中国农业科学 ›› 2019, Vol. 52 ›› Issue (18): 3163-3176.doi: 10.3864/j.issn.0578-1752.2019.18.009
许彦阳1,姚桂晓1,3,刘平香1,赵洁1,王昕璐1,孙君茂2(),钱永忠1()
收稿日期:
2019-02-22
接受日期:
2019-04-23
出版日期:
2019-09-16
发布日期:
2019-09-23
通讯作者:
孙君茂,钱永忠
作者简介:
许彦阳,Tel:010-82106539;E-mail:基金资助:
XU YanYang1,YAO GuiXiao1,3,LIU PingXiang1,ZHAO Jie1,WANG XinLu1,SUN JunMao2(),QIAN YongZhong1()
Received:
2019-02-22
Accepted:
2019-04-23
Online:
2019-09-16
Published:
2019-09-23
Contact:
JunMao SUN,YongZhong QIAN
摘要:
科学检测和分析农产品营养品质对提升优质农产品的营养水平具有重要作用。由于农产品中营养成分组成复杂,已有的分析方法只能针对已知营养素的浓度、功能等进行分析,无法对农产品中存在的大量其他功能性活性物质进行分析鉴定。代谢组学技术通过高通量化学分析技术对生物样品中的小分子代谢产物进行定性和定量分析,在具有特殊营养功能的小分子物质分析中具有突出优势。代谢组学技术的引入,为农产品营养成分表征及差异性分析,产地溯源及真伪鉴别,生长储藏过程中营养成分变化规律揭示,营养功能成分作用机制研究等提供了新方法,也为膳食结构的优化调整提供了新策略。本文对代谢组学研究方法的新进展,包括样品制备、代谢物分析鉴定以及数据分析等进行了综述,总结了代谢组学技术在农产品营养成分表征及差异性分析、产地溯源及真伪鉴别、生长储藏过程中营养成分变化规律以及营养功能成分作用机制等方面的应用,旨在为我国农业高质量发展提供思路。在样品制备方法方面,首先通过快速改变样品所处的环境条件,如添加强酸、强碱或液氮冷冻等技术终止新陈代谢相关酶的活性。然后针对代谢物的极性,选择不同的提取溶剂,从而获得较高的提取率。在样品分析方法方面,核磁共振、色谱质谱和毛细管电泳质谱等技术得到了广泛地应用。其中,色谱质谱联用技术将色谱的有效分离和质谱的准确定量相结合,已经成为代谢组学中使用最广泛的分析技术。在数据处理及分析方面,无监督分析中的主成分分析和有监督分析中的正交偏最小二乘法–判别分析是目前应用最多的数据分析方法。通过通路分析软件的富集分析和拓扑分析,可以明确与代谢物差异相关性最高的代谢通路,对差异代谢产物的机制进行分析和解释。在农产品营养成分分析应用方面,通过对农产品中初生代谢产物及次生代谢产物进行全面表征,形成农产品独特的代谢指纹图谱,从而实现营养成分的差异性分析;通过非特定目标物的检测和无监督分析方法,实现不同产地农产品的组间差异鉴别和差异化合物筛选;通过农产品生长过程中关键成分的消长规律及合成机理分析,指导最佳收获期;通过体液代谢谱和生物标志物的检测,系统研究营养功能成分与生物体代谢之间的交互作用,为营养功能成分作用机制研究及膳食指导提供有价值的信息。
许彦阳,姚桂晓,刘平香,赵洁,王昕璐,孙君茂,钱永忠. 代谢组学在农产品营养品质检测分析中的应用[J]. 中国农业科学, 2019, 52(18): 3163-3176.
XU YanYang,YAO GuiXiao,LIU PingXiang,ZHAO Jie,WANG XinLu,SUN JunMao,QIAN YongZhong. Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-Products[J]. Scientia Agricultura Sinica, 2019, 52(18): 3163-3176.
