪强,朱红菊,刁卫楠,龚成胜,MUHAMMAD Jawad Umer,刘文革. 籽瓜、黏籽和普通西瓜的果实代谢组比较[J]. 中国农业科学, 2021, 54(19): 4179-4195. |
[8] | 于维祯,张晓驰,胡娟,邵靖宜,刘鹏,赵斌,任佰朝. 弱光涝渍复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学, 2021, 54(18): 3834-3846. |
[9] | 唐思宇,刘秋梅,孟晓慧,马磊,刘东阳,黄启为,沈其荣. 高温和酶解处理水稻秸秆后植物促生物质的鉴定及其效果研究[J]. 中国农业科学, 2021, 54(15): 3250-3263. |
[10] | 虞龙涛,杨何妍,苏宇晨,颜伟玉,吴小波. 基于LC-MS技术研究氟氯苯氰菊酯对西方蜜蜂工蜂幼虫代谢的影响[J]. 中国农业科学, 2021, 54(12): 2689-2698. |
[11] | 赵文华,王桂瑛,荀文,俞媛瑞,葛长荣,廖国周. 基于代谢组学筛选表征茶花鸡肌肉中特征风味的水溶性化合物[J]. 中国农业科学, 2020, 53(8): 1627-1642. |
[12] | 孙永波,王亚,萨仁娜,张宏福. GC-MS分析慢性氨气应激对肉鸡血清代谢物的影响[J]. 中国农业科学, 2020, 53(8): 1688-1698. |
[13] | 戴宇樵,吕才有,何鲁南,易超,刘学艳,黄雯,陈加敏. 基于代谢组学的‘云抗10号’晒青茶加工过程代谢物变化[J]. 中国农业科学, 2020, 53(2): 357-370. |
[14] | 张丽翠,马川,冯毛,李建科. 基于高分辨质谱和代谢组学技术评估和优化蜂王浆代谢物提取方法[J]. 中国农业科学, 2020, 53(18): 3833-3845. |
[15] | 周志,刘扬,张黎明,许锐能,孙丽莉,廖红. 武夷茶区茶园土壤养分状况及其对茶叶品质成分的影响[J]. 中国农业科学, 2019, 52(8): 1425-1434. |
|