表1
代谢组学在农产品营养品质检测分析中的应用"
应用 Application | 农产品种类 Agro-product | 检测技术 Detection technology | 数据处理方法 Data analysis | 生物标志物 Biomarker | 参考文献 Reference |
---|---|---|---|---|---|
营养成分表征及差异性分析 Characterization and difference analysis of nutritional components | 番茄 Tomato | LC-MS/MS | PCA | 氨基酸(Amino acid)、6-甲基-5-庚烯-2-酮(6- Methyl-5-hepten-2-one)、香叶基丙酮(Geranyl acetone)等 | [67] |
洋葱 Onion | LC/ ESI-QTOF-MS | ANOVA, HC, PCA | 低聚果糖(Fructooligosaccharides)、氨基酸(Proteinogenic amino acids)、多肽(Peptides)、S-半胱氨酸(S-substituted cysteine conjugates)、黄酮(Flavonoids)及皂苷类(Flavonoids) | [68] | |
葡萄 Grapevine berry | UHPLC-ESI-QTOF-MS | PCA, OPLS-DA | 花色苷(Anthocyanins)、芪类化合物(Stilbenoids)、原花青素(Procyanidin)等 | [69] | |
蟹 Crab | 1H-NMR | PCA | 谷氨酸(Glutamate)、丙氨酸(Alanine)、甘氨酸(Glycine)、龙虾碱(Lobsterine)、乳酸(Lactic acid)、甜菜碱(Betaine)和牛磺酸(Taurine) | [70] | |
番茄 Tomato | HS/SPME/GC-MS | ANOVA, MCA, PCA, HCA | 邻甲基苯乙酮(O-methylacetophenone)、苯甲酮(Benzophenone)等 | [71] | |
芜菁 Brassica crops | GC-MS | PCA, PLS regression analysis, ANOVA | L-谷氨酰胺(L-glutamine)、L-天冬酰胺(L- asparagine)、棉子糖(Raffinose)、麦芽糖(Maltose)、苹果酸(Malic acid)和异硫氰酸烯丙酯(Allyl isothiocyanate) | [72] | |
蔓越莓 Cranberry | UPLC-TOF-MS | PCA, PLS-DA | 花青素(Procyanidin) | [73] | |
树莓 Raspberries | UPLC-TOF-MS | Pattern analysis | 花青素(Procyanidin) | [74] | |
马铃薯 Potatoes | HPLC,GC-TOF-MS | ANOVA, PCA | 花青素(Procyanidin) | [75] | |
番茄 Tomato | 1H-NMR,LC-FID, GC-FID | PCA, SOM | 甘露糖(Mannose)、胆碱(Choline)、油酸(Oleic)、硬脂酸(Stearic)、亚油酸(Linoleic)、亚麻酸(Linolenic)、棕榈酸(Palmitic)、淀粉(Amylum) | [76] | |
玉米 Maize | UPLC-MS/MS,GC-MS | PCA, PLS-DA | 二氢山萘酚(Dihydrokaempferol)和柚皮素(Naringenin) | [78] | |
番茄 Tomato | 1H-NMR | PCA, PLS, ANOVA | 谷氨酸(Glutamic acid)、果糖(Fructose)、缬氨酸(Valine)、山奈酚(Kaempferol)、桂皮素苷(Cinnamrin)、γ-氨基丁酸(Gamma-aminobutyric acid)、柠檬酸(Citric acid)、蔗糖(Sucrose)、苯丙氨酸(Phenylalanine)和葫芦巴碱(Trigonelline) | [79] | |
产地溯源及真伪鉴别 Origin traceability and authenticity identification | 大白菜 Cabbage | 1H-NMR | PCA | 氨基丁酸(Aminobutyric acid)、天冬酰胺(Asparagine)、亮氨酸(Leucine)、异亮氨酸(Isoleucine)、O-磷酸胆碱(O-phosphocholine)、乙酸苯酯(Phenylacetate)、苯丙氨酸(Phenylalanine)、琥珀酸盐(Succinate)、蔗糖(Sucrose)、酪氨酸(Tyrosine)、缬氨酸(Valine) | [81] |
枸杞 Lycium barbarum | LC-QTOF-MS | PLS-DA, HCA | 槲皮素(Quercetin)、山奈酚糖苷(Kaempferol glycosides)、二咖啡酰奎宁酸(Dicaffeoylquinic acid)和酚酸(Phenolic acids) | [82] | |
大蒜 Garlic | DART-HRMS, HPLC-ESI-HRMS, DI-ESI-HRMS | OPLS-DA | 蒜氨酸(Alliin)、PC (16:0/18:2) (Phosphatidylcholine)和精氨酸(Arginine) | [83] | |
大蒜 Garlic | HRMAS-NMR | PLS-DA | 烯丙基含硫化合物(Allyl-organosulphurs)、大蒜素(Allicin) | [84] | |
榛子 Hazelnut | UPLC-QTOF-MS | PCA-LDA | 磷脂酰胆碱(Phosphatidylcholines)、磷脂酰乙醇胺(Phosphatidylethanolamines)、甘油二酯(Diacylglycerols)、三酰基甘油(Triacylglycerols)和γ-生育酚(γ-tocopherol) | [90] |
续表1
代谢组学在农产品营养品质检测分析中的应用"
应用 Application | 农产品种类 Agro-product | 检测技术 Detection technology | 数据处理方法 Data analysis | 生物标志物 Biomarker | 参考文献 Reference |
---|---|---|---|---|---|
榛子 Hazelnut | LC-ESI-QqQ-MS | PCA-LDA, ANOVA | PE(18:2/18:2) (1,2-dilinoleoyl-sn glycero-3- phosphoethanolamine)、PC(18:2/18:2) (1,2- dilinoleoyl-sn-glycero-3-phosphocholine)、DG (18:2/18:2) (1,3-100 dilinoleoyl-rac-glycerol) | [91] | |
生长储藏过程中营养成分变化规律 Changes of nutritional components during growth and storage | 草莓 Strawberry | GC-MS,HPLC-MS | PCA, PLS-DA | 游离氨基酸(Free amino acids) | [92] |
葡萄 Grapevine berry | GC-MS | HCA, PCA, PLS-DA, ANOVA | 糖类(Sugars)和氨基酸(Amino acids) | [93] | |
番茄 Tomato | GC-MS | PLS-DA, ANOVA | 甘露糖(Mannose)、柠檬酸(Citramalic)、葡萄糖酸(Gluconic)和酮-1-古洛糖酸(Keto-l-gulonic acids)等 | [94] | |
鸡蛋 Chicken eggs | HPLC-QTOF-MS | PCA | 胆碱(Choline) | [48] | |
大豆 Soybean | 1H-NMR | PCA, PLS-DA | 脯氨酸(Proline)、赖氨酸(Lysine)和硫(Sulfur) | [96] | |
营养功能成分作用机制及对代谢的影响 Functional mechanism of nutritional components and their effects on metabolism | 生姜 Ginger | HPLC-QTOF-MS | ANOVA | D-葡糖醛酸-6 (D-glucurono-6)、3-内酯(3- lactone)、甘油-3-磷酸(Glycerol-3-phosphate)、丙酮酸(Pyruvic acid)、石胆酸(Lithocholic acid)、2-吡啶甲酸(2-pyrocatechuic acid)和前列腺素E1 (Prostaglandin El)等 | [100] |
枸杞 Lycium barbarum | GC-TOF-MS | PCA, OPLS-DA | 丙氨酸(Alanine)、胸腺嘧啶脱氧核苷酸(Thymidine deoxynucleotide) | [101] | |
绿茶 Green tea | LC-MS | PCA, OPLS-DA, PLS regression analysis | 多酚(Polyphenol) | [102] | |
苦瓜 Bitter gourd | NMR | PCA, PLS-DA | 柠檬酸(Citramalic)、琥珀酸(Succinate)、肌氨酸(Sarcosine)、丙酮酸(Pyruvic acid)等 | [107] | |
白茶 Origanum dictamnus tea | 1H-NMR | PCA, OPLS-DA | 马尿酸(Hippurate)和肌酐(Creatinine) | [108] | |
饮食模式 Dietary modulation | 1H-NMR | OPLS-DA | 肉碱(Carnitine)、乙酰肉碱(Acetylcarnitine)、三甲胺-N-氧化物(Trimethylamine-N-oxid)、对-羟基苯乙酸酯(p-hydroxyphenylacetate) | [109] |
[1] | 吴永宁 . 我国食品安全科学研究现状及"十三五"发展方向. 农产品质量与安全, 2015(6):3-6. |
WU Y N . The research status of food safety science in China and the development direction in “13th Five-year Plan”. Quality and Safety of Agro-Products, 2015(6):3-6. (in Chinese) | |
[2] | 唐华俊 . 中国营养型农业发展正当其时. 高科技与产业化, 2018,266(7):3. |
TANG H J . China's nutritious agriculture is developing at the right time. High-Technology & Industrialization, 2018,266(7):3. (in Chinese) | |
[3] | 韩娟, 孙君茂, 秦玉昌 . 农产品质量与营养功能风险评估研究方向探讨. 农产品质量与安全, 2016(2):45-48. |
HAN J, SUN J M, QIN Y C . Discussion on the research direction of risk assessment in agricultural product quality and nutrition function. Quality and Safety of Agro-Products, 2016(2):45-48. (in Chinese) | |
[4] | 许国旺, 路鑫, 杨胜利 . 代谢组学研究进展. 中国医学科学院学报, 2007,29(6):701-711. |
XU G W, LU X, YANG S L . Recent advances in metabonomics. Acta Academiae Medicinae Sinicae, 2007,29(6):701-711. (in Chinese) | |
[5] | NICHOLSON J K, LINDON J C, HOLMES E . ''Metabonomics'': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999,29(11):1181-1189. |
[6] | FIEHN O . Metabolomics-the link between genotypes and phenotypes. Plant Molecular Biology, 2002,48(1/2):155-171. |
[7] | COCCI P, MOSCONI G, PALERMO F A . Changes in expression of microRNA potentially targeting key regulators of lipid metabolism in primary gilthead sea bream hepatocytes exposed to phthalates or flame retardants. Aquatic Toxicology, 2019,209:81-90. |
[8] | EVERETT J R . Pharmacometabonomics in humans: A new tool for personalized medicine. Pharmacogenomics, 2015,16(7):737-754. |
[9] | POTRATZ S, TARNOW P, JUNGNICKEL H, BAUMANN S, VON BERGEN M, TRALAU T, LUCH A . Combination of metabolomics with cellular assays reveals new biomarkers and mechanistic insights on xenoestrogenic exposures in MCF-7 Cells. Chemical Research in Toxicology, 2017,30(4):883-892. |
[10] | JIANG G T, KANG H Y, YU Y Q . Cross-platform metabolomics investigating the intracellular metabolic alterations of HaCaT cells exposed to phenanthrene. Journal of Chromatogr B Analytical Technologies in the Biomedical & Life Sciences, 2017,1060:15-21. |
[11] | ZOTTI M, DE PASCALI S A, DEL COCO L, MIGONI D, CARROZZO L, MANCINELLI G, FANIZZI F P. 1H NMR metabolomic profiling of the blue crab (Callinectes sapidus) from the Adriatic Sea (SE Italy): A comparison with warty crab(Eriphia verrucosa), and edible crab (Cancer pagurus). Food Chemistry 2016,196:601-609. |
[12] | CHEN J P, CHAN P H, LAM C T W, LI Z G, LAM K Y C, YAO P, DONG T T X, LIN H Q, LAM H, TSIM K W K . Fruit of ziziphus jujuba (Jujube) at two stages of maturity: Distinction by metabolic profiling and biological assessment. Journal of Agricultural and Food Chemistry, 2015,63(2):739-744. |
[13] | CEVALLOS-CEVALLOS J M, REYES-DE-CORCUERA J I, ETXEBERRIA E, DANYLUK M D, RODRICK G E . Metabolomic analysis in food science: A review. Trends in Food Science & Technology, 2009,20(11):557-566. |
[14] | 赵春霞, 许国旺 . 基于液相色谱-质谱技术的代谢组学分析方法新进展. 分析科学学报, 2014,30(5):761-766. |
ZHAO C X, XU G W . Progress of metabonomics technique based on liquid chromatography-mass spectrometry. Journal of Analytical Science, 2014,30(5):761-766. (in Chinese) | |
[15] | 马宁, 杨亚军, 刘希望, 李剑勇 . 基于液质平台代谢组学生物样本的采集和制备. 中国兽医学报, 2017,37(6):1193-1200. |
MA N, YANG Y J, LIU X W, LI J Y . Biological sample collection and preparation for metabonomic study with LC-MS platform. Chinese Journal of Veterinary Science, 2017,37(6):1193-1200. (in Chinese) | |
[16] | KNOLHOFF A M, CROLEY T R . Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. Journal of Chromatography A, 2016,1428:86-96. |
[17] | LIU Y Y, HU X L, BAO Y F, YIN D Q . Simultaneous determination of 29 pharmaceuticals in fish muscle and plasma by ultrasonic extraction followed by SPE-UHPLC-MS/MS. Journal of Separation Science, 2018,41(10):2139-2150. |
[18] | ANDRADE-EIROA A, CANLE M, LEROY-CANCELLIERI V, CERDÀ V . Solid-phase extraction of organic compounds: A critical review (Part I). TrAC Trends in Analytical Chemistry, 2016,80:641-654. |
[19] | WANG C H, SU H, CHOU J H, HUANG M Z, LIN H J, SHIEA J . Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays. Analytica Chimica Acta, 2018,1021:60-68. |
[20] | SHAMSIPUR M, YAZDANFAR N, GHAMBARIAN M . Combination of solid-phase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chemistry, 2016,204:289-297. |
[21] | GIL-RAMIREZ A, AL-HAMIMI S, ROSMARK O, HALLGREN O, LARSSON-CALLERFELT A K, RODRíGUEZ-MEIZOSO I . Efficient methodology for the extraction and analysis of lipids from porcine pulmonary artery by supercritical fluid chromatography coupled to mass spectrometry. Journal of Chromatography A, 2019,1592:173-182. |
[22] | VARGAS L H G, NETO J C R, RIBEIRO J A D, RICCI-SILVA M E, SOUZA M T, RODRIGUES C M, OLIVEIRA A E, ABDELNUR P V . Metabolomics analysis of oil palm (Elaeis guineensis) leaf: Evaluation of sample preparation steps using UHPLC-MS/MS. Metabolomics, 2016,12(10):153. |
[23] | 徐佳, 刘其南, 翟园园, 单进军, 张丽 . 细胞代谢组学样品前处理研究进展. 中国细胞生物学学报, 2018,40(3):418-425. |
XU J, LIU Q N, ZHAI Y Y, SHAN J J, ZHANG L . The Research development of sample pretreatment in cell metabolomics. Chinese Journal of Cell Biology, 2018,40(3):418-425. (in Chinese) | |
[24] | WANG X, XU Y, SONG X, JIA Q, ZHANG X, QIAN Y, QIU J . Analysis of glycerophospholipid metabolism after exposure to PCB153 in PC12 cells through targeted lipidomics by UHPLC- MS/MS. Ecotoxicology and Environmental Safety, 2019,169:120-127. |
[25] | BLIGH E G, DYER W J . A rapid mmethord of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959,37(8):911. |
[26] | FOLCH J, LEES M, SLOANE STANLEY G H . A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 1957,226(1):497-509. |
[27] | SARAFIAN M H, GAUDIN M, LEWIS M R, MARTIN F P, HOLMES E, NICHOLSON J K, DUMAS M E . Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Analytical Chemistry, 2014,86(12):5766-5774. |
[28] | MATYASH V, LIEBISCH G, KURZCHALIA T V, SHEVCHENKO A, SCHWUDKE D . Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research, 2008,49(5):1137-1146. |
[29] | MOROS G, CHATZIIOANNOU A C, GIKA H G, RAIKOS N, THEODORIDIS G . Investigation of the derivatization conditions for GC-MS metabolomics of biological samples. Bioanalysis, 2017,9(1):53-65. |
[30] | 焦宏 . 核磁共振技术在代谢组学中的应用. 山西医药杂志, 2011(4):335-336. |
JIAO H . Application of nuclear magnetic resonance technology in metabolomics. Shanxi Medical Journal, 2011(4):335-336. (in Chinese) | |
[31] | 王超, 涂文志, 王穆, 让蔚清 . 代谢组学分析技术及代谢物鉴定. 国际药学研究杂志, 2010,37(5):355-360. |
WANG C, TU W Z, WANG M, RANG W Q . Metabonomics analytical technologies and metabolite identification. International Journal of Pharmaceutical Research, 2010,37(5):355-360. (in Chinese) | |
[32] |
夏建飞, 梁琼麟, 胡坪, 王义明, 罗国安 . 代谢组学研究策略与方法的新进展. 分析化学, 2009,37(1):136-143.
doi: 10.1016/S1872-2040(08)60081-X |
XIA J F, LIAGN Q L, HU P, WANG Y M, LUO G A. recent trends in strategies and methodologies for metabonomics. Chinese Journal of Analytical Chemistry, 2009,37(1):136-143. (in Chinese)
doi: 10.1016/S1872-2040(08)60081-X |
|
[33] | 许茜, 王磊, 张杰, 许卉 . 基于核磁代谢组学的阿胶原料来源鉴别. 食品科技, 2018,43(1):316-319. |
XU Q, WANG L, ZHANG J, XU H . Origin identification of Colla Corii Asini based on 1H-NMR metabolomics . Food Science and Technology, 2018,43(1):316-319. (in Chinese) | |
[34] | BRENNAN L . NMR-based metabolomics: From sample preparation to applications in nutrition research. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014,83:42-49. |
[35] | SANDUSKY P, APPIAH-AMPONSAH E, RAFTERY D . Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids. Journal of Biomolecular NMR, 2011,49(3/4):281-290. |
[36] | STURM S, SEGER C . Liquid chromatography-nuclear magnetic resonance coupling as alternative to liquid chromatography-mass spectrometry hyphenations: curious option or powerful and complementary routine tool? Journal of Chromatography A, 2012,1259(19):50-61. |
[37] | BRAUNBERGER C, ZEHL M, CONRAD J, FISCHER S, ADHAMI H R, BEIFUSS U, KRENN L. LC-NMR , NMR, and LC-MS identification and LC-DAD quantification of flavonoids and ellagic acid derivatives in drosera peltata. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2013,932(15):111-116. |
[38] | GARCIA C J, GARCíA-VILLALBA R, GARRIDO Y, GIL M I, TOMáS-BARBERáN F A. Untargeted metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut iceberg lettuce. Metabolomics, 2016,12(8):138. |
[39] | SARABIA L D, BOUGHTON B A, RUPASINGHE T, VAN DE MEENE A M L, CALLAHAN D L, HILL C B, ROESSNER U. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress. Metabolomics, 2018,14(5):1-16. |
[40] | FARNETI B, KHOMENKO I, CAPPELLIN L, TING V, ROMANO A, BIASIOLI F, COSTA G, COSTA F . Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS. Metabolomics, 2015,11(4):838-850. |
[41] | KIM H J, SEO Y T, PARK S-I, JEONG S H, KIM M K, JANG Y P . DART-TOF-MS based metabolomics study for the discrimination analysis of geographical origin of Angelica gigas roots collected from Korea and China. Metabolomics, 2015,11(1):64-70. |
[42] | GONG Z G, HU J, WU X, XU Y J . The Recent developments in sample preparation for mass spectrometry-based metabolomics. Critical Reviews in Analytical Chemistry, 2017,47(4):1-7. |
[43] | BEALE D J, PINU F R, KOUREMENOS K A, POOJARY M M, NARAYANA V K, BOUGHTON B A, KANOJIA K, DAYALAN S, JONES O A H, DIAS D A. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics, 2018,14(11):152. |
[44] | MARI A, LYON D, FRAGNER L, MONTORO P, PIACENTE S, WIENKOOP S, EGELHOFER V, WECKWERTH W . Phytochemical composition of Potentilla anserina L. analyzed by an integrative GC-MS and LC-MS metabolomics platform. Metabolomics, 2013,9(3):599-607. |
[45] | SMITH E D, WHITING M D, RUDELL D R . Metabolic profiling of ethephon-treated sweet cherry (Prunus avium L.). Metabolomics, 2011,7(1):126-133. |
[46] | WONG Y F, PERLMUTTER P, MARRIOTT P J . Untargeted metabolic profiling of Eucalyptus spp. leaf oils using comprehensive two-dimensional gas chromatography with high resolution mass spectrometry: Expanding the metabolic coverage. Metabolomics, 2017,13(5):46. |
[47] | TOFFALI K, ZAMBONI A, ANESI A, STOCCHERO M, PEZZOTTI M, LEVI M, GUZZO F . Novel aspects of grape berry ripening and post-harvest withering revealed by untargeted LC-ESI-MS metabolomics analysis. Metabolomics, 2011,7(3):424-436. |
[48] | JOHNSON A E, SIDWICK K L, PIRGOZLIEV V R, EDGE A, THOMPSON D F . Metabonomic profiling of chicken eggs during storage using high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Analytical Chemistry, 2018,90(12):7489-7494. |
[49] | MOLINA-CALLE M, SáNCHEZ DE MEDINA V, CALDERóN- SANTIAGO M, PRIEGO-CAPOTE F, LUQUE DE CASTRO M D. Untargeted analysis to monitor metabolic changes of garlic along heat treatment by LC-QTOF MS/MS. Electrophoresis, 2017,38(18):2349-2360. |
[50] | IBÁÑEZ C, SIMÓ C, GARCÍA-CAÑAS V, CIFUENTES A, CASTRO- PUYANA M . Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in foodomics: A review. Analytica Chimica Acta, 2013,802:1-13. |
[51] | BAN E, PARK S H, KANG M J, LEE H J, SONG E J, YOO Y S . Growing trend of CE at the omics level: The frontier of systems biology-An update. Electrophoresis, 2012,33(1):2-13. |
[52] | LAN K, ZHANG Y, YANG J Y, XU L . Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform. Journal of Chromatography A, 2010,1217(8):1414-1418. |
[53] | FIEHN O . Metabolomics--the link between genotypes and phenotypes. Plant Molecular Biology, 2002,48(1/2):155-171. |
[54] | 徐淑玲, 魏芳, 董绪燕, 陈洪 . 脂质组学在脂质膳食营养与健康研究中的应用. 中国食物与营养, 2017,23(11):5-10. |
XU S L, WEI F, DONG X Y, CHEN H . The Application of lipidomics in lipids dietary nutrition and health research. Food and Nutrition in China, 2017,23(11):5-10. (in Chinese) | |
[55] | GIKA H G, THEODORIDIS G A, PLUMB R S, WILSON I D . Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. Journal of Pharmaceutical and Biomedical Analysis, 2014,87:12-25. |
[56] | GUO Q, WU W, MASSART D L, BOUCON C, JONG S D . Feature selection in principal component analysis of analytical data. Chemometrics and Intelligent Laboratory Systems, 2002,61(1):123-132. |
[57] | ARROIO A, HONóRIO K M, SILVA A B F D . A theoretical study on the analgesic activity of cannabinoid compounds. Journal of Molecular Structure Theochem, 2004,709(1):223-229. |
[58] | BOULESTEIX A L, STRIMMER K . Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics, 2007,8(1):32-44. |
[59] | DAYGON V D, PRAKASH S, CALINGACION M, RIEDEL A, OVENDEN B, SNELL P, MITCHELL J, FITZGERALD M . Understanding the Jasmine phenotype of rice through metabolite profiling and sensory evaluation. Metabolomics, 2016,12(4):63. |
[60] | CAI Y, WENG K, GUO Y, PENG J, ZHU Z-J . An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics, 2015,11(6):1575-1586. |
[61] | RAFIEI A, SLENO L . Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Communications in Mass Spectrometry, 2015,29(1):119-127. |
[62] | 王昕璐 . 基于脂质组学的PCB153和PCB95对PC12细胞联合毒性效应研究[D]. 中国农业科学院, 2018. |
WANG X L . PCB153 and PCB95 in combined exposure modulate PC12 cells as defined by targeted lipidomics analysis[D]. Chinese Academy of Agricultural Sciences, 2018. (in Chinese) | |
[63] | WISHART D S, JEWISON T, GUO A C, WILSON M, KNOX C, LIU Y, DJOUMBOU Y, MANDAL R, AZIAT F, DONG E . HMDB 3.0-The human metabolome database in 2013. Nucleic Acids Research, 2013,41:801-807. |
[64] | SMITH C A . METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 2005,27(6):747-751. |
[65] | PAUPIÈRE M J, MÜLLER F, LI H, RIEU I, TIKUNOV Y M, VISSER R G F, BOVY A G . Untargeted metabolomic analysis of tomato pollen development and heat stress response. Plant Reproduction, 2017,30(2):81-94. |
[66] | WANG L, YE H, SUN D, MENG T, CAO L J, WU M Q, ZHAO M, WANG Y, CHEN B Q, XU X W, WANG G J, HAO H P . Metabolic pathway extension approach for metabolomic biomarker identification. Analytical Chemistry, 2017,89(2):1229-1237. |
[67] | ZHU G T, WANG S C, HUANG Z J, ZHANG S B, LIAO QBG, ZHANG C Z, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, VAN DER KNAAP E, ZHANG Z H, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W . Rewiring of the fruit metabolome in tomato breeding. Cell, 2018,172(1/2):6-8. |
[68] | BÖTTCHER C, KRÄHMER A, STÜRTZ M, WIDDER S, SCHULZ H . Comprehensive metabolite profiling of onion bulbs (Allium cepa) using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Metabolomics, 2017,13(4):35. |
[69] | NARDUZZI L, STANSTRUP J, MATTIVI F . Comparing wild American grapes with Vitis vinifera: A metabolomics study of grape composition. Journal of Agricultural and Food Chemistry, 2015,63(30):6823-6834. |
[70] | ZOTTI M, COCO L D, PASCALI S A D, MIGONI D, VIZZINI S, MANCINELLI G, FANIZZI F P. Comparative analysis of the proximate and elemental composition of the blue crab callinectes sapidus, the warty crab eriphia verrucosa, and the edible crab cancer pagurus. Heliyon, 2016,2(2):e00075. |
[71] | CORTINA P R, SANTIAGO A N, SANCE M M, PERALTA I E, CARRARI F, ASIS R . Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits. Metabolomics, 2018,14(5):57. |
[72] | FUKUDA T, OKAZAKI K, WATANABE A, SHINANO T, OKA N . GC-MS based metabolite profiling for flavor characterization of brassica crops grown with different fertilizer application. Metabolomics, 2015,12(2):20. |
[73] | BROWN P N, MURCH S J, SHIPLEY P . Phytochemical diversity of cranberry (Vaccinium macrocarpon Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. Journal of Agricultural and Food Chemistry, 2012,60(1):261-271. |
[74] | CARVALHO E, FRANCESCHI P, FELLER A, HERRERA L, PALMIERI L, ARAPITSAS P, RICCADONNA S, MARTENS S . Discovery of A-type procyanidin dimers in yellow raspberries by untargeted metabolomics and correlation based data analysis. Metabolomics, 2016,12(9):144. |
[75] | INOSTROZA-BLANCHETEAU C, DE OLIVEIRA SILVA F M, DURáN F, SOLANO J, OBATA T, MACHADO M, FERNIE A R, REYES-DíAZ M, NUNES-NESI A. Metabolic diversity in tuber tissues of native Chiloé potatoes and commercial cultivars of Solanum tuberosum ssp. tuberosum L. Metabolomics, 2018,14(10):138. |
[76] | MOUNET F, LEMAIRE-CHAMLEY M, MAUCOURT M, CABASSON C, GIRAUDEL J-L, DEBORDE C, LESSIRE R, GALLUSCI P, BERTRAND A, GAUDILLèRE M, ROTHAN C, ROLIN D, MOING A. Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA. Metabolomics, 2007,3(3):273-288. |
[77] | 张晓磊, 张瑞英 . 代谢组学及其在农作物研究中的应用. 生物技术通讯, 2018,29(3):446-450. |
ZHAGN X L, ZHANG R Y . Metabolomics and its application in the crop research. Letters in Biotechnology, 2018,29(3):446-450. (in Chinese) | |
[78] | RAO J, YANG L T, GUO J C, QUAN S, CHEN G H, ZHAO X X, ZHANG D B, SHI J X . Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Plant Cell Reports, 2016,35(2):429-437. |
[79] | LE GALL G, COLQUHOUN I J, DAVIS A L, COLLINS G J, VERHOEYEN M E . Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agricultural and Food Chemistry , 2003,51(9):2447-2456. |
[80] | LI Y, PANG T, LI Y, WANG X L, LI Q H, LU X, XU G W . Gas chromatography-mass spectrometric method for metabolic profiling of tobacco leaves. Journal of Separation Science, 2011,34(12):1447-1454. |
[81] | KIM J, JUNG Y, SONG B, BONG Y S, RYU D H, LEE K S, HWANG G S . Discrimination of cabbage (Brassica rapa ssp. pekinensis) cultivars grown in different geographical areas using 1H NMR-based metabolomics. Food Chemistry , 2013,137(1):68-75. |
[82] | BONDIA-PONS I, SAVOLAINEN O, TÖRRÖNEN R, MARTINEZ J A, POUTANEN K, HANHINEVA K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non- targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Research International, 2014,63(Part B):132-138. |
[83] | HRBEK V, REKTORISOVA M, CHMELAROVA H, OVESNA J, HAJSLOVA J . Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry. Journal of Food Composition and Analysis, 2018,67:19-28. |
[84] | RITOTA M, CASCIANI L, HAN B Z, COZZOLINO S, LEITA L, SEQUI P, VALENTINI M . Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis. Food Chemistry, 2012,135(2):684-693. |
[85] | CAMARGO A B, RESNIZKY S, MARCHEVSKY E J, LUCO J M . Use of the Argentinean garlic (Allium sativum L.) germplasm mineral profile for determining geographic origin. Journal of Food Composition and Analysis, 2010,23(6):586-591. |
[86] | VADALÀ R, MOTTESE A F, BUA G D, SALVO A, MALLAMACE D, CORSARO C, VASI S, GIOFRÈ S V, ALFA M, CICERO N, DUGO G . Statistical analysis of mineral concentration for the geographic identification of garlic samples from sicily (Italy), Tunisia and Spain. Foods, 2016,5(1):20. |
[87] | SMITH R G . Determination of the country of origin of garlic (Allium sativum) using trace metal profiling. Journal of Agricultural and Food Chemistry, 2005,53(10):4041-4045. |
[88] | DU H Y, FU J L, WANG S Q, LIU H L, ZENG Y C, YANG J R, XIONG S B . 1H-NMR metabolomics analysis of nutritional components from two kinds of freshwater fish brain extracts . Rsc Advances, 2018,8(35):19470-19478. |
[89] | 陈羽红, 张东杰, 张桂芳, 王颖, 王长远 . 代谢组学技术在食品产地溯源中的研究进展. 粮食与饲料工业, 2016,12(7):16-19. |
CHEN Y H, ZHANG D J, ZHANG G F, WANG Y, WAGN C Y . Review on metabonomics techniques in food origin traceability. Cereal & Feed Industry, 2016,12(7):16-19. (in Chinese) | |
[90] | KLOCKMANN S, REINER E, BACHMANN R, HACKL T, FISCHER M . Food fingerprinting: metabolomic approaches for geographical origin discrimination of hazelnuts ( Corylus avellana) by UPLC-QTOF-MS. Journal of Agricultural and Food Chemistry, 2016,64(48):9253-9262. |
[91] | KLOCKMANN S, REINER E, CAIN N, FISCHER M . Food targeting: Geographical origin determination of hazelnuts (Corylus avellana) by LC-QqQ-MS/MS-based targeted metabolomics application. Journal of Agricultural and Food Chemistry, 2017,65(7):1456-1465. |
[92] | ZHANG J J, WANG X, YU O, TANG J J, GU X G, WAN X C, FANG C B . Metabolic profiling of strawberry (Fragaria×ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany, 2011,62(3):1103-1118. |
[93] | CUADROS-INOSTROZA A, RUíZ-LARA S, GONZÁLEZ E, ECKARDT A, WILLMITZER L, PEÑA-CORTÉS H. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites. Metabolomics, 2016,12(2):39. |
[94] | OMS-OLIU G, HERTOG M L A T M, VAN DE POEL B, AMPOFO- ASIAMA J, GEERAERD A H, NICOLAï B M. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biology and Technology, 2011,62(1):7-16. |
[95] | MARTINS N, PETROPOULOS S, FERREIRA I C F R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 2016,211:41-50. |
[96] | DENG J C, YANG C Q, ZHANG J, ZHANG Q, YANG F, YANG W Y, LIU J . Organ-specific differential NMR-based metabonomic analysis of soybean [Glycine max(L.) Merr.] fruit reveals the metabolic shifts and potential protection mechanisms involved in field mold infection. Frontiers in Plant Science, 2017,8(508). |
[97] | 许腾, 张玥, 张海丽, 辛凤姣, 王艳, 王凤忠 . 代谢组学技术在营养学研究中的应用. 中国食物与营养, 2017,23(11):11-16. |
XU T, ZHANG Y, ZHAGN H L, XIN F J, WANG Y, WANG F Z . Applications of metabonomics in nutriology research. Food and Nutrition in China, 2017,23(11):11-16. (in Chinese) | |
[98] | 张双庆, 黄振武 . 营养代谢组学技术在营养学研究中的应用. 卫生研究, 2013,42(6):1041-1046. |
ZHAGN S Q, HUANG Z W . Application of nutritional metabolomics technology in nutrition research. Journal of Hygiene Research, 2013,42(6):1041-1046. (in Chinese) | |
[99] | 何庆华, 任萍萍, 王玉兰 . 代谢组学在营养学研究中的应用. 食品科学, 2011,32(5):317-320. |
HE Q H, REN P P, WANG Y L . Applications of metabolomics in nutrition research: A review. Food Science, 2011,32(5):317-320. (in Chinese) | |
[100] | LIU C T, RAGHU R, LIN S H, WANG S Y, KUO C H, TSENG Y F J, SHEEN L Y. Metabolomics of ginger essential oil against alcoholic fatty liver in mice. Journal of Agricultural and Food Chemistry, 2013,61(46):11231-11240. |
[101] | 唐华丽, 夏惠, 王锋, 孙桂菊 . 枸杞多糖作用于2型糖尿病大鼠的血清代谢组学研究. 食品科学, 2017,38(13):160-166. |
TANG H L, XIA H, WANG F, SUN G J . Serum metabonomics study of type 2 diabetic rats administrated with lycium barbarum polysaccharides. Food Science, 2017,38(13):160-166. (in Chinese) | |
[102] | FUJIMURA Y, KURIHARA K, IDA M, KOSAKA R, MIURA D, WARIISHI H, MAEDA-YAMAMOTO M, NESUMI A, SAITO T, KANDA T, YAMADA K, TACHIBANA H . Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars, PLoS ONE. 2011,6(8):e23426. |
[103] | ACCARDI C J, WALKER D I, UPPAL K, QUYYUMI A A, ROHRBECK P, PENNELL K D, MALLON C T, JONES D P . High-resolution metabolomics for nutrition and health assessment of armed forces personnel. Journal of Occupational & Environmental Medicine, 2016,58(8S Suppl 1):S80-S88. |
[104] | RAI A, SAITO K, YAMAZAKI M . Integrated omics analysis of specialized metabolism in medicinal plants. The Plant Journal, 2017,90(4):764-787. |
[105] | 侯绍英, 黄放放, 刘鑫妍, 彭雪 . 基于UPLC-MS技术的人体内芒果苷代谢组学研究. 哈尔滨医科大学学报, 2016,50(4):315-318. |
HOU S Y, HUANG F F, LIU X Y, PENG X . Metabolomics study of mangiferin in human based on UPLC-MS. Journal of Harbin Medical University, 2016,50(4):315-318. (in Chinese) | |
[106] | LLORACH R, URPI-SARDA M, TULIPANI S, GARCIA-ALOY M, MONAGAS M, ANDRES-LACUEVA C . Metabolomic fingerprint in patients at high risk of cardiovascular disease by cocoa intervention. Molecular Nutrition & Food Research, 2013,57(6):962-973. |
[107] | 边会喜 . 基于代谢组学与多光谱成像技术对苦瓜影响高脂饮食肥胖小鼠能量代谢的有效组分的研究[D]. 合肥: 合肥工业大学, 2016. |
BIAN H X . The energy metabolism study of effective componets from bitter melon (Momordica charantia) on DIO mice based on metabolomics and multispectral imaging techonogy[D]. Hefei: Hefei University of Technology, 2016. (in Chinese) | |
[108] | TAKIS P G, ORAIOPOULOU M E, KONIDARIS C, TROGANIS A N . (1)H-NMR based metabolomics study for the detection of the human urine metabolic profile effects of Origanum dictamnus tea ingestion. Food & Function, 2016,7(9):4104-4115. |
[109] | STELLA C, BECKWITH-HALL B, CLOAREC O, HOLMES E, LINDON J C, POWELL J, VAN DER OUDERAA F, BINGHAM S, CROSS A J, NICHOLSON J K. Susceptibility of human metabolic phenotypes to dietary modulation. Journal of Proteome Research, 2006,5(10):2780-2788. |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[3] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[4] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[5] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[6] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[7] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[8] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[9] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[10] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[11] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[12] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[13] | 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652. |
[14] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[15] | 向妙莲, 吴帆, 李树成, 王印宝, 肖刘华, 彭文文, 陈金印, 陈明. 褪黑素处理对梨果实采后黑斑病及贮藏品质的影响[J]. 中国农业科学, 2022, 55(4): 785-795. |
|